3,223 research outputs found

    Upper bounds for number of removed edges in the Erased Configuration Model

    Full text link
    Models for generating simple graphs are important in the study of real-world complex networks. A well established example of such a model is the erased configuration model, where each node receives a number of half-edges that are connected to half-edges of other nodes at random, and then self-loops are removed and multiple edges are concatenated to make the graph simple. Although asymptotic results for many properties of this model, such as the limiting degree distribution, are known, the exact speed of convergence in terms of the graph sizes remains an open question. We provide a first answer by analyzing the size dependence of the average number of removed edges in the erased configuration model. By combining known upper bounds with a Tauberian Theorem we obtain upper bounds for the number of removed edges, in terms of the size of the graph. Remarkably, when the degree distribution follows a power-law, we observe three scaling regimes, depending on the power law exponent. Our results provide a strong theoretical basis for evaluating finite-size effects in networks

    Phase transitions for scaling of structural correlations in directed networks

    Get PDF
    Analysis of degree-degree dependencies in complex networks, and their impact on processes on networks requires null models, i.e. models that generate uncorrelated scale-free networks. Most models to date however show structural negative dependencies, caused by finite size effects. We analyze the behavior of these structural negative degree-degree dependencies, using rank based correlation measures, in the directed Erased Configuration Model. We obtain expressions for the scaling as a function of the exponents of the distributions. Moreover, we show that this scaling undergoes a phase transition, where one region exhibits scaling related to the natural cut-off of the network while another region has scaling similar to the structural cut-off for uncorrelated networks. By establishing the speed of convergence of these structural dependencies we are able to asses statistical significance of degree-degree dependencies on finite complex networks when compared to networks generated by the directed Erased Configuration Model

    Limit theorems for assortativity and clustering in null models for scale-free networks

    Get PDF
    An important problem in modeling networks is how to generate a randomly sampled graph with given degrees. A popular model is the configuration model, a network with assigned degrees and random connections. The erased configuration model is obtained when self-loops and multiple edges in the configuration model are removed. We prove an upper bound for the number of such erased edges for regularly-varying degree distributions with infinite variance, and use this result to prove central limit theorems for Pearson's correlation coefficient and the clustering coefficient in the erased configuration model. Our results explain the structural correlations in the erased configuration model and show that removing edges leads to different scaling of the clustering coefficient. We then prove that for the rank-1 inhomogeneous random graph, another null model that creates scale-free simple networks, the results for Pearson's correlation coefficient as well as for the clustering coefficient are similar to the results for the erased configuration model

    On the Relative Strength of Pebbling and Resolution

    Full text link
    The last decade has seen a revival of interest in pebble games in the context of proof complexity. Pebbling has proven a useful tool for studying resolution-based proof systems when comparing the strength of different subsystems, showing bounds on proof space, and establishing size-space trade-offs. The typical approach has been to encode the pebble game played on a graph as a CNF formula and then argue that proofs of this formula must inherit (various aspects of) the pebbling properties of the underlying graph. Unfortunately, the reductions used here are not tight. To simulate resolution proofs by pebblings, the full strength of nondeterministic black-white pebbling is needed, whereas resolution is only known to be able to simulate deterministic black pebbling. To obtain strong results, one therefore needs to find specific graph families which either have essentially the same properties for black and black-white pebbling (not at all true in general) or which admit simulations of black-white pebblings in resolution. This paper contributes to both these approaches. First, we design a restricted form of black-white pebbling that can be simulated in resolution and show that there are graph families for which such restricted pebblings can be asymptotically better than black pebblings. This proves that, perhaps somewhat unexpectedly, resolution can strictly beat black-only pebbling, and in particular that the space lower bounds on pebbling formulas in [Ben-Sasson and Nordstrom 2008] are tight. Second, we present a versatile parametrized graph family with essentially the same properties for black and black-white pebbling, which gives sharp simultaneous trade-offs for black and black-white pebbling for various parameter settings. Both of our contributions have been instrumental in obtaining the time-space trade-off results for resolution-based proof systems in [Ben-Sasson and Nordstrom 2009].Comment: Full-length version of paper to appear in Proceedings of the 25th Annual IEEE Conference on Computational Complexity (CCC '10), June 201

