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Abstract The configuration model generates random graphs with any given degree distri-
bution, and thus serves as a null model for scale-free networks with power-law degrees and
unbounded degree fluctuations. For this setting, we study the local clustering c(k), i.e., the
probability that two neighbors of a degree-k node are neighbors themselves. We show that
c(k) progressively falls off with k and the graph size n and eventually for k = Ω(

√
n) set-

tles on a power law c(k) ∼ n5−2τ k−2(3−τ) with τ ∈ (2, 3) the power-law exponent of the
degree distribution. This fall-off has been observed in the majority of real-world networks
and signals the presence of modular or hierarchical structure. Our results agree with recent
results for the hidden-variable model and also give the expected number of triangles in the
configuration model when counting triangles only once despite the presence of multi-edges.
We show that only triangles consisting of triplets with uniquely specified degrees contribute
to the triangle counting.

Keywords Random graphs · Clustering · Configuration model

1 Introduction

Random graphs can be used to model many different types of networked structures such as
communication networks, social networks and biological networks.Many of these real-world
networks display similar characteristics. A well-known characteristic of many real-world
networks is that the degree distribution follows a power law. Another such property is that
they are highly clustered. Several statistics to measure clustering exist. The global clustering
coefficient measures the fraction of triangles in the network. A second measure of clustering
is the local clustering coefficient, which measures the fraction of triangles that arise from
one specific node.
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Fig. 1 Local clustering coefficient c(k) for three real-world networks. a Google web graph [16]. b Baidu
online encyclopedia [18]. c Gowalla social network [16]

The local clustering coefficient c(k) of vertices of degree k decays when k becomes large
inmany real-world networks. In particular, the decaywas found to behave as an inverse power
of k for k large enough, so that c(k) ∼ k−γ for some γ > 0 [5,15,19,20,22], where most
real-world networks were found to have γ close to one. Figure 1 shows the local clustering
coefficient for a technological network (the Google web graph [16]), an information network
(hyperlinks of the online encyclopedia Baidu [18]) and a social network (friends in the
Gowalla social network [16]). We see that for small values of k, c(k) decays slowly. When
k becomes larger, the local clustering coefficient indeed seems to decay as an inverse power
of k. Similar behavior has been observed in more real-world networks [21]. The decay of
the local clustering coefficient c(k) in k is considered an important empirical observation,
because it may signal the presence of hierarchical network structures [19], where high-degree
vertices barely participate in triangles, but connect communities consisting of small-degree
vertices with high clustering coefficients.

In this paperwe analyze c(k) for networkswith a power-lawdegree distributionwith degree
exponent τ ∈ (2, 3), the situation that describes the majority of real-world networks [1,8,
13,21]. To analyze c(k), we consider the configuration model in the large-network limit,
and count the number of triangles where at least one of the vertices has degree k. When the
degree exponent satisfies τ > 3, the total number of triangles in the configuration model
converges to a Poisson random variable [9, Chapter 7]. When τ ∈ (2, 3), the configuration
model consists of many self-loops and multiple edges [9]. This creates multiple ways of
counting the number of triangles, as we will show below. In this paper, we count the number
of triangles from a vertex perspective, which is the same as counting the number of triangles
in the erased configurationmodel, where all self-loops have been removed andmultiple edges
have been merged.

We show that the local clustering coefficient remains a constant times n2−τ log(n) as
long as k = o(

√
n). After that, c(k) starts to decay as c(k) ∼ k−γ n5−2τ . We show that this

exponent γ depends on τ and can be larger than one. In particular, when the power-law degree
exponent τ is close to two, the exponent γ approaches two, a considerable difference with
the preferential attachment model with triangles or several fractal-like random graph models
that predict c(k) ∼ k−1 [7,14,19]. Related to this result on the c(k) fall-off, we also show
that for every node with fixed degree k only pairs of nodes with specific degrees contribute
to the triangle count and hence local clustering.

The paper is structured as follows. Section 2 contains a detailed description of the con-
figuration model and the triangle count. We present our main results in Sect. 3, including
Theorem 1 that describes the three ranges of c(k). The remaining sections prove all the main
results, and in particular focus on establishing Propositions 1 and 2 that are crucial for the
proof of Theorem 1.
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748 R. van der Hofstad et al.

