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Abstract Whole-economy scenarios for limiting global
warming to 1.5 °C suggest that direct carbon emissions
in the buildings sector should decrease to almost zero by
2050, but leave unanswered the question how this could
be achieved by real-world policies. We simulate which
policy measures could induce an almost complete
decarbonisation of residential heating, the by far largest
source of direct emissions in residential buildings. Un-
der which assumptions is it possible, and how long
would it take? We use the non-equilibrium bottom-up
model FTT:Heat to simulate policies for a transition

towards low-carbon heating in a context of inertia and
bounded rationality, focusing on the uptake of heating
systems. Our results indicate that the near-zero
decarbonisation is achievable by 2050, but requires
substantial policy efforts. We find that policy mixes
are more effective for incentivising the uptake of fuel-
efficient low-carbon technologies, compared to a resi-
dential carbon tax as the only policy. In combination
with subsidies and procurement policies for renewables,
near-complete decarbonisation could be achieved with a
tax of 50–200 €/tCO2. Without being complimented by
additional policies, carbon taxes show a decreasing mar-
ginal impact on total emission reductions, thus remain-
ing insufficient for deep decarbonisation. In all scenar-
ios, the decarbonisation of heating would increase
projected heating costs faced by households initially,
but could lead to cost reductions in most world regions
in the medium term. We show that the potential impacts
of policies highly depend on behavioural decision-
making by households, especially in a context of deep
decarbonisation and rapid transformation.
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Introduction

Final energy demand in residential buildings was esti-
mated to be 24 PWh/year in 2010, causing direct on-site
emissions of 2.18 GtCO2/year and indirect emissions
from electricity use of 3.5 GtCO2/year (Lucon et al.
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2014). At the same time, plenty of unexploited mitiga-
tion options exist in buildings, many at low (or even
negative1) cost (Ürge-Vorsatz et al. 2012a). For limiting
global warming to 2 °C, all transformation pathways
reviewed in IPCC-AR5 therefore suggest substantial
reductions of the buildings sector’s direct carbon emis-
sions: around 50–75% until 2050 and up to 100% by
2100 (Clarke et al. 2014). Limiting global warming to
1.5 °C implies a lower remaining budget for cumulative
economy-wide emissions (730–880 GtCO2 from 2015 to
2100, Millar et al. 2017) and therefore requires to reach
net-zero carbon emissions as early as mid-century
(Rogelj et al. 2015). Because remaining decarbonisation
options compared to 2 °C pathways are limited, scenarios
for reaching the 1.5 °C target rely much more strongly on
rapid emission reductions in the buildings sector: around
85–95% by 2050, relative to their current level (Rogelj
et al. 2015). While such pathways indicate what may be
optimal from a social planning perspective, they strongly
focus on the supply side of the energy system, leaving
open the question how such a deep decarbonisation could
be achieved by real-world demand-side policies, and
which timescale would be realistic.

It is estimated that 56% of final energy in residential
building is used for space and water heating, of which
55% is generated by fossil fuels, around 30% by bio-
mass, and 15% by electricity and district heating sys-
tems (IEA 2013a). Heating is thus by far the largest
energy end-use in households, and responsible for most
of residential on-site CO2 emissions. Despite that, it
only receives relatively limited policy attention com-
pared to the electricity and transport sectors (IEA
2014). While the theoretical emission reduction poten-
tial is well-known (Ürge-Vorsatz et al. 2012b), it re-
mains unclear which real-world policy instruments
could reduce the sector’s CO2 emissions to near-zero
sufficiently fast.

There is a consensus that the global demand for
heating can be fulfilled much more energy efficiently,
thereby reducing fuel use and emissions without reduc-
ing comfort (Lucon et al. 2014). Heating loads can be
reduced by an improved thermal insulation of houses,
and the remaining heat demand can be serviced by
renewable and energy-efficient technologies. Through
their integrated application, building energy use can be

reduced by up to 90% compared to conventional build-
ings (Urge-Vorsatz et al. 2013; Ürge-Vorsatz et al.
2012a). Given that 50% of the current building stock
will still be in use by 2050 (75% in OECD countries)
(IEA 2013b), levels of building efficiency in the next
decades strongly depend on building shell retrofits of
existing houses (Ürge-Vorsatz et al. 2012b, 2015b).

Aside from space heating, over 40% of global heat
demand is for water heating, which is less impacted by
insulation (Connolly et al. 2014), but likely to rise with
growing income in many world regions (Daioglou et al.
2012). Near-zero-emissions are thus unachievable as
long as the remaining heat demand is not provided by
renewable and efficient electricity-based technologies.
Available alternatives to fossil fuel heating systems rely
on the use of biomass (traditional or in modern boilers),
electricity (e.g. electric resistance or immersion
heating), ambient heat (heat pumps) or solar energy
(solar thermal panels) (for an overview, see IEA 2014).
While the operation of solar and biomass systems can
potentially be carbon neutral (abstracting from life-cycle
considerations2), heating with electricity can be a renew-
able technology once electricity generation is
decarbonised; otherwise, electricity-related emissions
must be accounted for. A much more efficient use of
electricity can be achieved by heat pumps, which up-
grade the ambient low-temperature energy of an air,
water or ground source into higher-temperature heat
for space and water heating, effectively achieving effi-
ciencies of 200–400% (average ratio of heat output to
electricity input) (for an overview, see IEA/ETSAP and
IRENA 2013). The cost-competitiveness of these
capital-intensive renewable technologies, with respect
to incumbent fossil fuel technologies, strongly depends
on a combination of local circumstances (such as local
electricity and fuel prices, solar irradiation), generally
not achieved in most countries.

The potential of modern renewable heating technol-
ogies remains largely unexploited: their combined use
(excluding heat pumps) accounted for less than 5% of
global heat generation in 2012 (for a market overview,
see IEA 2014). Some countries have introduced policy
instruments and market and institutional conditions for
incentivising their uptake, most commonly in the form

1 Cost is potentially negative when mitigation options do not only
reduce emissions, but also the underlying energy use, which may lead
to savings on energy expenses in excess of the necessary investment.

2 Woody biomass can be considered as emission neutral assuming that
plants grow to compensate the carbon emitted as they are combusted,
so that the stock of forests (and carbon therein) does not decline as a
result of biomass combustion. For discussions, see Zanchi et al. (2012)
and Lamers and Junginger (2013).
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of capital subsidies (e.g. in Austria and China), carbon
taxes (e.g. in Northern Europe) and use obligations (e.g.
in Germany and Spain) (Connor et al. 2013; Ürge-
Vorsatz et al. 2015a). Due to such policy support, an
increased diffusion of renewables can be observed in
some places (such as solar thermal heating in China):
from 2010 to 14, their combined market share grew by
8% (International Energy Agency 2017). While prog-
ress of the observed extent can improve the energy
efficiency of heating incrementally, it is insufficient for
achieving large absolute reductions in CO2 emissions,
which thus require more ambitious policy approaches
(Jotzo et al. 2012; Mundaca et al. 2013a; Mundaca and
Markandya 2016; Wilhite and Norgard 2004).

Planning for a technological transition in the heating
sector requires information on policy strategies that can
generate the right level of incentive to achieve the re-
quired changes in consumer choices. In this paper, we
focus on analysing the diffusion of renewable and effi-
cient heating technologies in terms of various possible
choices of realistic composite policy packages, in 59
regions of the world.Which policy mixes could induce a
sufficiently fast transition towards renewable heating,
under which conditions and behavioural assumptions,
and how long would it take? In a first step, we use the
IMAGE-REMG model (Daioglou et al. 2012; Isaac and
van Vuuren 2009) to project trends of residential heating
demand until 2050. Our focus, however, is on the future
technology portfolio, which depends on the choice of
heating technologies by households.

We project household choices of heating technolo-
gies using the ‘Future Technology Transformations’
model FTT:Heat (Knobloch et al. 2017). It is a
bottom-up simulation model of technology diffusion,
aiming to project how the technology composition of
residential heating systems in 59 world regions may
develop until 2050 under the chosen assumptions on
heat demand and choice behaviour. Based on projected
preferences and decisions, the model simulates which
technologies supply which share of the heating market
and estimates the resulting levels of fuel use and emis-
sions. It is designed to simulate the potential impact of
various sets of possible policy strategies.

The paper is structured as follows. In section ‘Back-
ground and literature’, we review the literature, and in
section ‘Methods and data’, we present our model and
data. Policy scenarios and results of the model simula-
tions are presented and discussed in section ‘Results’.
Section ‘discussion and conclusion’ concludes.

Background and literature

Residential heat generation is overwhelmingly small
scale and distributed, taking place on site within homes.
The uptake of new heating equipment depends on the
individual decision-making by heterogeneous house-
holds, each with subjective preferences and perceptions,
and only limited information, time and cognitive capac-
ities to evaluate alternative options. At the system level,
the sum of such decisions inevitably deviates from the
least-cost optimum as it would be determined bymodels
that assume a single, fully rational agent or social plan-
ner (Kirman 1992), leading to the criticism that many
bottom-up energy-models are based an unrealistic rep-
resentations of real technology choice-making (for
reviews, see Mundaca et al. 2010; Wilson and
Dowlatabadi 2007;Worrell et al. 2004). Avoiding costly
policy-design failures requires an upfront simulation of
policy effects, based on an analysis that better represents
people’s actual behaviour under bounded rationality and
limited information, and accounting for non-linear dif-
fusion dynamics (Mercure et al. 2016; Rai and Henry
2016). A behavioural modelling of decision-making is
particularly relevant for policies aiming at a premature
replacement of existing systems, which will likely be
necessary for deep decarbonisation (Geels et al. 2017).
For instance, in such decisions, households are found to
apply very strict payback thresholds (Newell and
Siikamki 2015; Olsthoorn et al. 2017), reflected in high
implicit discount rates as estimated from consumer
choices (Hausman 1979; Schleich et al. 2016;
Sutherland 1991; Train 1985). In this section, we review
the aspects relevant to building a simulation-based dif-
fusion model that takes into account known behavioural
features of decision-making.

