178 research outputs found

    TIPS for Scaling up Research in Upper Limb Prosthetics

    Get PDF
    Many research initiatives have been employed in upper limb prosthetics (ULP) in the last few decades. The body of knowledge is growing and inspired by new and interesting technology that has been brought to the market to facilitate functioning of people with upper limb defects. However, a lot of research initiatives do not reach the target population. Several reasons can be identified as to why research does not move beyond the lab, such as lack of research quality, disappointing results of new initiatives, lack of funding to further develop promising initiatives, and poor implementation or dissemination of results. In this paper, we will appraise the current status of the research in ULP. Furthermore, we will try to provide food for thought to scale up research in ULP, focusing on (1) translation of research findings, (2) the quality of innovations in the light of evidence-based medicine and evidence-based practice, (3) patient involvement, and (4) spreading of research findings by focusing on implementation and dissemination of results and collaboration in a national and international perspective. With this paper, we aim to open the discussion on scaling up research in the community of professionals working in the field of ULP

    Obstacles to Prosthetic Care - Legal and Ethical Aspects of Access to Upper and Lower Limb Prosthetics in Germany and the Improvement of Prosthetic Care from a Social Perspective

    Get PDF
    This article belongs to the Special Issue Socio-technical Approaches for Assistive Technologies and People with Disabilitie

    The effectiveness and cost-effectiveness of upper limb prostheses

    Get PDF
    The cost of upper limb prostheses related health care are rising. One reason may be the more frequent prescription of the expensive multi-grip myoelectric hand prostheses. However, signs of non-usage of the additional grip options of these hands are described. In these cases, a more simple prosthesis might also suit the usersā€™ needs. Therefore, we investigated: 1. Factors that affect prosthesis choice and use A qualitative meta-synthesis, focus group and a nationwide survey in which 358 participants selected their top-10 most important items regarding prosthesis use were performed. Based on these results, a measurement tool, the PUF-ULP, was developed, which provides a single score that represents the match between the user and their prosthesis. 2. Cost-effectiveness of upper limb prosthesis A total of 242 upper limb prostheses users completed a quality of life questionnaire, the PUF-ULP, and a cost questionnaire. Results indicated that myoelectric prostheses, especially the multi-grip ones, are the most expensive compared to other prostheses types, while no differences in quality of life or user experiences were apparent. 3. Multi-grip versus standard myoelectric hands Fourteen multi-grip myoelectric hand prosthesis users performed multiple tests with both the multi-grip and standard myoelectric hand. Additionally, the usersā€™ experiences of the multi-grip myoelectric hand prostheses were compared with these of 19 standard myoelectric hand prosthesis users using questionnaires. Results showed no relevant advantages of the multi-grip hand over the standard hand. 4. Development decision aidIn a systematic co-creation process a decision aid about hand prosthesis was developed and implemented nationwide

    User-relevant factors determining prosthesis choice in persons with major unilateral upper limb defects:A meta-synthesis of qualitative literature and focus group results

    Get PDF
    Objective Considering the high rejection rates of upper limb prostheses, it is important to determine which prosthesis fits best the needs of each user. The introduction of the multi-grip prostheses hands (MHP), which have functional advantages but are also more expensive, has made prosthesis selection even harder. Therefore, we aimed to identify user opinions on factors determining prosthesis choice of persons with major unilateral upper limb defects in order to facilitate a more optimal fit between user and prosthesis. Methods A qualitative meta-synthesis using a 'best-fit framework' approach was performed by searching five databases (PROSPERO registration number: CRD42019126973). Studies were considered eligible if they contained qualitative content about adults with major unilateral upper limb defects experienced in using commercially available upper limb prostheses and focused on upper limb prosthesis users' opinions. Results of the meta-synthesis were validated with end-users (n = 11) in a focus group. Results Out of 6247 articles, 19 studies were included. An overview of six main themes ('physical', 'activities and participation', 'mental', 'social', 'rehabilitation, cost and prosthetist services' and 'prosthesis related factors') containing 86 subthemes that could affect prosthesis choice was created. Of these subthemes, 19 were added by the focus group. Important subthemes were 'work/school', 'functionality' and 'reactions from public'. Opinions of MHP-users were scarce. MHPs were experienced as more dexterous and life-like but also as less robust and difficult to control. Conclusion The huge number of factors that could determine upper limb prosthesis choice explains that preferences vary greatly. The created overview can be of great value to identify preferences and facilitate user-involvement in the selection process. Ultimately, this may contribute to a more successful match between user and prosthesis, resulting in a decrease of abandonment and increase of cost-effectiveness

