12,712 research outputs found

    Going for zero: state decarbonisation strategies for prosperity in a zero-emission world

    Get PDF
    This paper explains why states should have a decarbonisation strategy and explores some key policy elements. Abstract Across the world, governments at all levels are implementing policies to reduce carbon emissions, address local air pollution, improve energy productivity, grow new industries and address energy security concerns. While these initiatives are as yet insufficient to avoid dangerous climate change or achieve the internationally agreed goal of avoiding 2°C warming above pre-industrial levels, the trend is clear. What is also clear is the ultimate destination or strategic objective that these policies need to have: the progressive phase-out of emissions to reach net zero levels, or ‘decarbonisation’. The OECD, World Bank and latest IPCC report have warned that avoiding irreversible and severe climate change impacts will require the global economy to be decarbonised before the end of the century. This requires energy systems, particularly electricity, to decarbonise well before then. Private sector actors are also moving forward. Leading multinational business groups and corporate leaders have called for action to achieve net zero global emissions by 2050. The financial sector is increasingly aware of the risks of ‘stranded assets’ resulting from both global decarbonisation efforts and the physical impacts of climate change. In Australia recent political and policy turmoil saw state governments retreat from many past climate policy initiatives. However some governments are now reconsidering their position and the risks posed to their economies and communities should they be left behind by this global trend toward decarbonisation. This paper explains why states should have a decarbonisation strategy and explores these key policy elements: Setting binding emission limits on major emitting facilities Incorporating carbon considerations into policy and planning processes Using procurement and management policies to help build markets for lower emission goods and services Continuing to develop and link energy efficiency policy frameworks Providing assistance: funding, technical, regulatory, trainin

    The governance of innovation diffusion – a socio-technical analysis of energy policy

    Get PDF
    This paper describes a dynamic price mechanism to coordinate electric power generation from micro Combined Heat and Power (micro-CHP) systems in a network of households. It is assumed that the households are prosumers, i.e. both producers and consumers of electricity. The control is done on household level in a completely distributed manner. Avoiding a centralized controller both eases computation complexity and preserves communication structure in the network. Local information is used to decide to turn on or off the micro-CHP, but through price signals between the prosumers the network as a whole operates in a cooperative way

    Granular technologies to accelerate decarbonization

    Get PDF
    Of the 45 energy technologies deemed critical by the International Energy Agency for meeting global climate targets, 38 need to improve substan- tially in cost and performance while accelerating deployment over the next decades.Low-carbon technological solutions vary in scale from solar panels, e-bikes, and smart thermostats to carbon capture and storage, light rail transit, and whole-building retrofits. We make three contributions to long-standing debates on the appropriate scale of technological responses in the energy system. First, we focus on the specific needs of accelerated low-carbon transformation: rapid technology deployment, escaping lock-in, and social legitimacy. Second, we synthesize evidence on energy end-use technologies in homes, transport, and industry, as well as electricity generation and energy supply. Third, we go beyond technical and economic considerations to include innovation, investment, deployment, social, and equity criteria for assessing the relative advantage of alternative technologies as a function of their scale. We suggest numerous potential advantages of more-granular energy technologies for accelerating progress toward climate targets, as well as the conditions on which such progress depends

    Assessment of energy and emissions saving solutions in urban rail-based transport systems

    Get PDF
    Global warming and climate change are indisputable theories. Since the Industrial Revolution, the mean temperature of the planet has increased by 1°C. Now, temperatures are approaching a higher stage of +1.5°C and the attention is on both CO2 emissions and energy consumption. Transportation is a major component of the environmental impact, accounting for approximately 30% of air pollution and energy consumption. Due to the rapid urbanization in the EU, with an estimated 74.3% of the population living in cities, forecasted to rise to 80% by 2050, urban mobility is dramatically increasing its relevance. Therefore, a reduction in energy consumption and pollutant emissions is a crucial factor to consider in developing urban transportation and particularly rail-based systems, able to provide energy saving transport services by improving urban environment. Several methods and techniques are under development to improve the energy performance of Light Rail Transport (LRT), which spread from different typologies of power supply to improving energy efficiency. The purpose of this paper is to start from the last developments and innovative energy sources for LRT systems. The focus is on two parts: a) trams running on Hydrogen in parallel with on board batteries with energy saving control techniques, b) potential renewable energy sources to meet power demand. The comparison is with traditional power sources and equipment (e.g. Catenary-based). The methods, based on selected indicators, are under development and test by calculations and simulations with reference to the case study of the new tramlines in the city of Brescia (Italy)

    Electrification of Urban Freight Transport - a Case Study of the Food Retailing Industry

