120 research outputs found

    On the Complexity of Decomposable Randomized Encodings, Or: How Friendly Can a Garbling-Friendly PRF Be?

    Get PDF

    Studies on Verifiable Secret Sharing, Byzantine Agreement and Multiparty Computation

    Get PDF
    This dissertation deals with three most important as well as fundamental problems in secure distributed computing, namely Verifiable Secret Sharing (VSS), Byzantine Agreement (BA) and Multiparty Computation (MPC). VSS is a two phase protocol (Sharing and Reconstruction) carried out among nn parties in the presence of a centralized adversary who can corrupt up to tt parties. Informally, the goal of the VSS protocol is to share a secret ss, among the nn parties during the sharing phase in a way that would later allow for a unique reconstruction of this secret in the reconstruction phase, while preserving the secrecy of ss until the reconstruction phase. VSS is used as a key tool in MPC, BA and many other secure distributed computing problems. It can take many different forms, depending on the underlying network (synchronous or asynchronous), the nature (passive or active) and computing power (bounded or unbounded) of the adversary, type of security (cryptographic or information theoretic) etc. We study VSS in information theoretic setting over both synchronous as well as asynchronous network, considering an active unbounded powerful adversary. Our main contributions for VSS are: \begin{itemize} \item In synchronous network, we carry out in-depth investigation on the round complexity of VSS by allowing a probability of error in computation and show that existing lower bounds for the round complexity of error-free VSS can be circumvented by introducing a negligible probability of error. \item We study the communication and round efficiency of VSS in synchronous network and present a robust VSS protocol that is simultaneously communication efficient and round efficient. In addition, our protocol is the best known communication and round efficient protocol in the literature. \item In asynchronous network, we study the communication complexity of VSS and propose a number of VSS protocols. Our protocols are highly communication efficient and show significant improvement over the existing protocols in terms of communication complexity. \end{itemize} The next problem that we deal with is Byzantine Agreement (BA). BA is considered as one of the most fundamental primitives for fault tolerant distributed computing and cryptographic protocols. BA among a set of nn parties, each having a private input value, allows them to reach agreement on a common value even if some of the malicious parties (at most tt) try to prevent agreement among the parties. Similar to the case of VSS, several models for BA have been proposed during the last three decades, considering various aspects like the underlying network, the nature and computing power of adversary, type of security. One of these models is BA over asynchronous network which is considered to be more realistic network than synchronous in many occasions. Though important, research in BA in asynchronous network has received much less attention in comparison to the BA protocols in synchronous network. Even the existing protocols for asynchronous BA involve high communication complexity and in general are very inefficient in comparison to their synchronous counterparts. We focus on BA in information theoretic setting over asynchronous network tolerating an active adversary having unbounded computing power and mainly work towards the communication efficiency of the problem. Our contributions for BA are as follows: \begin{itemize} \item We propose communication efficient asynchronous BA protocols that show huge improvement over the existing protocols in the same setting. Our protocols for asynchronous BA use our VSS protocols in asynchronous network as their vital building blocks. \item We also construct a communication optimal asynchronous BA protocol for sufficiently long message size. Precisely, our asynchronous BA communicates O(\ell n) bits for \ell bit message, for sufficiently large \ell. \end{itemize} The studies on VSS and BA naturally lead one towards MPC problems. The MPC can model almost any known cryptographic application and uses VSS as well as BA as building blocks. MPC enables a set of nn mutually distrusting parties to compute some function of their private inputs, such that the privacy of the inputs of the honest parties is guaranteed (except for what can be derived from the function output) even in the presence of an adversary corrupting up to tt of the parties and making them misbehave arbitrarily. Much like VSS and BA, MPC can also be studied in various models. Here, we attempt to solve MPC in information theoretic setting over synchronous as well as asynchronous network, tolerating an active unbounded powerful adversary. As for MPC, our main contributions are: \begin{itemize} \item Using one of our synchronous VSS protocol, we design a synchronous MPC that minimizes the communication and round complexity simultaneously, where existing MPC protocols try to minimize one complexity measure at a time (i.e the existing protocols minimize either communication complexity or round complexity). \item We study the communication complexity of asynchronous MPC protocols and design a number of protocols for the same that show significant gain in communication complexity in comparison to the existing asynchronous MPC protocols. \item We also study a specific instance of MPC problem called Multiparty Set Intersection (MPSI) and provide protocols for the same. \end{itemize} In brief, our work in this thesis has made significant advancement in the state-of-the-art research on VSS, BA and MPC by presenting several inherent lower bounds and efficient/optimal solutions for the problems in terms of their key parameters such as communication complexity and time/round complexity. Thus our work has made a significant contribution to the field of secure distributed computing by carrying out a foundation research on the three most important problems of this field

