79 research outputs found

    Upper and Lower Bounds for Competitive Online Routing on Delaunay Triangulations

    Full text link
    Consider a weighted graph G where vertices are points in the plane and edges are line segments. The weight of each edge is the Euclidean distance between its two endpoints. A routing algorithm on G has a competitive ratio of c if the length of the path produced by the algorithm from any vertex s to any vertex t is at most c times the length of the shortest path from s to t in G. If the length of the path is at most c times the Euclidean distance from s to t, we say that the routing algorithm on G has a routing ratio of c.We present an online routing algorithm on the Delaunay triangulation with competitive and routing ratios of 5.90. This improves upon the best known algorithm that has competitive and routing ratio 15.48. The algorithm is a generalization of the deterministic 1-local routing algorithm by Chew on the L1-Delaunay triangulation. When a message follows the routing path produced by our algorithm, its header need only contain the coordinates of s and t. This is an improvement over the currently known competitive routing algorithms on the Delaunay triangulation, for which the header of a message must additionally contain partial sums of distances along the routing path.We also show that the routing ratio of any deterministic k-local algorithm is at least 1.70 for the Delaunay triangulation and 2.70 for the L1-Delaunay triangulation. In the case of the L1-Delaunay triangulation, this implies that even though there exists a path between two points x and y whose length is at most 2.61|[xy]| (where |[xy]| denotes the length of the line segment [xy]), it is not always possible to route a message along a path of length less than 2.70|[xy]|. From these bounds on the routing ratio, we derive lower bounds on the competitive ratio of 1.23 for Delaunay triangulations and 1.12 for L1-Delaunay triangulations

    Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition

    Get PDF
    A geometric graph is angle-monotone if every pair of vertices has a path between them that---after some rotation---is xx- and yy-monotone. Angle-monotone graphs are 2\sqrt 2-spanners and they are increasing-chord graphs. Dehkordi, Frati, and Gudmundsson introduced angle-monotone graphs in 2014 and proved that Gabriel triangulations are angle-monotone graphs. We give a polynomial time algorithm to recognize angle-monotone geometric graphs. We prove that every point set has a plane geometric graph that is generalized angle-monotone---specifically, we prove that the half-θ6\theta_6-graph is generalized angle-monotone. We give a local routing algorithm for Gabriel triangulations that finds a path from any vertex ss to any vertex tt whose length is within 1+21 + \sqrt 2 times the Euclidean distance from ss to tt. Finally, we prove some lower bounds and limits on local routing algorithms on Gabriel triangulations.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    The Stretch Factor of L1L_1- and LL_\infty-Delaunay Triangulations

    Get PDF
    In this paper we determine the stretch factor of the L1L_1-Delaunay and LL_\infty-Delaunay triangulations, and we show that this stretch is 4+222.61\sqrt{4+2\sqrt{2}} \approx 2.61. Between any two points x,yx,y of such triangulations, we construct a path whose length is no more than 4+22\sqrt{4+2\sqrt{2}} times the Euclidean distance between xx and yy, and this bound is best possible. This definitively improves the 25-year old bound of 10\sqrt{10} by Chew (SoCG '86). To the best of our knowledge, this is the first time the stretch factor of the well-studied LpL_p-Delaunay triangulations, for any real p1p\ge 1, is determined exactly

    Competitive online routing in geometric graphs

    Get PDF
    AbstractWe consider online routing algorithms for finding paths between the vertices of plane graphs. Although it has been shown in Bose et al. (Internat. J. Comput. Geom. 12(4) (2002) 283) that there exists no competitive routing scheme that works on all triangulations, we show that there exists a simple online O(1)-memory c-competitive routing strategy that approximates the shortest path in triangulations possessing the diamond property, i.e., the total distance travelled by the algorithm to route a message between two vertices is at most a constant c times the shortest path. Our results imply a competitive routing strategy for certain classical triangulations such as the Delaunay, greedy, or minimum-weight triangulation, since they all possess the diamond property. We then generalize our results to show that the O(1)-memory c-competitive routing strategy works for all plane graphs possessing both the diamond property and the good convex polygon property

    Stabbing line segments with disks: complexity and approximation algorithms

    Full text link
    Computational complexity and approximation algorithms are reported for a problem of stabbing a set of straight line segments with the least cardinality set of disks of fixed radii r>0r>0 where the set of segments forms a straight line drawing G=(V,E)G=(V,E) of a planar graph without edge crossings. Close geometric problems arise in network security applications. We give strong NP-hardness of the problem for edge sets of Delaunay triangulations, Gabriel graphs and other subgraphs (which are often used in network design) for r[dmin,ηdmax]r\in [d_{\min},\eta d_{\max}] and some constant η\eta where dmaxd_{\max} and dmind_{\min} are Euclidean lengths of the longest and shortest graph edges respectively. Fast O(ElogE)O(|E|\log|E|)-time O(1)O(1)-approximation algorithm is proposed within the class of straight line drawings of planar graphs for which the inequality rηdmaxr\geq \eta d_{\max} holds uniformly for some constant η>0,\eta>0, i.e. when lengths of edges of GG are uniformly bounded from above by some linear function of r.r.Comment: 12 pages, 1 appendix, 15 bibliography items, 6th International Conference on Analysis of Images, Social Networks and Texts (AIST-2017
    corecore