    Sensory Feedback for Upper-Limb Prostheses:Opportunities and Barriers

    Get PDF
    The addition of sensory feedback to upper-limb prostheses has been shown to improve control, increase embodiment, and reduce phantom limb pain. However, most commercial prostheses do not incorporate sensory feedback due to several factors. This paper focuses on the major challenges of a lack of deep understanding of user needs, the unavailability of tailored, realistic outcome measures and the segregation between research on control and sensory feedback. The use of methods such as the Person-Based Approach and co-creation can improve the design and testing process. Stronger collaboration between researchers can integrate different prostheses research areas to accelerate the translation process

    On the Use of Subdermal Electrical Stimulation for Restoration of Sensory Feedback

    Get PDF

    Farmers with Upper-Limb Amputations and Their Daily Routine

    Get PDF
    For upper-limb amputees who are associated with the farming industry, the process of completing daily occupations may be challenging, especially for those who have not received guidance from occupational therapy. Currently, there is little research in the area of farmers with amputations and their daily routine. The purpose of this phenomenological case study was to explore the attitudes, beliefs, and needs related to the daily routines of upper-limb amputee who is currently working or has previously worked in the farming industry. Participant was asked to share his/her daily routine and how the amputation has affected her ability to perform everyday tasks. A personal, semi-structured interview was conducted with the participant and was audiotaped. The tapes were transcribed verbatim and coded after each session. Observation of the home/work environment was conducted for field notes and to supplement verbal data

    Novel Bidirectional Body - Machine Interface to Control Upper Limb Prosthesis

    Get PDF
    Objective. The journey of a bionic prosthetic user is characterized by the opportunities and limitations involved in adopting a device (the prosthesis) that should enable activities of daily living (ADL). Within this context, experiencing a bionic hand as a functional (and, possibly, embodied) limb constitutes the premise for mitigating the risk of its abandonment through the continuous use of the device. To achieve such a result, different aspects must be considered for making the artificial limb an effective support for carrying out ADLs. Among them, intuitive and robust control is fundamental to improving amputeesā€™ quality of life using upper limb prostheses. Still, as artificial proprioception is essential to perceive the prosthesis movement without constant visual attention, a good control framework may not be enough to restore practical functionality to the limb. To overcome this, bidirectional communication between the user and the prosthesis has been recently introduced and is a requirement of utmost importance in developing prosthetic hands. Indeed, closing the control loop between the user and a prosthesis by providing artificial sensory feedback is a fundamental step towards the complete restoration of the lost sensory-motor functions. Within my PhD work, I proposed the development of a more controllable and sensitive human-like hand prosthesis, i.e., the Hannes prosthetic hand, to improve its usability and effectiveness. Approach. To achieve the objectives of this thesis work, I developed a modular and scalable software and firmware architecture to control the Hannes prosthetic multi-Degree of Freedom (DoF) system and to fit all usersā€™ needs (hand aperture, wrist rotation, and wrist flexion in different combinations). On top of this, I developed several Pattern Recognition (PR) algorithms to translate electromyographic (EMG) activity into complex movements. However, stability and repeatability were still unmet requirements in multi-DoF upper limb systems; hence, I started by investigating different strategies to produce a more robust control. To do this, EMG signals were collected from trans-radial amputees using an array of up to six sensors placed over the skin. Secondly, I developed a vibrotactile system to implement haptic feedback to restore proprioception and create a bidirectional connection between the user and the prosthesis. Similarly, I implemented an object stiffness detection to restore tactile sensation able to connect the user with the external word. This closed-loop control between EMG and vibration feedback is essential to implementing a Bidirectional Body - Machine Interface to impact amputeesā€™ daily life strongly. For each of these three activities: (i) implementation of robust pattern recognition control algorithms, (ii) restoration of proprioception, and (iii) restoration of the feeling of the grasped object's stiffness, I performed a study where data from healthy subjects and amputees was collected, in order to demonstrate the efficacy and usability of my implementations. In each study, I evaluated both the algorithms and the subjectsā€™ ability to use the prosthesis by means of the F1Score parameter (offline) and the Target Achievement Control test-TAC (online). With this test, I analyzed the error rate, path efficiency, and time efficiency in completing different tasks. Main results. Among the several tested methods for Pattern Recognition, the Non-Linear Logistic Regression (NLR) resulted to be the best algorithm in terms of F1Score (99%, robustness), whereas the minimum number of electrodes needed for its functioning was determined to be 4 in the conducted offline analyses. Further, I demonstrated that its low computational burden allowed its implementation and integration on a microcontroller running at a sampling frequency of 300Hz (efficiency). Finally, the online implementation allowed the subject to simultaneously control the Hannes prosthesis DoFs, in a bioinspired and human-like way. In addition, I performed further tests with the same NLR-based control by endowing it with closed-loop proprioceptive feedback. In this scenario, the results achieved during the TAC test obtained an error rate of 15% and a path efficiency of 60% in experiments where no sources of information were available (no visual and no audio feedback). Such results demonstrated an improvement in the controllability of the system with an impact on user experience. Significance. The obtained results confirmed the hypothesis of improving robustness and efficiency of a prosthetic control thanks to of the implemented closed-loop approach. The bidirectional communication between the user and the prosthesis is capable to restore the loss of sensory functionality, with promising implications on direct translation in the clinical practice

