112 research outputs found

    On Upward Drawings of Trees on a Given Grid

    Full text link
    Computing a minimum-area planar straight-line drawing of a graph is known to be NP-hard for planar graphs, even when restricted to outerplanar graphs. However, the complexity question is open for trees. Only a few hardness results are known for straight-line drawings of trees under various restrictions such as edge length or slope constraints. On the other hand, there exist polynomial-time algorithms for computing minimum-width (resp., minimum-height) upward drawings of trees, where the height (resp., width) is unbounded. In this paper we take a major step in understanding the complexity of the area minimization problem for strictly-upward drawings of trees, which is one of the most common styles for drawing rooted trees. We prove that given a rooted tree TT and a W×HW\times H grid, it is NP-hard to decide whether TT admits a strictly-upward (unordered) drawing in the given grid.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Transforming planar graph drawings while maintaining height

    Full text link
    There are numerous styles of planar graph drawings, notably straight-line drawings, poly-line drawings, orthogonal graph drawings and visibility representations. In this note, we show that many of these drawings can be transformed from one style to another without changing the height of the drawing. We then give some applications of these transformations

    Algorithms for Visualizing Phylogenetic Networks

    Full text link
    We study the problem of visualizing phylogenetic networks, which are extensions of the Tree of Life in biology. We use a space filling visualization method, called DAGmaps, in order to obtain clear visualizations using limited space. In this paper, we restrict our attention to galled trees and galled networks and present linear time algorithms for visualizing them as DAGmaps.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Upward Point-Set Embeddability

    Full text link
    We study the problem of Upward Point-Set Embeddability, that is the problem of deciding whether a given upward planar digraph DD has an upward planar embedding into a point set SS. We show that any switch tree admits an upward planar straight-line embedding into any convex point set. For the class of kk-switch trees, that is a generalization of switch trees (according to this definition a switch tree is a 11-switch tree), we show that not every kk-switch tree admits an upward planar straight-line embedding into any convex point set, for any k2k \geq 2. Finally we show that the problem of Upward Point-Set Embeddability is NP-complete

    Proximity Drawings of High-Degree Trees

    Full text link
    A drawing of a given (abstract) tree that is a minimum spanning tree of the vertex set is considered aesthetically pleasing. However, such a drawing can only exist if the tree has maximum degree at most 6. What can be said for trees of higher degree? We approach this question by supposing that a partition or covering of the tree by subtrees of bounded degree is given. Then we show that if the partition or covering satisfies some natural properties, then there is a drawing of the entire tree such that each of the given subtrees is drawn as a minimum spanning tree of its vertex set

    Knuthian Drawings of Series-Parallel Flowcharts

    Full text link
    Inspired by a classic paper by Knuth, we revisit the problem of drawing flowcharts of loop-free algorithms, that is, degree-three series-parallel digraphs. Our drawing algorithms show that it is possible to produce Knuthian drawings of degree-three series-parallel digraphs with good aspect ratios and small numbers of edge bends.Comment: Full versio

    Pole Dancing: 3D Morphs for Tree Drawings

    Full text link
    We study the question whether a crossing-free 3D morph between two straight-line drawings of an nn-vertex tree can be constructed consisting of a small number of linear morphing steps. We look both at the case in which the two given drawings are two-dimensional and at the one in which they are three-dimensional. In the former setting we prove that a crossing-free 3D morph always exists with O(logn)O(\log n) steps, while for the latter Θ(n)\Theta(n) steps are always sufficient and sometimes necessary.Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018

    Boolean dimension and tree-width

    Full text link
    The dimension is a key measure of complexity of partially ordered sets. Small dimension allows succinct encoding. Indeed if PP has dimension dd, then to know whether xyx \leq y in PP it is enough to check whether xyx\leq y in each of the dd linear extensions of a witnessing realizer. Focusing on the encoding aspect Ne\v{s}et\v{r}il and Pudl\'{a}k defined a more expressive version of dimension. A poset PP has boolean dimension at most dd if it is possible to decide whether xyx \leq y in PP by looking at the relative position of xx and yy in only dd permutations of the elements of PP. We prove that posets with cover graphs of bounded tree-width have bounded boolean dimension. This stays in contrast with the fact that there are posets with cover graphs of tree-width three and arbitrarily large dimension. This result might be a step towards a resolution of the long-standing open problem: Do planar posets have bounded boolean dimension?Comment: one more reference added; paper revised along the suggestion of three reviewer
    corecore