Household decision-making

Applied behavioural research shows that household de-
cisions between different heating systems are driven by
a diverse set of individual preferences and behavioural
characteristics (for a review, see Kastner and Stern
2015). Multiple studies find that main determinants of
investments in heating systems are related to costs
(Achtnicht and Madlener 2014; Lillemo et al. 2013;
Sopha et al. 2011). Other significant factors are the
influence by social norms, and social comparisons with
peers (Hecher et al. 2017; Sopha et al. 2010). Michelsen
and Madlener (2012) find that preferences depend on
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sociodemographic (e.g. age, education), spatial (e.g.
urban/rural) and home characteristics (e.g. home type,
size). Wilson et al. (2015) point out that energy efficien-
cy investments should not be seen in isolation, but as
processes that emerge from social practices. Psycholog-
ical and sociological research points to the behavioural
relevance of norms, attitudes, values, motivation and
social influence, all of which can impact technology
choice (Abrahamse et al. 2005; Abrahamse and Steg
2009; Clayton et al. 2015; Dietz et al. 2009; Steg 2008;
Stern 1986; Wilson and Dowlatabadi 2007).

The heterogeneity of household characteristics and
perceptions may partly explain the ‘energy efficiency
gap’ (Allcott and Greenstone 2012; Jaffe and Stavins
1994) between a hypothetical optimum as seen from an
outside economics-engineering perspective and ob-
served household decisions, which seem to undervalue
future energy savings relative to upfront investment
costs, resulting in a typically lower than expected uptake
of energy-efficient technologies (reflected in high
empirical estimates of implicit discount rates, as
reviewed by Hausman 1979; Train 1985). Various ex-
planations are discussed in the literature (for a review,
see Gillingham and Palmer 2014), which can be
grouped into market barriers (e.g. hidden costs), market
failures (e.g. asymmetric or imperfect information, split
incentives) and systematic behavioural biases, as de-
scribed by behavioural economics (e.g. loss aversion,
sub-optimal decision heuristics, status quo bias, salien-
cy, procrastination) (Allcott and Mullainathan 2010;
Bager and Mundaca 2017; Frederick et al. 2002;
Kahneman and Tversky 1979; Lillemo 2014; Shogren
and Taylor 2008; Simon 1955).

The cumulative effect of household heterogeneity,
imperfect information and social influence implies that
the diffusion of new technologies does not happen in-
stantaneously once they become economically attrac-
tive, but typically follows an S-shaped trajectory
(Rogers 2010): a slow initial growth is driven by a small
group of early adopters, eventually followed by the large
majority and, finally, laggards. The process is further
amplified by learning-based gradual cost decreases once
a technology grows in market share (Weiss et al. 2010),
the nature and scale of transaction costs (Mundaca et al.
2013b) and industrial dynamics (e.g. capacity
constraints, see Wilson 2012). For energy technologies,
these up-scaling dynamics have been extensively stud-
ied (Grübler et al. 1999; Wilson and Grubler 2011),
emphasising the significance of formative phases and

path dependence. The resulting technology transitions
usually take decades rather than years, being accompa-
nied by changes in regulation, infrastructure, user prac-
tices and culture (Geels 2002). Hence, policies aiming at
transitions must be designed with an understanding of
how new technologies slowly diffuse out of niches and
of households’ diverse motivations to adopt and use
them.

Modelling of the diffusion of heating systems

Various types of energy end-use models exists, which
can be grouped into various categories, such as account-
ing-based, optimisation, agent-based or bottom-up
(Mundaca et al. 2010; Worrell et al. 2004), each with
different (or sometimes no) representations of decision-
making (Wilson and Dowlatabadi 2007). Many national
or global level energy-economy models (such as inte-
grated assessment models) are of normative nature, used
for analysing the cost-effectiveness (e.g. TIMES, MES-
SAGE) or cost-benefit ratio (e.g. FUND, PAGE, DICE)
of technology pathways from a social planning perspec-
tive (Li et al. 2015).3 While such an approach can be
insightful for exploring cost-effective technology path-
ways, optimisation models mostly neglect behavioural,
social and industrial dynamics, effectively assuming that
a single representative agent with perfect information
and foresight is taking the decisions. The analysis of
how (and if) a scenario can be achieved with which
types of incentives requires simulation models that bet-
ter capture some of the complex interactions between
heterogeneous agents (Mercure et al. 2016), and some of
the salient behavioural features involved in real deci-
sion-making, a need which is also highlighted in IPCC-
AR5 (Kolstad et al. 2014).

For the heating sector, some attempts have been
made to introduce a representation of household behav-
iour into optimisation bottom-up models of technology
uptake. Cayla and Maïzi (2015) extended the TIMES-
Households model for France by including different
household categories. Also for France, Giraudet et al.
(2012) introduce consumer heterogeneity and intangible
costs into a bottom-up sub-module of IMACLIM-R. Li
(2017) presents an optimisation model with

3 Under the incorrect assumption that the sum of individual cost-
optimisers corresponds to a cost-optimising social planner, optimisa-
tion is often seen as descriptive; otherwise, optimisation is always
normative (Mercure 2017).
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heterogeneous decision-making which covers heating in
the UK. However, most of these studies feature a rela-
tively low resolution of technology types for heating and
are restricted to one (or mostly a few) countries. Fur-
thermore, the behaviour represented typically comes in
the form of frictions or externalities (e.g. using higher
discount rates) introduced to prevent the models from
reaching their otherwise normative optimal technologi-
cal configurations.

As an alternative to optimisation, several authors have
developed agent-based models (ABMs) of heating sys-
tem uptake, such as Sopha et al. (2011) for wood pellet
heating in Norway. While the approach allows the simu-
lation of heterogeneous households, non-standard deci-
sion-making and social influences, the calibration of
ABMs requires a rich set of socioeconomic data, usually
generated by household surveys and interviews, which
implies challenging requirements for their application on
a larger scale (Rai and Henry 2016). A more qualitative
approach of analysis is taken in the ‘Energy Efficiency in
Buildings’ model, which provides a replicable method-
ology for local market analysis (WBCSD 2016).

A modelling approach of intermediate complexity is
the use of discrete choice models with multinomial logit
structures for representing household diversity, such as
the CIMS model for energy demand in Canada (Rivers
and Jaccard 2005), the Invert/EE-Lab model for
building-related energy demand in selected European
countries (Kranzl et al. 2013; Stadler et al. 2007) and
the bottom-up models of household energy use by Van
Ruijven et al. (2011) and Daioglou et al. (2012) (togeth-
er forming the REMG model component of IMAGE,
see section ‘Simulating future heat demand with IM-
AGE-REMG’), differentiating for urban and rural
households and including income distributions. Some
of these models are technology-rich and coupled with
detailed building-physics models of the housing stock
(e.g. Invert), which increases their degree of realism
from an engineering perspective. At the same time, the
data requirements are immense, so that models either
tend to focus on a limited set of countries (CIMS and
Invert) or only have limited technology representation
(IMAGE-REMG).

Modelling the global scale is crucial in questions
related to climate targets, as it is the only way to calcu-
late global emissions required to estimate climate
change. We acknowledge the difficulties to include
(and parameterise) behavioural dynamics and diversity
with only limited data available at the global scale, given

that such behavioural features must vary by country. In
FTT:Heat, we therefore choose a compromise: hetero-
geneous decision-making and social dynamics are rep-
resented in a stylised but tractable way. To the best of
our knowledge, there exists so far no similar simulation
model for the diffusion of heating systems at the global
scale. This enables FTT:Heat to be made into a compo-
nent of a new type of integrated assessment model,
E3ME-FTT-GENIE (Mercure et al. 2018b).

Methods and data

Simulating future heat demand with IMAGE-REMG

First, we use the IMAGE-REMGmodel to project future
changes in heat demand (UEtot), directly after the meth-
odology described in Isaac and van Vuuren (2009) and
Daioglou et al. (2012). Demand levels are projected for
(i) a baseline scenario, (ii) a mitigation scenario consistent
with limiting radiative forcing to 1.9 W/m2 (1.5 °C tar-
get), involving increased efficiency of new buildings, and
(iii) a variant of the mitigation scenario which addition-
ally assumes increased retrofitting of existing houses.

IMAGE-REMG projects UEtot as the sum of demand
for space and water heating. For water heating, future
demand per person is modelled as a function of income,
converging to a maximum saturation value which de-
pends on heating degree days (HDD) (Daioglou et al.
2012). For space heating, demand is modelled as a func-
tion of population, floor space per person (m2/cap),
heating degree days (HDD) and the useful energy heating
intensity (UE/m2/HDD) (Isaac and van Vuuren 2009):

UEspace ¼ Population�m2=cap� HDD

� UE=m2=HDD ð1Þ
Future changes in population, climate and income are

exogenous drivers, based on the SSP (Shared Socioeco-
nomic Pathway) 2 (‘middle of the road’) (see Riahi et al.
2017). The mitigation scenario (SSP2–1.9) projects re-
ductions in heating intensity which would be consistent
with achieving the 1.5 °C target, which implies an
improved thermal insulation of houses (e.g. by means
of building standards and retrofits). Floor space is an
intermediate driver, calculated as a function of income
and population density. HDD are derived from monthly
mean temperatures, taking into account future levels of
global warming. All relevant data is publicly available
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via the IMAGE website (including future trends in m2/
cap, HDD and UEspace) (PBL 2018).

Heating intensity foremost depends on heating prac-
tices and levels of building insulation, with current
values ranging from 50–150 kJUE/m

2/HDD. The
IMAGE-REMGmodel treats residential energy demand
on aggregate, not specifically modelling building
stocks, retrofitting or specific technology/efficiency
standards. Instead, the heating demand is exogenously
driven based on scenario assumptions, not attached to
specific actions. In the SSP2 scenario, the heating inten-
sity of all houses is assumed to decrease towards an
average of 90 kJUE/m

2/HDD by 2100 in all world re-
gions (from 100 to 150 kJUE/m

2/HDD by 2015) or
remains at the current level if this is lower, meant to
reflect the improvement of worst performing buildings
with a convergence towards current average intensities.
In the SSP2–1.9 scenario, it is assumed that the heating
intensity decreases to 60 kJUE/m

2/HDD by 2100 (corre-
sponding roughly to the ‘sub-optimal’ scenario in the
GEA, see Ürge-Vorsatz et al. 2012a), consistent with the
assumption that aggregate insulation efficiency in-
creases (e.g. in reaction to more stringent building reg-
ulations). Last but not least, the retrofitting scenario
assumes that the heating intensity decreases towards
45 kJ/m2/HDD by 2050. This would be consistent with
rapid insulation improvements of the existing building
stock.4

Simulating technology uptake with FTT:Heat

The core of FTT:Heat is a simulation of technology
diffusion, in which individual heating technologies
(e.g. gas boilers, heat pumps) compete for market shares
of the total heat demand. Importantly, the model does
not minimise ormaximise some objective function, such
as system cost or intertemporal utility. Instead, it simu-
lates the decision-making of households: under given
behavioural assumptions and levels of heat demand,
which heating technologies would they choose, and
how fast can new technologies grow within the market?

