3 research outputs found

    Upstream content scheduling in Wi-Fi DenseNets during large-scale events

    Get PDF
    The smartphone revolution and widespread availability of wireless LAN and mobile Internet technologies has changed the way people interact with the world. These technologies can be exploited by event organisers to boost audience involvement and immersion, for example, by integrating user-generated content into the event experience. In this paper, we developed a large-scale event participation platform for the wireless transmission of user-generated videos to be used during the event. Such events often bring together thousands of users on a small geographical area and providing wireless connectivity in such dense environments is highly challenging. We analysed the efficiency of several upload scheduling strategies in WiFi DenseNets based on extensive experiments performed in a shielded lab environment. We showed that intelligent scheduling improved throughput over 20% compared to uncoordinated uploading in a dense network, with more expected gains when the density would further increase. Moreover, we also calculated the theoretical scalability of the platform. Based on our results, we confirm the importance of content scheduling to efficiently utilise WLAN technologies in highly dense environments

    The crowd as a cameraman : on-stage display of crowdsourced mobile video at large-scale events

    Get PDF
    Recording videos with smartphones at large-scale events such as concerts and festivals is very common nowadays. These videos register the atmosphere of the event as it is experienced by the crowd and offer a perspective that is hard to capture by the professional cameras installed throughout the venue. In this article, we present a framework to collect videos from smartphones in the public and blend these into a mosaic that can be readily mixed with professional camera footage and shown on displays during the event. The video upload is prioritized by matching requests of the event director with video metadata, while taking into account the available wireless network capacity. The proposed framework's main novelty is its scalability, supporting the real-time transmission, processing and display of videos recorded by hundreds of simultaneous users in ultra-dense Wi-Fi environments, as well as its proven integration in commercial production environments. The framework has been extensively validated in a controlled lab setting with up to 1 000 clients as well as in a field trial where 1 183 videos were collected from 135 participants recruited from an audience of 8 050 people. 90 % of those videos were uploaded within 6.8 minutes

    Sub-GHz LPWAN network coexistence, management and virtualization : an overview and open research challenges

    Get PDF
    The IoT domain is characterized by many applications that require low-bandwidth communications over a long range, at a low cost and at low power. Low power wide area networks (LPWANs) fulfill these requirements by using sub-GHz radio frequencies (typically 433 or 868 MHz) with typical transmission ranges in the order of 1 up to 50 km. As a result, a single base station can cover large areas and can support high numbers of connected devices (> 1000 per base station). Notorious initiatives in this domain are LoRa, Sigfox and the upcoming IEEE 802.11ah (or "HaLow") standard. Although these new technologies have the potential to significantly impact many IoT deployments, the current market is very fragmented and many challenges exists related to deployment, scalability, management and coexistence aspects, making adoption of these technologies difficult for many companies. To remedy this, this paper proposes a conceptual framework to improve the performance of LPWAN networks through in-network optimization, cross-technology coexistence and cooperation and virtualization of management functions. In addition, the paper gives an overview of state of the art solutions and identifies open challenges for each of these aspects
    corecore