    SoK: A Consensus Taxonomy in the Blockchain Era

    Get PDF
    Consensus (a.k.a. Byzantine agreement) is arguably one of the most fundamental problems in distributed systems, playing also an important role in the area of cryptographic protocols as the enabler of a (secure) broadcast functionality. While the problem has a long and rich history and has been analyzed from many different perspectives, recently, with the advent of blockchain protocols like Bitcoin, it has experienced renewed interest from a much wider community of researchers and has seen its application expand to various novel settings. One of the main issues in consensus research is the many different variants of the problem that exist as well as the various ways the problem behaves when different setup, computational assumptions and network models are considered. In this work we perform a systematization of knowledge in the landscape of consensus research starting with the original formulation in the early 1980s up to the present blockchain-based new class of consensus protocols. Our work is a roadmap for studying the consensus problem under its many guises, classifying the way it operates in many settings and highlighting the exciting new applications that have emerged in the blockchain era

    Quantum Cryptography Beyond Quantum Key Distribution

    Get PDF
    Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secure two- and multi-party computation and delegated quantum computation. Quantum cryptography also studies the limitations and challenges resulting from quantum adversaries---including the impossibility of quantum bit commitment, the difficulty of quantum rewinding and the definition of quantum security models for classical primitives. In this review article, aimed primarily at cryptographers unfamiliar with the quantum world, we survey the area of theoretical quantum cryptography, with an emphasis on the constructions and limitations beyond the realm of QKD.Comment: 45 pages, over 245 reference

    Resource-Efficient and Robust Distributed Computing

    Get PDF
    There has been a tremendous growth in the size of distributed systems in the past three decades. Today, distributed systems, such as the Internet, have become so large that they require highly scalable algorithms; algorithms that have asymptotically-small communication, computation, and latency costs with respect to the network size. Moreover, systems with thousands or even millions of parties distributed throughout the world is likely in danger of faults from untrusted parties. In this dissertation, we study scalable and secure distributed algorithms that can tolerate faults from untrusted parties. Throughout this work, we balance two important and often conflicting characteristics of distributed protocols: security and efficiency. Our first result is a protocol that solves the MPC problem in polylogarithmic communication and computation cost and is secure against an adversary than can corrupt a third of the parties. We adapted our synchronous MPC protocol to the asynchronous setting when the fraction of the corrupted parties are less than 1/8. Next, we presented a scalable protocol that solves the secret sharing problem between rational parties in polylogarithmic communication and computation cost. Furthermore, we presented a protocol that can solve the interactive communication problem over a noisy channel when the noise rate in unknown. In this problem, we have focused on the cost of the protocol in the resource-competitive analysis model. Unlike classic models, resource-competitive models consider the cost that the adversary must pay to succeed in corrupting the protocol

    Trojan-Resilience without Cryptography

    Get PDF
    Digital hardware Trojans are integrated circuits whose implementation differ from the specification in an arbitrary and malicious way. For example, the circuit can differ from its specified input/output behavior after some fixed number of queries (known as ``time bombs\u27\u27) or on some particular input (known as ``cheat codes\u27\u27). To detect such Trojans, countermeasures using multiparty computation (MPC) or verifiable computation (VC), have been proposed. On a high level, to realize a circuit with specification \cF one has more sophisticated circuits \cF^\diamond manufactured (where \cF^\diamond specifies a MPC or VC of \cF), and then embeds these \cF^\diamond\u27s into a \emph{master circuit} which must be trusted but is relatively simple compared to \cF. Those solutions have a significant overhead as \cF^\diamond is significantly more complex than \cF and also the master circuits are not exactly trivial either. In this work, we show that in restricted settings, where \cF has no evolving state and is queried on independent inputs, we can achieve a relaxed security notion using very simple constructions. In particular, we do not change the specification of the circuit at all (i.e., \cF=\cF^\diamond). Moreover the master circuit basically just queries a subset of its manufactured circuits and checks if they\u27re all the same. The security we achieve guarantees that, if the manufactured circuits are initially tested on up to TT inputs, the master circuit will catch Trojans that try to deviate on significantly more than a 1/T1/T fraction of the inputs. This bound is optimal for the type of construction considered, and we provably achieve it using a construction where 1212 instantiations of \cF need to be embedded into the master. We also discuss an extremely simple construction with just 22 instantiations for which we conjecture that it already achieves the optimal bound