Initial market shares of individual technologies i,
Si(t), are calculated from historic data on heat generation
by technology i, UEi(t), as:

Si tð Þ ¼ UEi tð Þ
UEtot tð Þ ; ∑

i
Si tð Þ ¼ 1 ð2Þ

At every time step Δt of the simulation (set to
1/4 year), FTT:Heat models the change in future market
shares based on three central elements (further described
below):

1. Decision-making by diverse households
2. Dynamic growth of technologies
3. Learning by doing

From the resulting shares, the model projects the new
levels of useful energy demand per technology, UEi(t).

UEi can change when the total demand for heating
(UEtot) changes (e.g. due to improved levels of thermal
insulation) and/or when the technology composition (Si)
changes (e.g. due to ongoing trends in technology up-
take or due to the introduction of new policies). Final
energy demand, fuel use and capacities are then estimat-
ed based on technology-specific conversion efficiencies
and capacity factors (also depending on the climate).
Negative changes in a technology’s capacity correspond
to decommissions that are not replaced. Finally, on-site
CO2 emissions are calculated from projected fuel use,
based on the respective carbon content.

Decision-making by diverse households

In each simulation period (set to ¼ year), a fraction of
households decides between heating systems: either for
replacing existing systems that come to the end of their
lifetime (or became so expensive to operate that they are
replaced ahead of that) or to satisfy new demand.

For systems coming to the end of their lifetime,
FTT:Heat simulates a pairwise comparison of all avail-
able heating technologies by heterogeneous households,
based on distributed costs and preferences. These are
represented as the generalised cost of heating, GCOHi:

GCOHi ¼ LCOHi þ γi ð3Þ
GCOHi consists of two parts: an engineering-based

annualised levelised cost calculation (LCOHi) and an
empirical estimate of technology characteristics which

4 The Passive House standard requires a maximum space heating
energy demand of 15 kWh/m2 (PHI 2018). This roughly translates to
a maximum useful heating intensity of 20 kJ/m2/HDD. As we model
aggregate heating intensity, reducing global heating intensity from 50
to 200 to 45 kJ/m2/HDD over a 30-year period is very ambitious and
implies a large portion of households adopting passive house
properties.
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are valued by households (based on observed technolo-
gy uptake), γi. Levelised costs are calculated for all
technologies, as:

LCOHi ¼ ∑t

ICi;t

CFi
þ MRi;t

CFi
þ FCi;t

CEi

1þ rð Þt =∑t
1

1þ rð Þt ð4Þ

ICi,t, MRi,t and FCi,t are upfront investment costs,
maintenance-repair costs and the fuel price respectively.
CFi is the capacity factor (depending on a region’s
heating degree days), and CEi the technological conver-
sion efficiency (output of useful heat, relative to input of
fuel). t is the time period, and r is the discount rate. It is
meant to describe how households value future relative
to present costs, using a rate of 9%, based on Jaccard
and Dennis (2006) (a sensitivity analysis is given in
Table 2).5 In addition, policies can be imposed, such as
a carbon tax or a capital subsidy.

As a representation of household diversity, ICi,t,MRi,t
and FCi,t are all distributed around their mean values.
Such diversity originates from different individual char-
acteristics of the household, the technology or the dwell-
ing. Accordingly, LCOHi is not treated as a unique
value, but as a frequency distribution with a mean and
a standard deviation (illustrated in the left panel of Fig.
1), combined using standard error propagation:

ΔLCOHi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔIC2

i

CF2
i

þ ΔMR2
i

CF2
i

þ ΔFC2
i

CE2
i

s
ð5Þ

Many additional aspects may be valued by
households which remain unspecified in the
LCOHi, such as the perceived inconvenience of a
technology (e.g. for pellet heating, see Sopha et al.
2010), possible co-benefits (e.g. using a heat pump
for cooling purposes) or existing policies. We refer
to such aspects as ‘intangibles’, the value of which
is represented in the technology- and region-
specific empirical parameter γi. It is derived using
a calibration with historical diffusion data: we
search for the set that makes the rate of diffusion
continuous at the cross-over between historical and
simulation periods, in each region (a description of

the methodology is given in the appendix). The
values of ‘intangibles’ may change over time.
However, we cannot estimate their future values
before new data on technology uptake becomes
available. We therefore assume that ‘intangibles’
remain constant throughout the simulation period.

For a population of heterogeneous households, the
comparison of two technologies is then performed by
comparing the frequency distributions of their general-
ised cost:

Fi j ΔCi j
� � ¼ ∫∞−∞F j Cð Þ f i C−ΔCi j

� �
dC Δ;Ci j

¼ GCOHi−GCOH j ð6Þ
F(C) and f(C) are the cumulative cost distribution

function and the cost distribution density, respec-
tively. Fij denotes the fraction of households pre-
ferring technology i over technology j. It is calcu-
lated as the fraction of households for which the
GCOH with technology i is less than with tech-
nology j (i.e. the model calculates a binary logit).
For example, if Fij = 0.7, 70% of households in
this region would prefer technology i over j, while
30% have the reverse preference. The comparison
is performed for all possible pairs of available
technologies, resulting in a complete order of dis-
tributed household preferences, summarised in the
matrix F (which is endogenously calculated for all
regions and updated in each simulation period).
The diversity of choices implies a differentiation
of the market, in which households take different
decisions at different points in time for different
reasons, as described by diffusion theory (Rogers
2010).

Technology diffusion dynamics

Once preferences are estimated, the change in technol-
ogy shares is simulated (Mercure 2012, 2015). First, we
derive the substitution of market shares from heating
technology j to i in period Δt, as:

ΔS j→i ¼ S j Fijτ
−1
j SiΔt ð7Þ

Substitutions from j to i depend on the fraction of
households who would prefer technology i over j (the
preference matrix Fij, which is newly estimated in each
period), the previous market shares of both technologies
(Si and Sj), and the fraction of technology j which needs

5 Ideally, we would have similar (and recent) empirical studies for all
world regions. Unfortunately, those are not available. In their absence,
some value needs to be chosen as a discount rate, so using results from
the cited study on Canada is in our opinion an imperfect, but feasible
solution.
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to be replaced (estimated as the inverse of its average
technological lifetime, τj).

6

Since preferences are diverse, another fraction of
households may have the reverse preference and would
choose technology j over i. We thus calculate the net
substitution from technology j to technology i.7 Finally,
the sum of all such pairwise comparisons over all com-
peting technologies j yields the cumulative net change in
market shares of technology i:

ΔSi ¼ ∑
j
SiS j Fijτ

−1
j −Fjiτ

−1
i

� �
Δt ð8Þ

Formula (8) is the non-linear dynamic shares equa-
tion, conceptually similar to the modelling of imitation
dynamics in evolutionary game theory (Hofbauer and
Sigmund 1998), originating in the description of evolu-
tionary competition between different species. Each

single flow from a technology j to an alternative tech-
nology i is determined by three interacting elements:

I. Preferences (Fij): which fraction of households
would prefer which technology, given that they were
to buy a heating system within period Δt?

II. Replacement needs S jτ−1j

� �
: how many heating sys-

tems of technology j need replacement in period
Δt?

III. Dynamic constraints (Si): given preferences and
replacement needs, which fraction of substitutions
can be realised?

Substitutions are dynamically constrained, as a
stylised representation of (a) limited capacities to produce
and install new technologies and (b) limited information
and behavioural decision-making on part of households.
Psychological research reports that households typically
do not optimise, but tend to stick to the status quo, are
impacted by prevalent social norms or follow the behav-
iour of others (Abrahamse and Steg 2013; Frederiks et al.
2015). For heating systems, the main information sources
are interpersonal sources and installers (Mahapatra and
Gustavsson 2008). For the diffusion of innovations, in-
dustrial and social dynamics are self-reinforcing, and both
make it more likely that households choose dominant
technologies. We represent these dynamics by
constraining a technology’s growth by its market share
(Si), based on Mercure (2015, 2017).

As a central implication, technology transitions in the
model are subject to inertia, as technological trajectories
cannot change direction rapidly, and resembles S-

6 We assume homogenous age distributions because we do not have
data over the age structure of heating systems worldwide. The assump-
tion implies that if a fleet of heating systems of a particular technology
has been widely adopted in a country in a very short time, it would
mean that they would need replacement in a relatively restricted range
of years, which would break our assumption. It does not imply,
however, that new innovative systems could be replaced instantaneous-
ly; these would nevertheless wait until the end of their average expect-
ed lifetime to be replaced (unless households would replace prema-
turely). The constraint of not considering the exact age distribution is
furthermore relaxed by the fact that systems have a probability of end
of life that is distributed over time (not all systems of the same type end
up with the exact same lifetime).
7 Note that if for any technology i, Fij < 50% for every other technol-
ogy j, then the shares of i are going to decline over time. However, it
does not mean that nobody is buying technology i. It simplymeans that
more people are buying alternative technologies. As a result, the
population of technology i declines gradually.

Fig. 1 An illustration of technology substitution over time in
FTT:Heat. (1) Each period, in each region, some households
decide between heating systems, based on the distributed general-
ised cost of heating of different technologies (GCOH, here

abbreviated as C). (2) All available technologies are compared
with each other and resulting household preferences stored in the
matrix F. (3) The dynamic shares equation simulates the resulting
net changes in each technology’s market shares (Si)
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shaped diffusion curves. While undoubtedly remaining
a stylised representation of underlying behavioural, so-
cial and industrial dynamics, it is an improvement in
comparison to exogenous growth constraints in standard
optimisation models, since here the constraint is fully
endogenous.

Substitutions can be further constrained to account
for behavioural and technical plausibility/feasibility. We
follow Kranzl et al. (2013) and assume that households
would not switch back to technologies with a much
lower comfort level, i.e. that households with modern
heating systems (such as district heat, gas, electricity)
would not go back to coal or traditional biomass.

Finally, new levels of heat generation per technology
(UEi) are obtained by multiplying their new shares by a
region’s total heat demand (UEtot) (modelled by IM-
AGE-REMG).

Premature replacements

Equation (8) would suggest that households replace
heating devices only at the end of their lifetime. How-
ever, in reality, households may consider to replace
functioning heating systems ahead of that, based on
economic considerations. For a household with perfect
information and without risk-aversion, this would be
beneficial once the marginal running costs of operating
the current system exceed the full levelised costs of
buying and operating an alternative technology. In prac-
tice, it is known that households apply much stricter
criteria and only consider a premature replacement if the
potential savings exceed the initial investment in a lim-
ited period of time—the so-called payback threshold
(Gillingham and Palmer 2014).

