1,656 research outputs found

    An evaluation of NASA's program in human factors research: Aircrew-vehicle system interaction

    Get PDF
    Research in human factors in the aircraft cockpit and a proposed program augmentation were reviewed. The dramatic growth of microprocessor technology makes it entirely feasible to automate increasingly more functions in the aircraft cockpit; the promise of improved vehicle performance, efficiency, and safety through automation makes highly automated flight inevitable. An organized data base and validated methodology for predicting the effects of automation on human performance and thus on safety are lacking and without such a data base and validated methodology for analyzing human performance, increased automation may introduce new risks. Efforts should be concentrated on developing methods and techniques for analyzing man machine interactions, including human workload and prediction of performance

    Pilot workload and fatigue: A critical survey of concepts and assessment techniques

    Get PDF
    The principal unresolved issues in conceptualizing and measuring pilot workload and fatigue are discussed. These issues are seen as limiting the development of more useful working concepts and techniques and their application to systems engineering and management activities. A conceptual analysis of pilot workload and fatigue, an overview and critique of approaches to the assessment of these phenomena, and a discussion of current trends in the management of unwanted workload and fatigue effects are presented. Refinements and innovations in assessment methods are recommended for enhancing the practical significance of workload and fatigue studies

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 349)

    Get PDF
    This bibliography lists 149 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April, 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    A Framework for Delivering Contextually Appropriate Opportunities for Warfighter Practice

    Get PDF
    Computer-based modeling and simulation has been a training staple in the military domain since the first aircraft simulators were adopted. More recently, virtual environments based on modeling, simulation and serious games, have introduced relatively low-cost, yet high value additions to the learning environment. As these virtual environments have proliferated, many researchers have investigated the relationship between theoretical foundations of learning, learner development and content delivery, and applied their findings in an attempt to bolster learning, yet performance deficiencies continue to exist. This study asserts that performance deficiencies exist in part because of insufficient contextually appropriate opportunities to practice. This work is multi-disciplinary in nature. Its foundation is modeling and simulation engineering; the use of technology to deliver training. Educational psychology and human factors concepts explain the theoretical basis for modeling and simulation as an effective training delivery agent. The study\u27s thesis is that a framework for delivering contextually appropriate opportunities for warfighter practice can be applied to discover whether modeling, simulation and game-based virtual environments have the potential to improve individual performance for learners beyond the Novice Stage (e.g., Competent Stage) of skills acquisition. Furthermore, this conceptually appropriate practice (CAP) framework can be used to assess the potential of low fidelity virtual environments to provide targeted practice and to improve individual performance, not only during training in high-fidelity virtual environments (near transfer) but also in the live environment (far transfer). To evaluate the thesis, this study investigates the relationship of technology and learning science, and features an empirical evaluation of training effectiveness afforded by delivering additional training repetitions using both low-fidelity virtual environment simulator systems and high-fidelity aircraft simulators

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 212

    Get PDF
    A bibliography listing 146 reports, articles, and other documents introduced into the NASA scientific and technical information system is presented. The subject coverage concentrates on the biological, psychological, and environmental factors involved in atmospheric and interplanetary flight. Related topics such as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, and exobiology are also given attention

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 361)

    Get PDF
    This bibliography lists 141 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Mar. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Does human cognition allow Human Factors (HF) certification of advanced aircrew systems?

    Get PDF
    This paper has examined the requirements of HF specification and certification within advanced or complex aircrew systems. It suggests reasons for current inadequacies in the use of HF in the design process, giving some examples in support, and suggesting an avenue towards the improvement of the HF certification process. The importance of human cognition to the operation and performance of advanced aircrew systems has been stressed. Many of the shortfalls of advanced aircrew systems must be attributed to over automated designs that show little consideration on either the mental limits or the cognitive capabilities of the human system component. Traditional approaches to system design and HF certification are set within an over physicalistic foundation. Also, traditionally it was assumed that physicalistic system functions could be attributed to either the human or the machine on a one to one basis. Moreover, any problems associated with the parallel needs, or promoting human understanding alongside system operation and direction, were generally equated in reality by the natural flexibility and adaptability of human skills. The consideration of the human component of a complex system is seen as being primarily based on manifestations of human behavior to the almost total exclusion of any appreciation of unobservable human mental and cognitive processes. The argument of this paper is that the considered functionality of any complex human-machine system must contain functions that are purely human and purely cognitive. Human-machine system reliability ultimately depends on human reliability and dependability and, therefore, on the form and frequency of cognitive processes that have to be conducted to support system performance. The greater the demand placed by an advanced aircraft system on the human component's basic knowledge processes or cognition, rather than on skill, the more insiduous the effects the human may have on that system. This paper discusses one example of an attempt to devise an improved method of specificaiton and certification with relation to the advanced aircrew system, that of the RN Merlin helicopter. The method is realized to have limitations in practice, these mainly associated with the late production of the system specification in relation to the system development process. The need for a careful appreciation of the capabilities and support needs of human cognition within the design process of a complex man machine system has been argued, especially with relation to the concept of system functionality. Unlike the physicalistic Fitts list, a new classification of system functionality is proposed, namely: (1) equipment - system equipment related; (2) cognitive - human cognition related; and (3) associated - necessary combinatin of equipment and cognitive. This paper has not proposed a method for a fuller consideration of cognition within systems design, but has suggested the need for such a method and indicated an avenue towards its development. Finally, the HF certification of advanced aircrew systems is seen as only being possible in a qualified sense until the important functions of human cognition are considered within the system design process. (This paper contains the opinions of its authors and does not necessarily refledt the standpoint of their respective organizations)

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 352)

    Get PDF
    This bibliography lists 147 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during July 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 323)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April, 1989. Subject coverage includes; aerospace medicine and psychology, life support systems and controlled environments, safety equipment exobiology and extraterrestrial life, and flight crew behavior and performance

    Classification and reduction of pilot error

    Get PDF
    Human error is a primary or contributing factor in about two-thirds of commercial aviation accidents worldwide. With the ultimate goal of reducing pilot error accidents, this contract effort is aimed at understanding the factors underlying error events and reducing the probability of certain types of errors by modifying underlying factors such as flight deck design and procedures. A review of the literature relevant to error classification was conducted. Classification includes categorizing types of errors, the information processing mechanisms and factors underlying them, and identifying factor-mechanism-error relationships. The classification scheme developed by Jens Rasmussen was adopted because it provided a comprehensive yet basic error classification shell or structure that could easily accommodate addition of details on domain-specific factors. For these purposes, factors specific to the aviation environment were incorporated. Hypotheses concerning the relationship of a small number of underlying factors, information processing mechanisms, and error types types identified in the classification scheme were formulated. ASRS data were reviewed and a simulation experiment was performed to evaluate and quantify the hypotheses
    corecore