    Scalable and Robust Distributed Algorithms for Privacy-Preserving Applications

    Get PDF
    We live in an era when political and commercial entities are increasingly engaging in sophisticated cyber attacks to damage, disrupt, or censor information content and to conduct mass surveillance. By compiling various patterns from user data over time, untrusted parties could create an intimate picture of sensitive personal information such as political and religious beliefs, health status, and so forth. In this dissertation, we study scalable and robust distributed algorithms that guarantee user privacy when communicating with other parties to either solely exchange information or participate in multi-party computations. We consider scalability and robustness requirements in three privacy-preserving areas: secure multi-party computation (MPC), anonymous broadcast, and blocking-resistant Tor bridge distribution. We propose decentralized algorithms for MPC that, unlike most previous work, scale well with the number of parties and tolerate malicious faults from a large fraction of the parties. Our algorithms do not require any trusted party and are fully load-balanced. Anonymity is an essential tool for achieving privacy; it enables individuals to communicate with each other without being identified as the sender or the receiver of the information being exchanged. We show that our MPC algorithms can be effectively used to design a scalable anonymous broadcast protocol. We do this by developing a multi-party shuffling protocol that can efficiently anonymize a sequence of messages in the presence of many faulty nodes. Our final approach for preserving user privacy in cyberspace is to improve Tor; the most popular anonymity network in the Internet. A current challenge with Tor is that colluding corrupt users inside a censorship territory can completely block user\u27s access to Tor by obtaining information about a large fraction of Tor bridges; a type of relay nodes used as the Tor\u27s primary mechanism for blocking-resistance. We describe a randomized bridge distribution algorithm, where all honest users are guaranteed to connect to Tor in the presence of an adversary corrupting an unknown number of users. Our simulations suggest that, with minimal resource costs, our algorithm can guarantee Tor access for all honest users after a small (logarithmic) number of rounds

    Leakage-resilient coin tossing

    Get PDF
    Proceedings 25th International Symposium, DISC 2011, Rome, Italy, September 20-22, 2011.The ability to collectively toss a common coin among n parties in the presence of faults is an important primitive in the arsenal of randomized distributed protocols. In the case of dishonest majority, it was shown to be impossible to achieve less than 1 r bias in O(r) rounds (Cleve STOC ’86). In the case of honest majority, in contrast, unconditionally secure O(1)-round protocols for generating common unbiased coins follow from general completeness theorems on multi-party secure protocols in the secure channels model (e.g., BGW, CCD STOC ’88). However, in the O(1)-round protocols with honest majority, parties generate and hold secret values which are assumed to be perfectly hidden from malicious parties: an assumption which is crucial to proving the resulting common coin is unbiased. This assumption unfortunately does not seem to hold in practice, as attackers can launch side-channel attacks on the local state of honest parties and leak information on their secrets. In this work, we present an O(1)-round protocol for collectively generating an unbiased common coin, in the presence of leakage on the local state of the honest parties. We tolerate t ≤ ( 1 3 − )n computationallyunbounded Byzantine faults and in addition a Ω(1)-fraction leakage on each (honest) party’s secret state. Our results hold in the memory leakage model (of Akavia, Goldwasser, Vaikuntanathan ’08) adapted to the distributed setting. Additional contributions of our work are the tools we introduce to achieve the collective coin toss: a procedure for disjoint committee election, and leakage-resilient verifiable secret sharing.National Defense Science and Engineering Graduate FellowshipNational Science Foundation (U.S.) (CCF-1018064
    • …
    corecore