Thus, in the model, premature replacements are only
considered as sufficiently attractive if (and only if) the
savings (due to reduced operating costs, MCi) exceed
the investment costs of another technology (ICj, inclu-
sive of an eventual subsidy) within the considered pay-
back time (b), so if:

MCi > MCj þ IC j=b ð9Þ
Given the costs, decisions strongly depend on the

assumed value of b. In choice experiments, Olsthoorn
et al. (2017) find that the mean payback threshold for a
premature replacement of space heating systems is as
low as 3 ± 1 years, while Newell and Siikamäki (2015)
report a mean threshold of 3–5 years. Assuming that this

applies to all regions, we use 3 ± 1 years. A sensitivity
for b is given in section ‘Dynamics in an exemplary
decarbonisation scenario’.

Learning by doing

We endogenously model cost reductions in upfront in-
vestment costs over time, ICi(t), which occur due to the
accumulation of knowledge and experience (‘learning
by doing’), leading to the empirically well-described
phenomenon of learning curves. Endogenous cost re-
ductions increases path dependence in technology dif-
fusion (Arthur 1989), leading to increasing returns to
scale for growing technologies.

In each period, updated investment costs are calcu-
lated as a function of the increase in cumulative global
capacity of a technology, based on technology-specific
learning rates: they describe the relative cost reduction
that is expected for every additional doubling of the
global capacity. We use learning rates from a review of
empirical evidence by Weiss et al. (2010) (given in the
appendix).

Economic feedbacks

FTT:Heat is hard-linked to the macroeconometric global
simulation model E3ME (Cambridge Econometrics
2014), most importantly via variables for fuel use and
household expenditures. Policies which are primarily
targeted at the heating sector can lead to changes in
households’ demand for different fuels or to higher
expenses for heating systems. For each year of the
simulation, E3ME projects the wider macroeconomic
impacts of such effects and allows to analyse the impli-
cations for other economic sectors. We focus on the
impact on electricity generation: policies for household
heating can lead to changes in a region’s electricity
demand and thereby impact the power sector, leading
to changes in its fuel use and CO2 emissions. Such
effects are endogenously simulated by FTT:Power,
which is hard-linked to FTT:Heat via the E3ME model
(Mercure et al. 2014, 2018a).

Energy demand

Only limited data is available on the specific demand for
residential heating, the related fuel consumption and
technology composition (IEA 2014; Lucon et al.
2014). We combine data on fuel use and technology
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diffusion from various sources and provide the resulting
database as SI.

Final energy demand for heating in EU countries is
taken from the ODYSSEE database (Enerdata 2017),
which contains annual data for space and water heating
in all 28 member states. For non-EU regions, the IEA
energy statistics report final residential energy demand
by fuel type, but do not differentiate by end-use appli-
cation (IEA 2017). The share of heating in household
energy demand strongly depends on climatic conditions
and levels of building insulation, ranging from 10%
India to 87% in Russia, with water heating being of
dominant importance in warmer climates (IEA 2013a).
We calculate the shares of heating for ASEAN, Brazil,
China, India, Mexico, Russia, South Africa and the
USA based on estimates in IEA (2013a) and country-
specific sources (Daioglou et al. 2012; Eom et al. 2012;
Wang and Jiang 2017). For sub-Saharan Africa, we
adjust the fuel use data to bottom-up estimates of heat
demand by the IMAGE-REMG model. For remaining
world regions, the heating share is estimated based on
heating degree days, assuming a comparable heating
intensity as in world regions with a similar climate.

Residential heat generation by solar thermal installa-
tions for most world regions is available in the IEA
energy statistics, which we amended by data from the
IEA Solar Heating Programme (Mauthner et al. 2016).
No standardised global data exists on heat generation by
heat pumps. For most EU countries and Norway, time
series were available from the European Heat Pump
Association (2016), which was amended by data from
EurObserv’ER (2017). For other world regions, the heat
generation by ground-source heat pumps is taken from
Lund and Boyd (2016). Data on the use of air-source heat
pumps is taken from country-specific sources where
available (China Heat Pump Committee of China Energy
Conservation Association 2015 for China; EIA 2017 for
the USA; Japan Refrigeration and Air Conditioning In-
dustry Association (JRAIA) 2017 for Japan; Kegel et al.
2014 for Canada; Lapsa et al. 2017 for the USA).

In the model, data on final energy demand (Ei) is
transformed into useful energy demand (UEi) according
to technology-specific conversion efficiencies (CEi)
(see Appendix-Table 5), so that:

UEi tð Þ ¼ Ei tð Þ � CEi ð10Þ

The resulting top-down estimate of heat demand has
to be seen as a simplification, owing to the absence of

reliable information on residential energy end-use in
most world regions, and is subject to the uncertainty of
underlying data and assumed efficiencies.

We estimate that in 2014, global final energy demand
for residential space and water heating was around
12 PWh, useful energy demand 9.6 PWh, direct on-
site CO2 emissions 1.5 GtCO2/year (around 70% of
reported direct residential building sector emissions in
2010, Lucon et al. 2014) and indirect emissions in the
electricity sector 0.5 GtCO2/year.

Technology data

Cost and performance data for the 13 different kinds of
heating technologies is summarised in Appendix Ta-
ble 5. Country-specific Investment costs (incl. of instal-
lation) for EU countries are taken from Fleiter et al.
(2016) and Connolly et al. (2014). For other world
regions, we estimated the relative differences in invest-
ment costs from levels of real available household in-
come. A standard deviation equivalent to 1/3 of the
mean cost is assumed for all technologies (Danish
Energy Agency 2016, based on cost ranges reported
by 2013; NREL 2016). Residential fuel prices are taken
from the IEA (2016a), with an assumed standard devi-
ation of 15% (30% for biomass, based on NREL 2016).
More details and the data are given in the appendix.

Scenario definition

We created ten model scenarios (labelled a–j) aiming at
a decarbonisation of residential heating until 2050, all of
which use a different set of policies, implemented from
2020 onwards. Scenario a is our baseline projection,
without improved insulation of the building stock
(SSP2). It includes a continuation of current policies,
the effect of which is implicitly included in the γi pa-
rameters. Scenario b assumes increased levels of ther-
mal insulation for new houses (SSP2–1.9), which often
is the prerequisite for an effective use of renewables. In
scenario c, we simulate the additional effects of having
more ambitious retrofitting of existing buildings, lead-
ing to further demand reductions. In addition to the
improved insulation levels of scenario c, scenarios d–i
explores policy instruments which are aimed at the
uptake of heating technologies: a residential carbon
tax, technology subsidies and ‘kick start’ schemes for
new technologies. These policies were chosen based on
their successful previous implementation in at least
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some countries (for an overview, see Connor et al. 2013;
IEA 2014), as well as from advice from policy analysts
at the European Commission. Scenario j explores com-
plete electrification. We assume the political acceptabil-
ity of the simulated policies for the purpose of our
analysis. The gap between the modelled carbon tax
levels and levels observed in reality reflects the political
economy of carbon pricing mechanisms.

I. The (sectoral) carbon tax is specified as an absolute
increase in the household price of fossil fuels, rela-
tive to their respective carbon content (we do not
assume an inclusion of households into emissions
trading).8 We simulate carbon taxes of 50 €/tCO2

(scenario d) and 100 €/tCO2 (scenario e). From 2020
to 2050, the tax is assumed to linearly increase by +
10% per year, relative to its respective starting value
(reaching 200 €/tCO2 and 400 €/tCO2 in 2050). The
50 €/tCO2 tax is equivalent to fuel price increases of
around + 0.01 €/kWh for gas, + 0.013 €/kWh for oil
and + 0.018 €/kWh for coal. In practice, such a tax
may also take the form of subsidy removal in coun-
tries where household fuel use is currently
subsidised (e.g. in form of reduced VAT rates, such
as on domestic fuel use in the UK9).

II. Technology subsidies are defined as a relative re-
duction in a renewable heating technology’s mean
upfront investment cost. Eligible are solar thermal,
heat pumps and modern biomass. Two subsidy
rates are simulated: − 25% (scenario f) and − 50%
(scenario g). We assume that subsidy rates remain
constant from 2020 until 2030 and are linearly
phased out afterwards, reaching zero in 2050.

III. A kick start policy is not market-based, but repre-
sents a policy measure that introduces a new tech-
nology by means of a procurement scheme, use
obligation in building codes or other regulation.
Such a policy is useful for driving initial markets in
countries where a new technology’s uptake is very
limited or absent so far, thereby limiting the spread
of relevant first-hand experiences between house-
holds and preventing the build-up of necessary
expertise and capacity in the building and heating
industries. Precedents for such policies can be

found in Spain and Germany, amongst others
(Connor et al. 2013). In the model, we represent
such a policy for limited time periods (5–10 years)
by assuming that in each year, one percentage
point of the dominant fossil fuel technology’s mar-
ket share is replaced by a mix of renewable
alternatives.

Scenarios d–g focus on single policy instruments,
while policy mixes involving two or more policies are
simulated in scenarios h–j.

For all scenarios, we assume constant energy prices,
for two reasons: first, future energy prices are highly
uncertain, especially in a context of global deep
decarbonisation. Effectively, this makes constant prices
as likely as any other scenario. Second, it allows for a
clearer identification of policy effects, which may oth-
erwise be convoluted with the effects of a change in
energy prices. A sensitivity analysis shows that our
results do not substantially differ under increasing and
decreasing future energy prices and other parameters
(see Table 2).

In all scenarios, solar thermal is limited to the de-
mand of water heating in each country (as it is mainly
used for water heating and only as a supplementary
source for space heating). District heating is only an
option in those regions where it already exists (we do
not assume the construction of new heat networks,
which could well be an alternative to decentralised
renewable heating in some regions).

Results

Heat demand

We first estimate future residential demand for space and
water heating under different assumptions on future
building efficiency and retrofitting, by applying
projected demand trends from IMAGE-REMG to the
historically estimated heat demand in 2014. Figure 2
depicts the resulting baseline demand trends by world
region (SSP2, in which heating intensity globally con-
verges to 90 kJ/m2/HDD by 2100), a scenario of im-
proved efficiency of newly built houses (SSP2–1.9, in
which heating intensity globally converges to 60 kJ/m2/
HDD by 2100), and a scenario which additionally as-
sumes increased levels of retrofitting of the existing
building stock (assuming a decrease to a heating

8 The specific carbon tax is only applied to the residential sector, and
not assumed to be linked to other sectors, such as the power sector,
which is subject to a separate set of policies.
9 https://www.gov.uk/government/publications/vat-notice-70119-fuel-
and-power/vat-notice-70119-fuel-and-power.
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intensity of 45 kJ/m2/HDD by 2050). It becomes evident
that changes in future global demand strongly depend
on China, which currently still shows very low levels of
average heating intensity. Large demand increases are
projected with continuously rising income, which may
still be limited by improved building efficiency of newly
built housing stock. Projected increases in warmer
world regions mainly reflect growing demand for water
heating, which empirically depends on income, and is
unaffected by our assumptions on housing insulation.
Estimated effects of retrofitting are largest in Western
Europe and North America, where heat demand remains
high, but is largely saturated.