    Get PDF
    Decarbonisation is a major challenge for the coming decades, for all industries, including the transport sector. Battery electric vehicles are a potential solution for the transport sector to reduce its carbon impact. Asides from the question whether there is sufficient supply of electric vehicles for freight transport, it is also unclear whether battery-powered trucks meet the practical requirements, especially in terms of their driving range. To investigate this, synthetic tours were generated by solving a Vehicle Routing Problem (VRP). This also generates the fleet size and composition depending on a set of different vehicle types. The network with underlying traffic conditions comes from an publicly available transport model. The generated tours are then simulated with an open-source transport simulation (MATSim), for both diesel and battery electric vehicles (BEVs). In a sensitivity study, two different purchase prices were considered for calculating vehicle costs. The case study uses a model of the food retailing industry for the city of Berlin. 56% of the tours can be driven without recharging. When recharged one time, 90% of the tours are suitable for BEVs. The costs for transporting the goods will increase by 17 to 23% depending on the assumption for the purchase prices for the BEVs. Using a well-to-wheel calculation, the electrification of all tours leads to a reduction of greenhouse gas (GHG) emissions by 26 to 96% depending on the assumed electricity production.DFG, 398051144, Analyse von Strategien zur vollständigen Dekarbonisierung des urbanen Verkehr

    The poor, climate change and energy options

    Get PDF
    No abstract available

    China's New-Type Urbanisation Plan (NUP) and the foreseeing challenges for decarbonization of cities: a review

    Get PDF
    The most recent urbanisation plan in China, the New-type Urbanisation Plan (NUP) launched in March 2014, is a national plan proposed for development of a scientific and reasonable urban development model by 2020. NUP aims to connect four major plans of ecological progress, urbanisation quality, expanding domestic demand and rural-urban coordination. After almost two years, several contradictions are already in place. However, there are key challenges for decarbonization of cities in this process. This review paper explores four major challenges and suggests steps forward during and after NUP's lifespan. This study also elaborates on the processes and contradictions for decarbonization of Chinese cities

    Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C

    Get PDF
    Whole-economy scenarios for limiting global warming to 1.5C suggest that direct carbon emissions in the buildings sector should decrease to almost zero by 2050, but leave unanswered the question how this could be achieved by real-world policies. We take a modelling-based approach for simulating which policy measures could induce an almost-complete decarbonisation of residential heating, the by far largest source of direct emissions in residential buildings. Under which assumptions is it possible, and how long would it take? Policy effectiveness highly depends on behavioural decision- making by households, especially in a context of deep decarbonisation and rapid transformation. We therefore use the non-equilibrium bottom-up model FTT:Heat to simulate policies for a transition towards low-carbon heating in a context of inertia and bounded rationality, focusing on the uptake of heating technologies. Results indicate that the near-zero decarbonisation is achievable by 2050, but requires substantial policy efforts. Policy mixes are projected to be more effective and robust for driving the market of efficient low-carbon technologies, compared to the reliance on a carbon tax as the only policy instrument. In combination with subsidies for renewables, near-complete decarbonisation could be achieved with a residential carbon tax of 50-200Euro/tCO2. The policy-induced technology transition would increase average heating costs faced by households initially, but could also lead to cost reductions in most world regions in the medium term. Model projections illustrate the uncertainty that is attached to household behaviour for prematurely replacing heating systems

    Impact of CO2 prices on the design of a highly decarbonised coupled electricity and heating system in Europe

    Full text link
    Ambitious targets for renewable energy and CO2 taxation both represent political instruments for decarbonisation of the energy system. We model a high number of coupled electricity and heating systems, where the primary sources of CO2 neutral energy are from variable renewable energy sources (VRES), i.e., wind and solar generators. The model includes hourly dispatch of all technologies for a full year for every country in Europe. In each model run, the amount of renewable energy and the level of CO2 tax are fixed exogenously, while the cost-optimal composition of energy generation, conversion, transmission and storage technologies and the corresponding CO2 emissions are calculated. We show that even for high penetrations of VRES, a significant CO2 tax of more than 100 euro/tCO2 is required to limit the combined CO2 emissions from the sectors to less than 5% of 1990 levels, because curtailment of VRES, combustion of fossil fuels and inefficient conversion technologies are economically favoured despite the presence of abundant VRES. A sufficiently high CO2 tax results in the more efficient use of VRES by means of heat pumps and hot water storage, in particular. We conclude that a renewable energy target on its own is not sufficient; in addition, a CO2 tax is required to decarbonise the electricity and heating sectors and incentivise the least cost combination of flexible and efficient energy conversion and storage.Comment: 20 pages and 9 figures in tota
    corecore