2 Basic Notions

Notation We use
d−→ for convergence in distribution, and

P−→ for convergence in proba-
bility. We say that a sequence of events (En)n≥1 happens with high probability (w.h.p.) if
limn→∞ P (En) = 1. Furthermore, we write f (n) = o(g(n)) if limn→∞ f (n)/g(n) = 0,
and f (n) = O(g(n)) if | f (n)|/g(n) is uniformly bounded, where (g(n))n≥1 is nonnegative.
Similarly, if lim supn→∞ | f (n)| /g(n) > 0, we say that f (n) = Ω(g(n)) for nonnegative
(g(n))n≥1. We write f (n) = Θ(g(n)) if f (n) = O(g(n)) as well as f (n) = Ω(g(n)). We
say that Xn = OP(g(n)) for a sequence of random variables (Xn)n≥1 if |Xn |/g(n) is a tight

sequence of random variables, and Xn = oP(g(n)) if Xn/g(n)
P−→ 0.

The Configuration Model Given a positive integer n and a degree sequence, i.e., a sequence
of n positive integers d = (d1, d2, . . . , dn), the configuration model is a (multi)graph where
vertex i has degree di . It is defined as follows, see e.g., [3] or [9, Chapter 7]: Given a
degree sequence d with

∑
i∈[n] di even, we start with d j free half-edges adjacent to vertex

j , for j = 1, . . . , n. The random multigraph CMn(d) is constructed by successively pairing,
uniformly at random, free half-edges into edges, until no free half-edges remain. (In other
words, we create a uniformly random matching of the half-edges.) The wonderful property
of the configuration model is that, conditionally on obtaining a simple graph, the resulting
graph is a uniform graph with the prescribed degrees. This is why CMn(d) is often used as
a null model for real-world networks with given degrees.

In this paper, we study the setting where the degree distribution has infinite variance.
Then the number of self-loops and multiple edges tends to infinity in probability (see e.g.,
[9, Chapter 7]), so that the configuration model results in a multigraph with high probability.
In particular, we take the degrees d to be an i.i.d. sample of a random variable D such that

P(D = k) = Ck−τ (1 + o(1)), (2.1)

when k → ∞, where τ ∈ (2, 3) so that E[D2] = ∞. When this sample constructs a
sequence such that the sum of the variables is odd, we add an extra half-edge to the last
vertex to obtain the degree sequence. This does not affect our computations. In this setting,
dmax = OP

(
n1/(τ−1)

)
, where dmax = maxv∈[n] dv denotes the maximal degree of the degree

sequence.

Counting triangles Let G = (V, E) denote a configuration model with vertex set V =
[n] := {1, . . . , n} and edge set E . We are interested in the number of triangles in G. There
are two ways to count triangles in the configuration model. The first approach is from an
edge perspective, as illustrated in Fig. 2. This approach counts the number of triples of edges
that together create a triangle. This approach may count multiple triangles between one fixed
triple of vertices. Let Xi j denote the number of edges between vertex i and j . Then, from an
edge perspective, the number of triangles in the configuration model is

∑

1≤i< j<k≤n

Xi j X jk Xik . (2.2)

A different approach is to count the number of triangles from a vertex perspective. This
approach counts the number of triples of vertices that are connected. Counting the number
of triangles in this way results in
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Fig. 2 From the edge perspective
in the configuration model, these
are two triangles. From the vertex
perspective, there is only one
triangle. a CM. b ECM

(a) (b)

∑

1≤i< j<k≤n

1{Xi j≥1}1{X jk≥1}1{Xik≥1}. (2.3)

When the configuration model results in a simple graph, these two approaches give the same
result. When the configuration model results in a multigraph, these two approaches may
give very different numbers of triangles. In particular, when the degree distribution follows a
power-law with τ ∈ (2, 3), the number of triangles is dominated by the number of triangles
between the vertices of the highest degrees, even though only few such vertices are present in
the graph [17].When the exponent τ of the degree distribution approaches 2, then the number
of triangles between the vertices of the highest degrees will approach Θ(n3), which is much
higher than the number of triangles we would expect in any real-world network of that size.
When we count triangles from a vertex perspective, we count only one triangle between these
three vertices. Thus, the number of triangles from the vertex perspective will be significantly
lower. In this paper, we focus on the vertex based approach for counting triangles. Note that
this approach is the same as counting triangles in the erased configuration model, where all
multiple edges have been merged, and the self-loops have been removed.