Environmental effectiveness of policies

The main results for policy scenarios a–j are illustrated by
Fig. 3, which shows the projected global technology
composition (left) and CO2 emissions (right) until 2050.
Indirect CO2 emissions from electricity use are projected
by FTT:Power, assuming a power sector decarbonisation
scenario that is consistent with limiting global warming to
1.5 °C (the projected emission intensities on the global
level are shown in the appendix and are reported for all
regions in the SI). In addition, dashed lines show the total
emission levels under current trends of power sector
decarbonisation. Table 1 presents the cumulative changes
in CO2 emissions from 2020 to 2050. In the appendix, we
show the underlying projected changes in the fuel mix, as
well as the induced technology diffusion for five major
world regions.

Values from 1995 to 2014 are estimates based on
historical data, while the model simulation starts in
2015 (indicated by the dashed vertical line). 2014 values
for total heat demand and emissions are represented as
horizontal dashed lines. In plots for scenarios b–j, solid
curves indicate the baseline demand trend (from scenar-
io a). Percentage values refer to changes in demand and
total annual CO2 emissions by 2050, relative to 2014.
Values in brackets refer to the respective changes in
direct CO2 emissions.

In our baseline projection under current policies and
diffusion trends (scenario a), annual direct CO2 would
peak by 2030, before returning to their 2014 level by
2050. Given the projected increase in heat demand of +
46%, this suggests a decrease in the direct emission inten-
sity by around 30%. Importantly, these changes in our
baseline do not result from any exogenous efficiency
change, but from the endogenous continuation of current
technology diffusion trends: the model projects a continu-
ously increasingmarket share of heat pumps, solar thermal
heating and modern biomass systems. Their combined
share would grow from 9 p.p. (percentage points) of heat
production in 2014 to 30 p.p. in 2050. An uptake of more
efficient gas heating systems and a gradual replacement of
coal and oil based systems leads to further emission re-
ductions. Still, fossil fuel systems are projected to supply a
more or less constant amount of heat and keep a combined
market share of 40 p.p. by 2050, down from 50 p.p. in
2014. Total emissions are projected to decrease by − 18%
by 2050, given that the power sector is decarbonised.

In scenario b, improved insulation of houses would
reduce overall heat demand in 2050 by 20% (relative to

Fig. 2 Projections of future residential heat demand (space +wa-
ter) by world region, for (a) a baseline scenario in which heating
intensity converges to 90 kJ/m2/HDD by 2100 (SSP2); (b) a
scenario of improved building insulation of new houses in the
context of climate policy, in which the heating intensity converges

to 60 kJ/m2/HDD by 2100 (SSP2–1.9); and (c) a scenario which
additionally assumes rapid thermal retrofitting of the existing
building stock, so that the heating intensity converges to 45 kJ/
m2/HDD by 2050
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baseline scenario a), indicating the untapped potential of
increased building efficiency. In combination with a
continued diffusion of renewables, this could lead to a
31% reduction of total emission levels, although abso-
lute heat demand would still be 18% larger than in 2014.
Compared to baseline, the increased thermal efficiency
of new houses would reduce cumulative total CO2

emissions by 9 GtCO2 between 2020 and 2050.
In scenario c, we assume that all houses converge

to an average heating intensity of 45 kJ/m2/HDD

until 2050, which implies that a large fraction of
existing buildings would be retrofitted with improved
insulation. As can be seen in Fig. 2, this would
foremost lead to additional demand reductions in
North America, Europe and the Former Soviet Union
(by 15–20% in 2050, relative to demand in SSP2–
1.9). Compared to scenario b, total global heat de-
mand by 2050 would be 9% lower than in 2014,
leading to projected additional reductions of direct
emission of a similar magnitude.

a f

g

h

i

j

b

c

d

e

Fig. 3 Global technology composition and CO2 emissions (direct
on-site and indirect emissions from electricity use) in the residen-
tial heating sector, under current trends (a), improved building
insulation (b), improved insulation and retrofitting (c) and seven
policy scenarios aimed at technology uptake (d–j, based on im-
proved levels of insulation from scenario c). Model simulations by
FTT:Heat start in 2015 (indicated by vertical dashed lines). Hor-
izontal dashed lines represent 2014 levels. Solid curves show the

baseline demand trends from scenario a, and dashed curves the
total emissions should the power sector not be decarbonised.
Percentage values refer to the change by 2050, relative to 2014.
Bold percentage values indicate the reduction in annual total CO2

emissions (direct + indirect), and the values in brackets show the
corresponding reduction in direct on-site CO2 emissions. Note the
different scaling of the y-axis in the case of scenario j
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Other than for scenarios b and c, the resulting impacts
of technology policies in scenarios d–j are not imposed
by assumption (e.g. by assuming stricter building
codes), but are subject to the simulated decision-
making by households. The resulting technology transi-
tions therefore depend on the behavioural characteristics
of simulated decisions.

In scenario d, an (increasing) carbon tax of 50–200 €/
tCO2 is introduced in 2020. Due to bounded rationality
and limited information on part of households, the
projected changes in technology uptake would only
unfold very gradually, showing considerable inertia:
households would still install new oil systems until
2035 and new gas systems even up to 2050. As house-
holds learn about the new technologies, and industry
capacities expand, renewables would increasingly grow
in market shares. Compared to scenario c, annual heat
generation in 2050 by heat pumps would be 90% larger,
solar thermal by 18% and modern biomass by 50%
(reaching a combined market share of 45 p.p. by
2050). The resulting decrease in annual total emissions
would be 77% in 2050.

In scenario e, an (increasing) carbon tax of 100–400 €/
tCO2 is projected to bring down direct emissions by 95%
and total emissions by 84%. Relative to the lower carbon
price in scenario d, the 2050market shares of heat pumps
and modern biomass would increase by + 13 and + 11%,
while shares of solar remain virtually unaffected. This

indicates a decreasingmarginal impact of carbon taxes on
household decisions: althoughmoderate tax levels can be
sufficient for slowly steering household choices for reg-
ular replacements and new installations away from fossil
fuel technologies, slow turnover rates limit the resulting
pace of change in the technology composition. Further-
more, households tend to discount future fuel savings
which can be achieved by adopting highly efficient, but
capital-intensive modern renewables. Such technologies
are disadvantaged by their higher upfront costs, which
have a more than proportional impact on households’
decision-making. Instead, the carbon price would induce
a shift towards (less efficient) direct electric heating
(which would grow by 30%, relative to scenario d),
resulting in indirect emission increases.

Subsidy schemes are simulated in scenarios f and g.
The projected decrease in annual total CO2 emissions by
2050 is 49% for a 25% subsidy and 62% for a 50%
subsidy. Results suggest a clear shift of household
choices towards more capital-intensive and efficient
technologies, in comparison to the carbon tax: solar
thermal and ground-source heat pumps show the largest
increases in uptake (up to + 100 and + 200% relative to
scenario c, respectively). Accordingly, electricity use for
heating is around 50% lower than in the carbon tax
scenarios, making the technology portfolio much more
robust against potential indirect emission increases in
the power sector. Still, results suggest that on their own,

Table 1 Cumulative 2020–2050 CO2 emissions, by residential
heating and electricity generation for residential heating, in
GtCO2. The top row shows absolute values in the baseline scenar-
io (a), the following rows the changes relative to baseline in
scenarios with improved insulation and heating decarbonisation

(b–j). Emissions by electricity generation are shown for a scenario
with a power sector decarbonisation trajectory consistent with
limiting global warming to 1.5 °C (i) and a scenario without further
decarbonisation of the power sector (ii)

Scenario Residential heating Electricity generation for heating Heating + electricity

(i)
Decarbonisation

(ii)
Baseline

(i)
Decarbonisation

(ii)
Baseline

Baseline (GtCO2) a 51 Gt 9 Gt 26 Gt 60 Gt 78 Gt

Diff. to baseline
(ΔGtCO2)

b − 8 (− 15%) − 1 Gt (− 16%) − 5 Gt (− 19%) − 9 Gt (− 15%) − 13 Gt (− 16%)

c − 9 Gt (− 18%) − 1 Gt (− 16%) + 5 Gt (+ 20%) − 11 Gt (− 18%) − 15 Gt (− 19%)

d − 25 Gt (− 48%) + 1 Gt (+ 11%) + 6 Gt (+ 21%) − 24 Gt (− 40%) − 19 Gt (− 25%)

e − 31 Gt (− 61%) + 3 Gt (+ 39%) + 13 Gt (+ 50%) − 28 Gt (− 47%) − 18 Gt (− 23%)

f − 13 Gt (− 26%) − 1 Gt (− 14%) − 4 Gt (− 16%) − 14 Gt (− 24%) − 17 Gt (− 22%)

g − 19 Gt (− 36%) − 1 Gt (− 11%) − 3 Gt (− 11%) − 20 Gt (− 23%) − 21 Gt (− 28%)

h − 30 Gt (− 59%) + 1 Gt (+ 12%) + 4 Gt (+ 14%) − 29 Gt (− 49%) − 27 Gt (− 35%)

i − 32 Gt (− 63%) + 1 Gt (+ 11%) + 4 Gt (+ 14%) − 31 Gt (− 52%) − 29 Gt (− 37%)

j − 36 Gt (− 71%) + 20 Gt (+ 236%) + 77 Gt (+ 292%) − 16 Gt (− 28%) + 40 Gt (+ 52%)
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even large subsidies could not motivate many house-
holds to replace functioning systems prematurely. Even
if ‘scrapping’ would look beneficial from an outside
perspective, households tend to apply strict behavioural
payback criteria for such decisions, which makes ‘scrap-
ping’ unattractive from their subjective perspectives (see
section ‘Premature replacements’).

In scenario h, the 50% subsidy on renewables is
combined with the 50–200 €/tCO2 carbon tax. From a
behavioural perspective, the policy mix impacts house-
holds’ decision-making like ‘carrot and stick’: the tax
enacts a steadily increasing economic pressure on
households, strong enough so that a growing proportion
of them may eventually want to reconsider their prefer-
ence for fossil fuel technologies. In parallel, the subsidy
has an over-proportional impact on costs as they are
perceived by households, in particular in case of prema-
ture replacements (see Fig. 6), thereby benefiting mod-
ern renewables. According to the model projections, the
policy mix could thus induce a wave of premature
replacements. As a result, annual total emissions by
2050 could be reduced by 85%.