    Triadic closure in configuration models with unbounded degree fluctuations

    Get PDF
    The configuration model generates random graphs with any given degree distribution, and thus serves as a null model for scale-free networks with power-law degrees and unbounded degree fluctuations. For this setting, we study the local clustering c(k)c(k), i.e., the probability that two neighbors of a degree-kk node are neighbors themselves. We show that c(k) c(k) progressively falls off with kk and eventually for k=Ω(n)k=\Omega(\sqrt{n}) settles on a power law c(k)k2(3τ)c(k)\sim k^{-2(3-\tau)} with τ(2,3)\tau\in(2,3) the power-law exponent of the degree distribution. This fall-off has been observed in the majority of real-world networks and signals the presence of modular or hierarchical structure. Our results agree with recent results for the hidden-variable model and also give the expected number of triangles in the configuration model when counting triangles only once despite the presence of multi-edges. We show that only triangles consisting of triplets with uniquely specified degrees contribute to the triangle counting

    Average nearest neighbor degrees in scale-free networks

    Get PDF
    The average nearest neighbor degree (ANND) of a node of degree kk is widely used to measure dependencies between degrees of neighbor nodes in a network. We formally analyze ANND in undirected random graphs when the graph size tends to infinity. The limiting behavior of ANND depends on the variance of the degree distribution. When the variance is finite, the ANND has a deterministic limit. When the variance is infinite, the ANND scales with the size of the graph, and we prove a corresponding central limit theorem in the configuration model (CM, a network with random connections). As ANND proved uninformative in the infinite variance scenario, we propose an alternative measure, the average nearest neighbor rank (ANNR). We prove that ANNR converges to a deterministic function whenever the degree distribution has finite mean. We then consider the erased configuration model (ECM), where self-loops and multiple edges are removed, and investigate the well-known `structural negative correlations', or `finite-size effects', that arise in simple graphs, such as ECM, because large nodes can only have a limited number of large neighbors. Interestingly, we prove that for any fixed kk, ANNR in ECM converges to the same limit as in CM. However, numerical experiments show that finite-size effects occur when kk scales with nn

    Algorithmic Complexity of Power Law Networks

    Full text link
    It was experimentally observed that the majority of real-world networks follow power law degree distribution. The aim of this paper is to study the algorithmic complexity of such "typical" networks. The contribution of this work is twofold. First, we define a deterministic condition for checking whether a graph has a power law degree distribution and experimentally validate it on real-world networks. This definition allows us to derive interesting properties of power law networks. We observe that for exponents of the degree distribution in the range [1,2][1,2] such networks exhibit double power law phenomenon that was observed for several real-world networks. Our observation indicates that this phenomenon could be explained by just pure graph theoretical properties. The second aim of our work is to give a novel theoretical explanation why many algorithms run faster on real-world data than what is predicted by algorithmic worst-case analysis. We show how to exploit the power law degree distribution to design faster algorithms for a number of classical P-time problems including transitive closure, maximum matching, determinant, PageRank and matrix inverse. Moreover, we deal with the problems of counting triangles and finding maximum clique. Previously, it has been only shown that these problems can be solved very efficiently on power law graphs when these graphs are random, e.g., drawn at random from some distribution. However, it is unclear how to relate such a theoretical analysis to real-world graphs, which are fixed. Instead of that, we show that the randomness assumption can be replaced with a simple condition on the degrees of adjacent vertices, which can be used to obtain similar results. As a result, in some range of power law exponents, we are able to solve the maximum clique problem in polynomial time, although in general power law networks the problem is NP-complete
    corecore