Let 	k denote the number of triangles attached to vertices of degree k in the erased
configuration model. Note that when a triangle consists of two vertices of degree k, it is
counted twice in 	k . Let Nk denote the number of vertices of degree k. Then, the clustering
coefficient of vertices with degree k equals

c(k) = 1

Nk

2	k

k(k − 1)
. (2.4)

When we count 	k from the vertex perspective, this clustering coefficient can be interpreted
as the probability that two random connections of a vertex with degree k are connected. This
version of c(k) is the local clustering coefficient of the erased configuration model.

3 Main Results

The next theorem presents our main result on the behavior of the local clustering coefficient
in the erased configuration model.

Theorem 1 Let G be an erased configuration model, where the degrees are an i.i.d. sample
fromapower-lawdistributionwith exponent τ ∈ (2, 3)as in (2.1).Define A = −�(2−τ) > 0
for τ ∈ (2, 3), let μ = E [D] and C be the constant in (2.1). Then, as n → ∞,

(Range I) for 1 < k = o(n(τ−2)/(τ−1)),

c(k)

n2−τ log(n)

P−→ 3 − τ

τ − 1
μ−τC2A, (3.1)

(Range II) for k = Ω(n(τ−2)/(τ−1)) and k = o(
√
n),

c(k)

n2−τ log(n/k2)
P−→ μ−τC2A, (3.2)
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750 R. van der Hofstad et al.

Fig. 3 The three ranges of c(k)
defined in Theorem 1 on a
log-log scale

k

c(k)

n
τ−2
τ−1 n

1
2 n

1
τ−1

I II III

(Range III) for k = Ω(
√
n) and k ≤ dmax,

c(k)

n5−2τ k2τ−6
P−→ μ3−2τC2A2, (3.3)

Theorem 1 shows three different ranges for k where c(k) behaves differently, and is
illustrated in Fig. 3. Let us explain why these three ranges occur. Range I contains small-
degree vertices with k = o(n(τ−2)/(τ−1)). In Sect. 4.2 we show that these vertices are hardly
involved in self-loops and multiple edges in the configuration model, and hence there is
little difference between counting from an edge perspective or from a vertex perspective.
It turns out that these vertices barely make triadic closures with hubs, which renders c(k)
independent of k in Theorem 1. Range II contains degrees that are neither small nor large
with degrees k = Ω(n(τ−2)/(τ−1)) and k = o(

√
n). We can approximate the connection

probability between vertices i and j with 1 − e−Di D j /μn , where μ = E[D]. Therefore, a
vertex of degree k connects to vertices of degree at least n/k with positive probability. The
vertices in Range II quite likely have multiple connections with vertices of degrees at least
n/k. Thus, in this degree range, the single-edge constraint of the erased configuration model
starts to play a role and causes the slow logarithmic decay of c(k) in Theorem 1. Range III
contains the large-degree vertices with k = Ω(

√
n). Again we approximate the probability

that vertices i and j are connected by 1 − e−Di D j /μn . This shows that vertices in Range III
are likely to be connected to one another, possibly through multiple edges. The single-edge
constraint on all connections between these core vertices causes the power-law decay of c(k)
in Theorem 1.

Theorem 1 shows that the local clustering not only decays in k, it also decays in the graph
size n for all values of k. This decay in n is caused by the locally tree-like nature of the
configuration model. Figure 1 shows that in large real-world networks, c(k) is typically high
for small values of k, which is unlike the behavior in the erased configuration model. The
behavior of c(k) for more realistic network models is therefore an interesting question for
further research. We believe that including small communities to the configuration model
such as in [10] would only change the k 
→ c(k) curve for small values of k with respect to
the erased configurationmodel. Low-degree vertices will then typically be in highly clustered
communities and therefore have high local clustering coefficients. Most connections from
high-degree vertices will be between different communities, which results in a similar k 
→
c(k) curve for large values of k as in the erased configuration model.