While the policy mix of scenario h is projected to
incentivise a decarbonisation pathway in most world re-
gions, results suggest that the policies would be relatively
ineffective in the Middle East and Russia, where two-third
of remaining emissions would occur by 2050. In both
regions, the diffusion of renewables is not just constrained
by comparably low fossil fuel prices but also by the
practical absence of such technologies in the present tech-
nology mix, which implies limited local knowledge and
experience. Scenario i therefore adds ‘kick start’ policies
for driving the initial market for renewables in Russia and
OPEC states, e.g. in form of procurement schemes (see
section ‘Scenario definition’). Once households and local
industry learn about the new technologies, a diffusion
process is nucleated, and the financial incentives can have
a much larger impact. Overall, the policy mix is projected
to reduce total emissions by 90% (direct emissions by
95%), the largest total reduction in all scenarios.

Results of scenarios h and i imply that mixing poli-
cies enables to impose a lower carbon price and reduce
costs to households (see section ‘Cost-effectiveness of
policies’), in contrast to common model assumptions in
which all policies are assumed to have a ‘carbon price
equivalent’. In a diffusion model, policy interacts, and
the behavioural details of the policy mix (and how it
impacts household decisions) matters. Compared to a
carbon price on its own (scenario e), our results suggest

that the transition to renewables could take place with
more efficient (albeit more capital-intensive) technolo-
gies: although leading to similar direct emission reduc-
tions, the carbon tax on its own would lead to much
higher electricity use, leading to larger expenses on
electricity and indirect emission increases in the power
sector.

In all scenarios, an increased electrification of resi-
dential heating has direct implications for the power
sector. Annual electricity demand for residential heating
in 2014 was around 1 PWh/year (or 4% of global
electricity demand), causing indirect emissions of
0.5 GtCO2/year. In our baseline projection, it would
inc rease to 2 PWh/year in 2050 . Wi thou t
decarbonisation of the power sector, indirect emission
could then reach 1.1 GtCO2/year. Net reductions in
cumulative 2015–2050 CO2 emissions thus strongly
depend on a parallel decarbonisation of electricity gen-
eration (see Table 1). Indirect emission increases cancel
out 5–20% of direct emission savings when assuming a
rapid power sector decarbonisation, but up to 55%when
the sector continues on its current trajectory. Net savings
are much more sensitive to induced power sector emis-
sions in scenarios which only rely on a carbon tax, due
to their relatively higher levels of electricity demand.
Despite this, residential emission reductions in scenarios
c–i would always exceed potential emission increases in
the power sector.

In scenario j, we explore the extreme case of com-
plete electrification. In addition to the 100–400 €/tCO2

carbon tax from scenario e, we assume that electricity
use for heating is subsidised by 0.05 €/kWh and the
purchase of all electricity-based systems by 30%. Be-
cause electric heaters are a readily available and well-
known technology in most world regions, also being
clean and convenient in use, our model suggests a
relatively rapid uptake once costs are favourable: direct
electric heating alone would gain a 75%market share by
2050, reducing on-site emissions by as much as 99%.
However, resulting electricity demand would reach
9 PWh/year, requiring 2,000–2,400 GW of additional
generation capacity (almost half of the currently
installed global capacity). Indirect emissions would can-
cel out 80% of direct CO2 reductions even under power
sector decarbonisation and could reach up to 6 GtCO2/
year otherwise. This makes a direct electrification of
heating an overall rather ineffective (or even counter-
productive) mitigation strategy, particularly given the
availability of much more efficient alternatives.
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Table 2 presents the sensitivity of our scenario
results with respect to key parameters (for the sensi-
tivity with respect to ‘scrapping’ assumptions, see
section ‘Dynamics in an exemplary decarbonisation
scenario’). It becomes evident that results are rela-
tively robust to changes in cost parameters: under
alternative assumptions on fuel price trends, learning
rates and discount rates, cumulative direct CO2 emis-
sions do not change by more than 7% in any sce-
nario. The largest emission increases can be seen for
changes in ‘intangible’ cost components: if they are
reduced by 50%, cumulative emissions are up to
12% higher (even 25% in case of the complete
electrification scenario, because electric heating
would become less attractive). This is partly due to
the fact that large ‘intangible’ costs are attributed to
coal, the reduction of which would lead to the
uptake of emission-intensive coal heating systems.
Apart from cost parameters, results are sensitive to
the assumptions on technology lifetimes: in case of
shorter lifetimes, technological change can take place
more quickly, reducing cumulative emissions. The
reverse effect can be observed for longer lifetimes,
albeit being less pronounced (as more households
would be projected to replace their heating systems
prematurely, which would partly offset the effect of
longer technological lifetimes).

Cost-effectiveness of policies

From a public policy perspective, the decarbonisation
of heating could not only be beneficial for climate
change mitigation but potentially also enable a more
efficient provision of heat in monetary terms. The
cumulative projected costs and savings from the
induced technology transitions (in scenarios d–j) are
presented in Table 3 and illustrated by Fig. 4, rela-
tive to scenario c (with improved insulation, but
without technology policies). Figure 5 exemplarily
shows the underlying changes over time per world
region in case of four scenarios.

As illustrated by Fig. 4, our results suggest that a
carbon tax would induce emission reductions at relative-
ly lower additional investments per t/CO2, compared to
policy mixes which involve subsidies. However, high
carbon taxes show a decreasingmarginal impact on total
emissions and could therefore only reduce them up to a
certain extent (− 84% in our simulations). While a car-
bon tax on its own would set the stage for making
renewables more cost-competitive, larger emission re-
ductions could be achieved by richer policy mixes,
which are projected to trigger more fuel-efficient path-
ways of technological change (see Appendix Fig. 9).
Albeit being more capital-intensive (reflected in higher
additional investments per t/CO2), such policy mixes

Table 2 Sensitivity of cumulative 2015–2050 direct CO2 emis-
sions in residential heating, with regard to: (I) future energy price
developments (relative to scenarios with constant future energy
prices), assuming: (a) a linear increase in all residential fuel prices
by + 1% per year (2018–2050), (b) a linear decrease in all

residential fuel prices by− 1% per year (2018–2050); (II) learning
rate for heating systems (50% lower than default assumption); (III)
discount rate (50% higher than default assumption); (IV) ‘intangi-
ble’ component of generalised heating cost (50% lower than
default estimates); and (IV) technology lifetimes (− 50 and + 50%)

% deviation of cumulative 2015–2050 direct CO2 emissions, relative to default parameters

Increasing fuel prices Decreasing fuel prices Learning rates Discount rate Intangibles Technology lifetimes

(+ 1%p.a.) (1%p.a.) (− 50%) (+ 50%) (− 50%) (− 50%) (+ 50%)

a − 4% + 5% + 3% + 3% + 7% − 13% + 4%

b − 3% + 4% + 2% + 2% + 7% − 12% + 4%

c − 3% + 4% + 2% + 2% + 7% − 12% + 4%

d 0% + 1% + 4% + 2% + 10% − 20% + 8%

e + 2% − 1% + 4% + 1% + 12% − 20% + 9%

f − 4% + 6% + 3% + 2% + 8% − 16% + 5%

g − 3% + 7% + 5% + 1% + 10% − 17% + 8%

h 0% 0% + 5% + 1% + 10% − 18% + 9%

i − 1% + 1% + 6% + 1% + 9% − 20% + 9%

j + 3% − 2% + 2% + 1% + 25% − 19% + 35%
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could also lead to larger fuel savings (reflected in higher
savings in energy expenses per t/CO2).

In all scenarios, cumulative expenses on heating sys-
tems are projected to increase between 10 and 36%.
Subsidies would lead to relatively larger increases (com-
pared to carbon taxes) in terms of €/tCO2 net reduction,
as they incentivise the purchase of more capital-
intensive technologies. At the same time, the new tech-
nologies are much more energy-efficient, thus enabling

substantial reductions in energy expenses for heating,
which range between 5 and 21%. As for expenses on
heating systems, policy mixes which involve subsidies
are also projected to result in larger energy savings, as
they lead to the adoption of more energy-efficient tech-
nology portfolios.

In all scenarios, projected savings from energy ex-
penses exceed the additional costs for the purchase of
new heating systems (assuming constant energy prices),

Table 3 Cumulative changes in global expenses on residential
heating (billion Euro, bn€), for policy scenarios d–j (aiming at
uptake of low-carbon technologies), relative to scenario c (im-
proved insulation and retrofitting, without technology policies).
Monetary values are shown in constant 2015-Euros

(undiscounted). Changes in expenses on heating systems per
tCO2 refer to net reductions in CO2 emissions (direct plus indirect
from electricity use). Note that estimates of avoided social costs of
CO2 emissions are not included in the calculations

Scenario Expenses on heating systems Expenses on energy
for heating

Total expenses
on heating

Policy revenue
(Tax minus subsidy)

bn€(‘15) €(‘15)/tCO2 bn€(‘15) bn€(‘15) bn€(‘15)

c 4.600 – 16.030 20.630 –

Diff. to (c), in bn€(‘15) d + 460(+ 10%) 36 − 1.010(− 6%) − 550(− 3%) 2.750

e + 770(+ 17%) 44 − 830(− 5%) − 60(− 0%) 3.730

f + 460(+ 10%) 121 − 1.160(− 7%) − 700(− 3%) − 400
g + 1.170(+ 25%) 132 − 2.600(− 16%) − 1.430(− 7%) − 1.220
h + 1.540(+ 33%) 82 − 3.190(− 20%) − 1.650(− 8%) 590

i + 1.650(+ 36%) 80 − 3.400(− 21%) − 1.750(− 8%) 240

j + 1.640(+ 36%) 284 + 3.080(+ 19%) + 4.720(+ 23%) − 10.800
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Fig. 4 Projected changes in expenses on heating systems (red)
and energy expenses for heating (green) (in €(‘15)/tCO2, per ton of
net reduction in total CO2 emissions, relative to scenario c without
policies targeted at technology uptake), versus the projected

changes in total CO2 emissions in 2050 (relative to 2014, direct
on-site and indirect emissions from electricity use). Scenarios are
shown in the order of induced emission reductions and identified
by the bold characters
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leading to reductions in overall expenses on heating by
up to 8%. The notable exemption is scenario j, in case of
which the transition to (relatively inefficient) electric
resistance heating would increase overall expenses by
more than 20%. Projected net savings are largest for
policy mixes which involve both taxes and subsidies (h
and i). While they show the largest increases in expenses
on heating systems, those would also enable the largest
energy savings and emission reductions.