    Use of stance control knee-ankle-foot orthoses : a review of the literature

    Get PDF
    The use of stance control orthotic knee joints are becoming increasingly popular as unlike locked knee-ankle-foot orthoses, these joints allow the limb to swing freely in swing phase while providing stance phase stability, thus aiming to promote a more physiological and energy efficient gait. It is of paramount importance that all aspects of this technology is monitored and evaluated as the demand for evidence based practice and cost effective rehabilitation increases. A robust and thorough literature review was conducted to retrieve all articles which evaluated the use of stance control orthotic knee joints. All relevant databases were searched, including The Knowledge Network, ProQuest, Web of Knowledge, RECAL Legacy, PubMed and Engineering Village. Papers were selected for review if they addressed the use and effectiveness of commercially available stance control orthotic knee joints and included participant(s) trialling the SCKAFO. A total of 11 publications were reviewed and the following questions were developed and answered according to the best available evidence: 1. The effect SCKAFO (stance control knee-ankle-foot orthoses) systems have on kinetic and kinematic gait parameters 2. The effect SCKAFO systems have on the temporal and spatial parameters of gait 3. The effect SCKAFO systems have on the cardiopulmonary and metabolic cost of walking. 4. The effect SCKAFO systems have on muscle power/generation 5. Patientā€™s perceptions/ compliance of SCKAFO systems Although current research is limited and lacks in methodological quality the evidence available does, on a whole, indicate a positive benefit in the use of SCKAFOs. This is with respect to increased knee flexion during swing phase resulting in sufficient ground clearance, decreased compensatory movements to facilitate swing phase clearance and improved temporal and spatial gait parameters. With the right methodological approach, the benefits of using a SCKAFO system can be evidenced and the research more effectively converted into clinical practice

    Limb Prostheses: Industry 1.0 to 4.0: Perspectives on Technological Advances in Prosthetic Care

    Get PDF
    Technological advances from Industry 1.0 to 4.0, have exercised an increasing influence on prosthetic technology and practices. This paper explores the historical development of the sector within the greater context of industrial revolution. Over the course of the first and up the midpoint of the second industrial revolutions, Industry 1.0 and 2.0, the production and provision of prosthetic devices was an ad hoc process performed by a range of craftspeople. Historical events and technological innovation in the mid-part of Industry 2.0 created an inflection point resulting in the emergence of prosthetists who concentrated solely on hand crafting and fitting artificial limbs as a professional specialty. The third industrial revolution, Industry 3.0, began transforming prosthetic devices themselves. Static or body powered devices began to incorporate digital technology and myoelectric control options and hand carved wood sockets transitioned to laminated designs. Industry 4.0 continued digital advancements and augmenting them with data bases which to which machine learning (M/L) could be applied. This made it possible to use modeling software to better design various elements of prosthetic componentry in conjunction with new materials, additive manufacturing processes and mass customization capabilities. Digitization also began supporting clinical practices, allowing the development of clinical evaluation tools which were becoming a necessity as those paying for devices began requiring objective evidence that the prosthetic technology being paid for was clinically and functionally appropriate and cost effective. Two additional disruptive dynamics emerged. The first was the use of social media tools, allowing amputees to connect directly with engineers and tech developers and become participants in the prosthetic design process. The second was innovation in medical treatments, from diabetes treatments having the potential to reduce the number of lower limb amputations to Osseointegration techniques, which allow for the direct attachment of a prosthesis to a bone anchored implant. Both have the potential to impact prosthetic clinical and business models. Questions remains as to how current prosthetic clinical practitioners will respond and adapt as Industry 4.0 as it continues to shape the sector
    • ā€¦
    corecore