Observe that in Theorem 1 the behavior of c(k) on the boundary between two different
ranges may be different than the behavior inside the ranges. Since k 
→ c(k) is a function
on a discrete domain, it is always continuous. However, we can extend the scaling limit of
k 
→ c(k) to a continuous domain. Theorem 1 then shows that the scaling limit of k 
→ c(k)
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Fig. 4 The normalized version
of c(k) for k = B

√
n obtained

from Theorems 1 and 2

10−5 10−4 10−3 10−2 10−1 100 101 102

10−1

100

101

102

B

c(
B

√ n
)/

n
2−

τ

is a smooth function inside the different ranges. Furthermore, filling in k = an(τ−1)/(τ−2) in
Range II of Theorem 1 suggests that k 
→ c(k) is also a smooth function on the boundary
between Ranges I and II. However, the behavior of k 
→ c(k) on the boundary between
Ranges II and III is not clear from Theorem 1. We therefore prove the following result in
Sect. 6.1:

Theorem 2 For k = B
√
n,

c(k)

n2−τ

P−→ C2μ2−2τ B−2
∫ ∞

0

∫ ∞

0
(t1t2)

−τ (1 − e−Bt1)(1 − e−Bt2)(1 − e−t1t2μ)dt1dt2.

(3.4)

Figure 4 compares c(k)/n2−τ for k = B
√
n using Theorems 1 and 2. The line associated

with Theorem 1 uses the result for Range II when B < 1, and the result for Range III when
B > 1. We see that there seems to be a discontinuity between these two ranges. Figure 4
suggests that the scaling limit of k 
→ c(k) is smooth around k ≈ √

n, because the lines are
close for both small and large B-values. Theorem 3 shows that indeed the scaling limit of
k 
→ c(k) is smooth for k of the order

√
n:

Theorem 3 The scaling limit of k 
→ c(k) is a smooth function.

Most likely configurations The three different ranges in Theorem 1 result from a canonical
trade-off caused by the power-law degree distribution. On the one hand, high-degree vertices
participate in many triangles. In Sect. 5.1 we show that the probability that a triangle is
present between vertices with degrees k, Du and Dv can be approximated by

(
1 − e−kDu/μn

) (
1 − e−kDv/μn

) (
1 − e−DuDv/μn

)
. (3.5)

Theprobability of this triangle thus increaseswithDu and Dv .On theother hand, in power-law
distribution high degrees are rare. This creates a trade-off between the occurrence of triangles
between {k, Du, Dv}-triplets and the number of them. Surely, large degrees Du and Dv make
a triangle more likely, but larger degrees are less likely to occur. Since (3.5) increases only
slowly in Du and Dv as soon as Du, Dv = Ω(μn/k) or when DuDv = Ω(μn), intuitively,
triangles with Du, Dv = Ω(μn/k) or with DuDv = Ω(μn) only marginally increase the
number of triangles. In fact, we will show that most triangles with a vertex of degree k
contain two other vertices of very specific degrees, those degrees that are aligned with the
trade-off. The typical degrees of Du and Dv in a triangle with a vertex of degree k are given
by Du, Dv ≈ μn/k or by DuDv ≈ μn.
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Fig. 5 The major contributions
in the different ranges for k. The
highlighted edges are present
with asymptotically positive
probability. a k <

√
n. b k >

√
n

k

Ducn/Du

(a) k

c1n/kc2n/k

(b)

Let us now formalize this reasoning. Introduce

Wk
n (ε) =

⎧
⎪⎨

⎪⎩

(u, v) : DuDv ∈ [ε, 1/ε]μn for k = o(n(τ−2)/(τ−1)),

(u, v) : DuDv ∈ [ε, 1/ε]μn, Du , Dv < μn/(kε) for k = Ω(n(τ−2)/(τ−1)), k = o(
√
n),

(u, v) : Du, Dv ∈ [ε, 1/ε]μn/k for k = Ω(
√
n).

(3.6)

Denote the number of triangles between one vertex of degree k and two other vertices i, j
with (i, j) ∈ Wk

n (ε) by 	k(Wk
n (ε)). The next theorem shows that these types of triangles

dominate all other triangles where one vertex has degree k:

Theorem 4 Let G be an erased configuration model where the degrees are an i.i.d. sample
from a power-law distribution with exponent τ ∈ (2, 3). Then, for εn → 0 sufficiently slowly,

�k(Wk
n (εn))

	k

P−→ 1. (3.7)

For example, when k = Ω(
√
n), 	k(Wk

n (εn)) denotes all triangles between a vertex of
degree k and two other vertices with degrees in [εn, 1/εn]n/k. Theorem 4 then shows that
the number of these triangles dominates the number of all other types of triangles where one
vertex has degree k. This holds when εn → 0, so that the degrees of the other two vertices
cover the entire Θ(n/k) range. The convergence of εn → 0 should be sufficiently slowly,
e.g., εn = 1/ log(n), for several combined error terms of ε and n to go to zero.