Households, however, do not directly face the chang-
es in net costs. They also need to pay for the carbon
taxes, while potentially benefiting from purchase subsi-
dies. When taxes are used as the only policy instrument,
tax payments would by far exceed the achievable sav-
ings in real costs. Net benefits for households would

then depend on the way in which tax revenues are
redistributed. In case of policy mixes, part of the tax
revenues would be recycled into purchase subsidies.
Savings in real costs would then exceed the net burden
from policies to households (tax payments minus subsi-
dy payments) by a factor of 3–7.

Importantly, costs and savings would not occur si-
multaneously (see Fig. 5). In most world regions, addi-
tional expenses on heating systems would peak around
2030. Meanwhile, resulting changes in energy expenses
only gradually increase over time, not reaching their full
extent before 2050. In most world regions, substantial
net savings are thus not projected before 2040. This type
of temporal trade-off implies that while overall net sav-
ings may be large from a public policy perspective,

Fig. 5 Changes in expenses on residential heating (in %) per
world region, for exemplary policy scenarios (aiming at uptake
of low-carbon technologies), relative to scenario c (improved

insulation and retrofitting, without technology policies). Monetary
values show the cumulative global changes in each panel (in
constant 2015-Euros), summed over 2020–2050
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specific technology choices may still remain unattrac-
tive from the perspective of individual households
(which tend to discount future savings), if they are not
incentivised by policies.

Furthermore, costs and savings are not equally distrib-
uted between world regions. While most regions show a
similar profile of relative changes in expenses over time,
some regions are projected to realise much larger net
savings (e.g. in China), while others could face net cost
increases for longer periods of time (e.g. in North Amer-
ica). The largest relative cost increases could occur in
Russia and North Africa/Middle East, where current fos-
sil fuel prices are considerably lower than in other world
regions. The addition of ‘kick start’ policies for those
regions, however, is projected to reduce those cost in-
creases considerably, as it would incentivise the diffusion
of more efficient alternative technologies.

Dynamics in an exemplary decarbonisation scenario

We here analyse the dynamics of decarbonising residential
heating, focusing on scenario i. The cost dynamics under-
lying the technology transition are illustrated in Fig. 6 and
the resulting impacts on technological change in Fig. 7,
under different assumption regarding household behaviour.

The left panel of Fig. 6 shows global averages for the
generalised cost per technology as seen by households,
including policies and ‘intangibles’. Without new poli-
cies and at current prices, heat pumps are not yet com-
petitive with gas heating, but on par with oil. Solar
thermal is already competitive on average, which

mainly reflects low costs in China, where 66% of the
global capacity was installed in 2014. Biomass is com-
petitive with fossil fuels in most world regions, but
uptake is often less influenced by prices than by house-
holds’ preferences, which tend to regard biomass as less
convenient. When introducing new policies in 2020, the
carbon tax increases the cost of fossil fuel heating, while
subsidies decrease the cost of renewables, making them
competitive with gas. The gradual phase-out of subsi-
dies after 2030 is largely compensated by learning-
induced decreases in investment costs, keeping levelised
costs of renewables relatively stable until 2050. Induced
by large capacity increases, investment costs for solar
thermal and ground-source heat pumps are projected to
decrease by − 20 and − 45% until 2030 (relative to
2014), respectively, with further reductions until 2050
(overall− 30 and − 66%, respectively). For comparison:
the IEA (2016b) expects the costs of solar thermal to
decrease by around − 40% until 2030.

The right panel shows the marginal running costs of
fossil fuel heating, compared to full payback costs for
renewable technologies (assuming a payback period of
3 years). Choice experiments on the behavioural
decision-making of households indicate that as long as
the former do not exceed the latter, households would
not consider a premature replacement, even if it would
be highly profitable from an outside perspective (Newell
and Siikamäki 2015; Olsthoorn et al. 2017). The com-
bined effect of the 50–200 €/tCO2 fuel and 50% subsidy
on renewables is just large enough (despite translating
into much larger differences in levelised costs): after

Fig. 6 Technology cost dynamics in case of decarbonisation
policy scenario i. Left: generalised cost of heating per technology,
incl. policies, which are the basis of regular replacement decisions
by households. Right: marginal running costs of fossil fuel systems

compared to payback based costs of renewables (for a 3-year
payback period), the comparison of which forms the basis for
modelled ‘scrapping’ decisions

Energy Efficiency



2020, the fuel savings from replacing an oil or gas
system by renewables increasingly exceeds the neces-
sary investment in less than 3 years, potentially incen-
tivizing the scrapping of fossil fuel capacities before
they reach the end of their rated technological lifetime.

The resulting dynamics in technological change can
be seen in Fig. 7, which shows projections for the total
global heating capacity, capacity built per year and
capacity scrapped per year, under different behavioural
assumptions. Under the modelled mean payback thresh-
old of 3 years (middle panels), scrapping happens rarely
before 2020: less than 20 GW (0.3%) of the global
capacity would be replaced prematurely each year,
while total capacity additions are around 400 GW/year
(6.6%). After 2020, scrapping would gradually increase,
peaking at 115 GW/year (around 1.8%) in the 2030s.
While small on an annual basis, the model suggests that
households would scrap a total capacity of 2.700 GW
from 2020 to 2050, which is around 45% of the installed
capacity in 2020. The induced dynamics are self-rein-
forcing, allowing a faster growth of households’ expe-
rience and industry know-how regarding renewable
heating technologies, and eventually an almost com-
plete phase-out of fossil fuel systems by 2050.

The importance of household behaviour and related
uncertainty becomes evident in comparison with the

upper and lower panels of Fig. 7, which depict the same
dynamics for hypothetical mean payback thresholds of
15 years and 1 year. Applying a threshold of 15 years is
equivalent to a discount rate of 3% (given a technical life
expectancy of 20 years), implying the optimistic assump-
tion that household decisions take into account potential
future savings to almost full extent. If households were
indeed acting in that way, the model suggests that they
should scrap around 130 GW/year (2.4%) even before
policies get introduced in 2020 and up to 200 GW/year
(3.6%) immediately afterwards. Households would also
favour more capital-intensive technologies, as evidenced
by the rapid uptake of solar thermal and ground-source
heat pumps. In a world of such forward-looking house-
holds, heating could be largely decarbonised by 2035,
around 15 years earlier than in scenario i.

The opposite result is projected if households were to
apply an average payback threshold of 1 year. In this
case, they would only replace their heating system once
expected savings exceed the upfront cost within 1 year.
Scrapping would then be virtually non-existent before
2020 (8 GW/year) and not exceed 50 GW/year (0.8%)
in the 2030s. While renewables could still grow to
service additional demand (such as in China), the
decarbonisation of the existing building stock would
largely depend on regular replacements. Given average

Fig. 7 Replacement dynamics of global heating capacity under
different behavioural assumptions on the average payback thresh-
old for premature replacements: 15 years (SD = 5 years), 3 years
(SD = 1 year) and 1 year (SD = 1/3 years). Panels show the stock
of global heating capacity (left), heating capacity which is built

within each year (centre) and heating capacity which is scrapped
prematurely within each year (right). Horizontal dashed lines
represent 2014 levels and vertical dashed lines the introduction
of simulated policies in 2020
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technical lifetime of 20 years and the implemented
model assumptions on diffusion dynamics (in which
growth is correlated to current market shares), our pro-
jections suggest that a complete transition is then not
achievable until 2050, at least not under the simulated
policies: fossil fuel capacities in 2050 would remain at
40% of their current level.

Discussion and conclusion

Our results suggest that an almost complete
decarbonisation of residential heating is possible until
2050, based on a combination of improved building insu-
lation and existing technologies, but unlikely to happen
without stringent policy instruments. We find that a carbon
tax on its own could drive an initial decarbonisation (up to
− 84% by 2050), but shows a decreasing marginal impact
on total emission reductions. A more ambitious
decarbonisation (up to − 90%) at lower tax rates can be
achievedwhen the carbon tax is supplemented by subsidies
and procurement policies for renewables. Such policy
mixes are projected to be more effective for driving the
market of low-carbon technologies, resulting in lower cu-
mulative net emissions and reduced cost burdens for
households, compared to a carbon tax on its own. From a
societal perspective, emission reductions may be achieved
at low or even negative cost: initially higher capital ex-
penses could lead to permanently decreased energy ex-
penses in most world regions.

The simulated technology transitions in residential
heating would need decades rather than years, in parts
simply due to long average lifetimes of heating equipment.
Given such time-scales, our model projections suggest that
a complete decarbonisation until 2050 does not only re-
quire an immediate ramp-up of low-carbon investments
but also that households replace (or ‘scrap’) a substantial
share of inefficient heating systems prematurely. Therefore,
the simulated effectiveness of policies inevitably depends
on behavioural assumptions on ‘scrapping’ decisions.

Overall, there remains a considerable degree of un-
certainty regarding behaviour, data and the future devel-
opment of technology characteristics, under which the
true long-term effect of any policy is hard to estimate a
priori. Representing all relevant behavioural factors in a
quantitative global energy model may remain an
unachievable benchmark, given that no model can ever
be more than a stylised representation of reality. We thus
chose a midway compromise, integrating in a stylised

form available knowledge on technology diffusion and
household decision-making into a bottom-up simulation
model of technology choice. While it remains limited in
its degree of realism, we argue that it provides a clear
improvement on incumbent optimisation models, shed-
ding light on important diffusion dynamics and behav-
ioural uncertainties.

Our results show that such uncertainties are particu-
larly relevant in the context of limiting global warming
to 1.5 °C, which requires policies aiming at rapid deep
decarbonisation, and are outside of what has so far been
implemented in most parts of the world. Due to our
inclusion of behavioural features, however, our projec-
tions are potentially more valuable to policy-makers for
carrying out impact assessments of possible sets of
policies, in comparison to standard optimisation models
that assume perfect information and rationality. Due to
their use of unrealistic behavioural assumptions, the
latter could potentially mislead policy-makers towards
excessively simplistic policy strategies for incentivising
the decarbonisation of households.

Other aspects of household decision-making are
likely relevant, but still remain unspecified in our
modelling—such as split incentives (e.g. in case of
rented property) or a limited access to finance
(which is one possible reason explaining low re-
quired payback times). The value of ‘intangibles’,
which we estimate from historical diffusion trends,
is not necessarily constant over decades, but may
change over time. Some behavioural uncertainties
remain impossible to simulate, so that our results
may still be considered as optimistic.

