3 research outputs found

    A Study on Workload Assessment and Usability of Wind-Aware User Interface for Small Unmanned Aircraft System Remote Operations

    Full text link
    This study evaluates pilots' cognitive workload and situational awareness during remote small unmanned aircraft system operations in different wind conditions. To complement the urban air mobility concept that envisions safe, sustainable, and accessible air transportation, we conduct multiple experiments in a realistic wind-aware simulator-user interface pipeline. Experiments are performed with basic and wind-aware displays in several wind conditions to assess how complex wind fields impact pilots' cognitive resources. Post-hoc analysis reveals that providing pilots with real-time wind information improves situational awareness while decreasing cognitive workload

    A Study of Human-Machine Interface (HMI) Learnability for Unmanned Aircraft Systems Command and Control

    Get PDF
    The operation of sophisticated unmanned aircraft systems (UAS) involves complex interactions between human and machine. Unlike other areas of aviation where technological advancement has flourished to accommodate the modernization of the National Airspace System (NAS), the scientific paradigm of UAS and UAS user interface design has received little research attention and minimal effort has been made to aggregate accurate data to assess the effectiveness of current UAS human-machine interface (HMI) representations for command and control. UAS HMI usability is a primary human factors concern as the Federal Aviation Administration (FAA) moves forward with the full-scale integration of UAS in the NAS by 2025. This study examined system learnability of an industry standard UAS HMI as minimal usability data exists to support the state-of-the art for new and innovative command and control user interface designs. This study collected data as it pertained to the three classes of objective usability measures as prescribed by the ISO 9241-11. The three classes included: (1) effectiveness, (2) efficiency, and (3) satisfaction. Data collected for the dependent variables incorporated methods of video and audio recordings, a time stamped simulator data log, and the SUS survey instrument on forty-five participants with none to varying levels of conventional flight experience (i.e., private pilot and commercial pilot). The results of the study suggested that those individuals with a high level of conventional flight experience (i.e., commercial pilot certificate) performed most effectively when compared to participants with low pilot or no pilot experience. The one-way analysis of variance (ANOVA) computations for completion rates revealed statistical significance for trial three between subjects [F (2, 42) = 3.98, p = 0.02]. Post hoc t-test using a Bonferroni correction revealed statistical significance in completion rates [t (28) = -2.92, p\u3c0.01] between the low pilot experience group (M = 40%, SD =. 50) and high experience group (M = 86%, SD = .39). An evaluation of error rates in parallel with the completion rates for trial three also indicated that the high pilot experience group committed less errors (M = 2.44, SD = 3.9) during their third iteration when compared to the low pilot experience group (M = 9.53, SD = 12.63) for the same trial iteration. Overall, the high pilot experience group (M = 86%, SD = .39) performed better than both the no pilot experience group (M = 66%, SD = .48) and low pilot experience group (M = 40%, SD =.50) with regard to task success and the number of errors committed. Data collected using the SUS measured an overall composite SUS score (M = 67.3, SD = 21.0) for the representative HMI. The subscale scores for usability and learnability were 69.0 and 60.8, respectively. This study addressed a critical need for future research in the domain of UAS user interface designs and operator requirements as the industry is experiencing revolutionary growth at a very rapid rate. The deficiency in legislation to guide the scientific paradigm of UAS has generated significant discord within the industry leaving many facets associated with the teleportation of these systems in dire need of research attention. Recommendations for future work included a need to: (1) establish comprehensive guidelines and standards for airworthiness certification for the design and development of UAS and UAS HMI for command and control, (2) establish comprehensive guidelines to classify the complexity associated with UAS systems design, (3) investigate mechanisms to develop comprehensive guidelines and regulations to guide UAS operator training, (4) develop methods to optimize UAS interface design through automation integration and adaptive display technologies, and (5) adopt methods and metrics to evaluate human-machine interface related to UAS applications for system usability and system learnability

    A Usability and Learnability Case Study of Glass Flight Deck Interfaces and Pilot Interactions through Scenario-based Training

    Get PDF
    In the aviation industry, digitally produced and presented flight, navigation, and aircraft information is commonly referred to as glass flight decks. Glass flight decks are driven by computer-based subsystems and have long been a part of military and commercial aviation sectors. Over the past 15 years, the General Aviation (GA) sector of the aviation industry has become a recent beneficiary of the rapid advancement of computer-based glass flight deck (GFD) systems. While providing the GA pilot considerable enhancements in the quality of information about the status and operations of the aircraft, training pilots on the use of glass flight decks is often delivered with traditional methods (e.g. textbooks, PowerPoint presentations, user manuals, and limited computer-based training modules). These training methods have been reported as less than desirable in learning to use the glass flight deck interface. Difficulties in achieving a complete understanding of functional and operational characteristics of the GFD systems, acquiring a full understanding of the interrelationships of the varied subsystems, and handling the wealth of flight information provided have been reported. Documented pilot concerns of poor user experience and satisfaction, and problems with the learning the complex and sophisticated interface of the GFD are additional issues with current pilot training approaches. A case study was executed to explore ways to improve training using GFD systems at a Midwestern aviation university. The researcher investigated if variations in instructional systems design and training methods for learning glass flight deck technology would affect the perceptions and attitudes of pilots of the learnability (an attribute of usability) of the glass flight deck interface. Specifically, this study investigated the effectiveness of scenario-based training (SBT) methods to potentially improve pilot knowledge and understanding of a GFD system, and overall pilot user experience and satisfaction. Participants overwhelmingly reported positive learning experiences from scenario-based GFD systems flight training, noting that learning and knowledge construction were improved over other training received in the past. In contrast, participants rated the usability and learnability of the GFD training systems low, reporting various problems with the systems’ interface, and the learnability (first-time use) of the complex GFD system. However, issues with usability of the GFD training systems did not reduce or change participant attitudes towards learning and mastering GFD systems; to the contrary, all participants requested additional coursework opportunities to train on GFD systems with the scenario-based flight training format
    corecore