Figure 5 illustrates the typical triangles containing a vertex of degree k as given by The-
orem 4. When k is small (k in Range I or II), a typical triangle containing a vertex of degree
k is a triangle with vertices u and v such that DuDv = Θ(n) as shown in in Fig. 5a. Then,
the probability that an edge between u and v exists is asymptotically positive and non-trivial.
Since k is small, the probability that an edge exists between a vertex of degree k and u or v

is small. On the other hand, when k is larger (in Range III), a typical triangle containing a
vertex of degree k is with vertices u and v such that Du = Θ(n/k) and Dv = Θ(n/k). Then,
the probability that an edge exists between k and Du or k and Dv is asymptotically positive
whereas the probability that an edge exists between vertices u and v vanishes. Figure 5b
shows this typical triangle.

Figure 6 shows the typical size of the degrees of other vertices in a triangle with a vertex
of degree k = nβ . We see that when β < (τ −2)/(τ −1) (so that k is in Range I), the typical
other degrees are independent of the exact value of k. This shows why c(k) is independent
of k in Range I in Theorem 1. When (τ − 2)/(τ − 1) < β < 1

2 , we see that the range of
possible degrees for vertices u and v decreases when k gets larger. Still, the range of possible
degrees for Du and Dv is quite wide. This explains the mild dependence of c(k) on k in
Theorem 1 in Range II. When β > 1

2 , k is in Range III. Then the typical values of Du and Dv

are considerably different from those in the previous regime. The values that Du and Dv can
take depend heavily on the value of k. This explains the dependence of c(k) on k in Range
III.
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Fig. 6 Visualization of the
contributing degrees when
k = nβ and Du = nα . The
colored area shows the values of
α that contribute to c(nβ) (Color
figure online)

τ−2
τ−1

1
τ−1

τ−2
τ−1

1
τ−1

1
2

1
2

α

β
Dv ≈ n/Du

Dv ≈ Du

Global and local clustering The global clustering coefficient divides the total number of
triangles by the total number of pairs of neighbors of all vertices. In [11], we have shown
that the total number of triangles in the configuration model from a vertex perspective is
determined by vertices of degree proportional to

√
n. Thus, only triangles between vertices

on the border between Ranges II and III contribute to the global clustering coefficient. The
local clustering coefficient counts all triangles where one vertex has degree k and provides a
more complete picture of clustering from a vertex perspective, since it covers more types of
triangles.

Hidden-variable models Our results for clustering in the erased configuration model agree
with recent results for the hidden-variable model [21]. In the hidden-variable model, every
vertex is equipped with a hidden variable wi , where the hidden variables are sampled
from a power-law distribution. Then, vertices i and j are connected with probability
min(wiw j/n, 1) [2,6]. In the erased configuration model, we will use that the probabil-
ity that a vertex with degree Di is connected to a vertex with degree Dj can be approximated
by

1 − e−Di D j /μn, (3.8)

which behaves similarly as min(Di D j/n, 1). Thus, the connection probabilities in the erased
configuration model can be interpreted as the connection probabilities in the hidden-variable
model, where the sampled degrees can be interpreted as the hidden variables. The major
difference is that connections in the hidden-variable model are independent once the hidden
variables are sampled, whereas connections in the erased configuration model are correlated
once the degrees are sampled. Indeed, in the erased configuration model we know that a
vertex with degree Di has at most Di other vertices as a neighbor, so that the connections
from vertex i to other vertices are correlated. Still, our results show that these correlations
are small enough for the results for c(k) to be similar to the results for c(k) in the hidden
variable model.
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3.1 Overview of the Proof

To prove Theorem 1, we show that there is a major contributing regime for c(k), which
characterizes the degrees of the other two vertices in a typical triangle with a vertex of degree
k. Wewrite this major contributing regime asWk

n (ε) defined in (3.6). The number of triangles
adjacent to a vertex of degree k is dominated by triangles between the vertex of degree k and
other vertices with degrees in a specific regime, depending on k. All three ranges of k have
a different spectrum of degrees that contribute to the number of triangles. We write

c(k) = c(k,Wk
n (ε)) + c(k, W̄ k

n (ε)), (3.9)

where c(k,Wk
n (ε))denotes the contribution to c(k) from triangleswhere the other twovertices