While our modelling achieves the target with our set
of assumed behavioural features, it can only indicate the
potential of behaviourally-oriented policies. Much re-
mains unknown on how to specifically design and im-
plement such policies, which must take into account as
much additional behavioural knowledge as possible,
and can benefit substantially from psychological and
sociological research. While the evidence base remains
relatively thin, there is little time to spare, and therefore,
further research in the direction of behavioural science
and modelling will need to be carried out in conjunction
to the introduction of policies.
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Table 4 Grouping of the 59 E3ME regions (right) into 11 major
world regions (left) (aggregation is only for presentation of results,
FTT:Heat simulates all 59 regions individually)

Western Europe Belgium, Denmark, Germany, Greece,
Spain, France, Ireland, Italy,
Luxembourg, Netherlands, Austria,
Portugal, Finland, Sweden, UK,
Cyprus, Malta, Norway,
Switzerland, Iceland, Turkey

Central and Eastern
Europe

Czech Republic, Estonia, Latvia,
Lithuania, Hungary, Poland,
Slovenia, Slovakia, Bulgaria,
Romania, Croatia, Macedonia

North America USA, Canada

Latin America Mexico, Brazil, Argentina, Colombia,
Rest of Latin America

Former Soviet Union Russia, Belarus, Ukraine

China China

South and Pacific Asia Indonesia, the rest of ASEAN, India,
Korea, Taiwan

Oceania (Pacific OECD) Australia, New Zealand, Japan

North Africa and Middle
East

Saudi Arabia, OPEC excl. Venezuela,
Africa OPEC

Sub-Saharan Africa Nigeria, South Africa, the rest of
Africa

The rest of world The rest of world (all other countries)
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Fig. 8 Projected CO2 emission intensities in the power sector until
2050 (in gCO2/kWh of electricity), under (i) a scenariowith a power
sector decarbonisation trajectory consistent with limiting global
warming to 1.5 °C (green) and (ii) a scenario without further
decarbonisation of the power sector (red). Emission intensities refer
to global averages, trends for individual regions are reported in the
SI. In case that power sector emissions in a region turn negative due
to the deployment of negative emission technologies (e.g. biomass
with CCS), the region’s emissions are counted as ‘zero’, in order to
avoid attributing such negative emissions to household heating
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Estimation of intangible cost components

The technology- and region-specific empirical parame-
ter γi is estimated in a two-step calibration procedure
(shown in Appendix Fig. 10): first, we run the model
based on the cost estimates of LCOHi only, with γi = 0
for all technologies. For each region, we then compare
the growth of technologies as projected by the model
with the diffusion trend as observable in the historic
data, using a graphical interface. If there are deviations,
we iteratively adjust the values of γi (upwards or

downwards), until the projected diffusion at the start of
the simulation is consistent with the empirical trends.
The estimated values of ‘intangibles’ are assumed to be
constant over the simulation period, since we have no
possibility to estimate future preferences.

On average, we find that oil, gas (incl. LPG) and
district heating are slightlymore attractive to households
than suggested by the pure costs, leading to values of γi
in the range of − 10 to − 15%, relative to the pure
LCOHi. For electric resistance heating, the average γi
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Fig. 9 Global direct fuel demand
in the residential heating sector,
under current trends (a),
improved building insulation (b),
improved insulation and
retrofitting (c) and seven policy
scenarios aimed at technology
uptake (d–j, based on improved
levels of insulation from scenario
c). Model simulations by
FTT:Heat start in 2015 (indicated
by vertical dashed lines). Natural
gas includes LPG
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is equivalent to− 30% of its LCOHi. The opposite holds
for coal and biomass heating, for which typical γi values
are between + 40 and + 80%. For solar thermal and heat

pumps, values differ by region, usually between − 20
and + 20%.

Fig. 10 Estimation of ‘intangible’ cost components with
FTT:Heat, at the example of Japan. (i) The historic (2008–2014)
and projected trends in technology shares (2015–2022) without
‘intangibles’. (ii) The graphical interface for adjusting the values of

‘intangibles’. (iii) The resulting trends in technology shares with
the ‘intangibles’. The dashed vertical lines indicate the start of the
model simulation

Table 5 Model assumptions for residential heating technologies. Costs refer to mean values. (Data sources: Fleiter et al. (2016), IEA/
ETSAP (2012), Danish Energy Agency (2013), EHPA (2016))

Upfront cost (€/kWth) O&M cost (€/kWth pa) Efficiency (kWhth/kWh) Learning rate (%)

Oil 471 19 0.75 –

Oil condensing 512 20 0.86 −10%
Gas 391 8 0.75 –

Gas condensing 434 9 0.9 −10%
Biomass stove 440 0.1 0.1–0.7 –

Biomass boiler 523 2 0.85 −10%
Coal 247 5 0.75 –

District heating 265 16 0.98 –

Direct electric 538 0.5 1.00 –

HP-ground source 1400 14 3.50 −30%
HP-air/water 750 15 2.50–2.70 −30%
HP-air/air 510 51 2.50–2.70 −30%
Solar thermal 773 8 – −10%
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Detailed technology data

Conversion efficiencies refer to the ratio of thermal ener-
gy ‘leaving’ the heating system, relative to the necessary
energy input, covering both space and water heating. In
the case of traditional biomass, lower conversion efficien-
cies (10–50%) are assumed in developing countries (IEA
2014). For heat pumps, efficiency values are defined as
their seasonal performance factor (the annual average
ratio of delivered heat to electricity input), which differs

by climate region. For solar thermal, local productivities
are calculated from data by the IEA Solar Heat Pro-
gramme (Mauthner et al. 2016), which we integrate into
the model as region-specific capacity factors (i.e. units of
heat produced per unit of capacity installed). The average
technical life expectancy is set to 20 years for all technol-
ogies, based on literature estimates (the actual lifetime
may be shorter if households decide to replace a system
earlier for economic reasons) (Danish Energy Agency
2016; IEA/ETSAP 2012).

Regional technology pathways in scenario i

Appendix Fig. 11 summarises the simulated future devel-
opment of residential heating systems in five major world
regions, together accounting for 80% of heat demand and
direct heating CO2 emissions in 2014. Technology com-
position and emissions by region are shown for a projec-
tion under improved levels of building insulation (scenario
c) on the left and under additional policies for technolog-
ical decarbonisation of heating (scenario i) on the right.

In Western Europe and North America, heating is
currently dominated by gas. Under baseline conditions,
their technology composition would stay relatively con-
stant, while the ongoing diffusion of more efficient gas
heating systems and a limited uptake of renewables
implies a continued but slow decrease of emissions.

Under policies in scenario h, fossil fuel heating and
direct electric heating in both regions would be
substituted by a mix of heat pumps and solar thermal,
with only limited diffusion of modern biomass.

InCentral andEasternEurope, large shares of the heating
demand are currently serviced by district heat networks,
biomass and gas. Most direct emissions, however, originate
in a relatively large share of coal heating, compared to other
world regions. Modern renewables are mostly absent under
current technology diffusion trends. Under decarbonisation
policies, our model suggests that fossil fuels would be
substituted by a mix of biomass and heat pumps, while
the projected uptake of solar thermal remains low.

In China, fossil fuels still play a smaller role in heating.
Historically, most emissions result from coal. Oil and gas
are on the rise, however, and would continue their ongoing

Table 6 Model estimates for levelised cost of heating (LCOH),
generalised cost of heating (GCOH), estimated values of intangi-
ble cost components and standard deviation of LCOH. All

numbers refer to mean values, calculated as the average of all 59
modelled world regions (weighted by their heat demand)

LCOH GCOH Estimated values of intangibles Standard deviation of LCOH

€-Cent/kWhth €-Cent/kWhth €-Cent/kWhth %LCOH €-Cent/kWhth %LCOH

Oil 11.1 9.7 − 1.3 − 12% 0.02 17%

Oil condensing 10.2 9.0 − 1.3 − 13% 0.02 17%

Gas 9.3 8.0 − 1.2 − 13% 0.02 17%

Gas condensing 8.2 6.6 − 1.6 − 20% 0.01 18%

Biomass stove 5.8 5.1 − 0.7 − 11% 0.02 29%

Biomass boiler 4.3 5.9 1.6 37% 0.01 30%

Coal 3.0 5.5 2.5 84% 0.01 27%

District heating 7.2 6.2 − 1.1 − 15% 0.01 16%

Direct electric 11.8 8.6 − 3.2 − 27% 0.02 14%

HP-ground 9.3 8.7 − 0.7 − 7% 0.02 25%

HP-air/water 8.7 8.0 − 0.7 − 8% 0.02 21%

HP-air/air 8.8 8.4 − 0.4 − 5% 0.02 19%

Solar thermal 10.8 10.0 − 0.8 − 8% 0.04 33%
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growth under baseline conditions. At the same time, a
widespread uptake of solar thermal systems and heat pumps
is taking place, so that baseline emissions are projected to
peak around 2030 and decrease afterwards.With additional
policies, the shift to renewables would be accelerated, with
solar supplying the equivalent of two-thirds of the water
heating demand by 2050. Importantly, China is also the
region with largest projected demand increases until 2050,
driven by continuously rising incomes (and coming from
historically very low values of heating intensity).

In the Former Soviet Union, 60% of heat is currently
provided by district heating systems, the remaining frac-

tion by gas and oil. No use of renewables is reported,
limiting the potential for a fast technology transition.
Therefore, only little change would take place in the
baseline, with slowly rising emission levels until 2050.
With decarbonisation policies, only the introduction of
‘kick start’ schemes would eventually lead to a limited
uptake of renewables. Most emissions occur not on site,
but in centralised heat plants. A parallel decarbonisation
would thus need to take place in the country’s district
heating systems, which are not explicitly modelled here
(the same holds for central heating in other world
regions).

Fig. 11 Technology composition and CO2 emissions (direct on-
site and indirect electricity emissions) in the residential heating
sector in five world regions, under current technology trends with
improved insulation and retrofitting (c) and a scenario with − 95%
global direct decarbonisation by 2050 (i). Model simulations by
FTT:Heat start in 2015 (indicated by vertical dashed lines). Hor-
izontal dashed lines represent 2014 levels. Solid curves show the

baseline demand trends from scenario a and dashed curves the
total emissions should the power sector not be decarbonised.
Percentage values refer to the change by 2050, relative to 2014.
Bold percentage values indicate the reduction in annual total CO2

emissions (direct + indirect), and the values in brackets show the
corresponding reduction in direct on-site CO2 emissions
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