(u, v) ∈ Wk
n (ε) and c(k, W̄ k

n (ε)) denotes the contribution to c(k) from triangles where the
other two vertices (u, v) /∈ Wk

n (ε). Furthermore, we write the order of magnitude of the value
of c(k) as f (k, n). Theorem 1 states that this order should be

f (k, n) =

⎧
⎪⎨

⎪⎩

n2−τ log(n) for k = o(n(τ−2)/(τ−1)),

n2−τ log(n/k2) for k = Ω(n(τ−2)/(τ−1)), k = o(
√
n),

n5−2τ k2τ−6 for k = Ω(
√
n).

(3.10)

The proof of Theorem 1 is largely built on the following two propositions:

Proposition 1 (Main contribution)

c(k,Wk
n (ε))

f (n, k)
P−→

⎧
⎨

⎩

C2
∫ 1/ε
ε

t1−τ (1 − e−t )dt for k = o(
√
n),

C2
(∫ 1/ε

ε
t1−τ (1 − e−t )dt

)2
for k = Ω(

√
n).

(3.11)

Proposition 2 (Minor contributions) There exists κ > 0 such that for all ranges

En
[
c(k, W̄ k

n (ε))
]

f (n, k)
= OP

(
εκ

)
. (3.12)

We now show how these propositions prove Theorem 1. Applying Proposition 2 together
with the Markov inequality yields

P

(
c(k, W̄ k

n (ε)) > K f (k, n)εκ
)

= O
(
K−1) . (3.13)

Therefore,

c(k) = c(k,Wk
n (ε)) + OP

(
f (k, n)εκ

)
. (3.14)

Replacing ε by εn , and letting εn → 0 slowly enough for all combined error terms of εn and
o( f (n, k)) in the expectation in (3.12) to converge to 0 then already proves Theorem 4. To
prove Theorems 1 and 2 we use Proposition 1, which shows that

c(k)

f (k, n)

P−→
⎧
⎨

⎩

C2
∫ 1/ε
ε

t1−τ (1 − e−t )dt + O(εκ) for k = o(
√
n),

C2
(∫ 1/ε

ε
t1−τ (1 − e−t )dt

)2 + O(εκ) for k = Ω(
√
n).

(3.15)
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We take the limit of ε → 0 and use that
∫ ∞

0
x1−τ (1 − e−x )dx =

∫ ∞

0

∫ x

0
x1−τ e−ydydx =

∫ ∞

0

∫ ∞

y
x1−τ e−ydxdy

= − 1

2 − τ

∫ ∞

0
y2−τ e−ydy = −�(3 − τ)

2 − τ
= −�(2 − τ) =: A, (3.16)

which proves Theorem 1. �
The rest of the paper will be devoted to proving Propositions 1 and 2. We prove Proposi-

tion 1 using a secondmomentmethod.We can compute the expected value of c(k) conditioned
on the degrees as

En [c(k)] =
2En

[∑
w:D(er)

w =k
	(w)

]

Nkk(k − 1)
, (3.17)

where 	(w) denotes the number of triangles containing vertex w and En denotes the con-
ditional expectation given the degrees. Let Xi j denote the number of edges between vertex
i and j in the configuration model, and X̂i j the number of edges between i and j in the
corresponding erased configuration model, so that X̂i j ∈ {0, 1}. Now,

En
[	(w) | D(er)

w = k
] = 1

2

∑

u,v �=w

Pn(X̂wu = X̂wv = X̂uv = 1 | D(er)
w = k). (3.18)

Thus, to find the expected number of triangles, we need to compute the probability that a
triangle between vertices u, v and w exists, which we will do in Sect. 5.1. After that, we
show that this expectation converges to a constant when taking the randomness of the degrees
into account, and that the variance conditioned on the degrees is small in Sect. 5.3. Then, we
prove Proposition 2 in Sect. 6 using a first moment method. We start in Sect. 4 to state some
preliminaries.

4 Preliminaries

We now introduce some lemmas that we will use frequently while proving Propositions 1
and 2. We let Pn denote the conditional probability given d, and En the corresponding
expectation. Furthermore, letDu denote a uniformly chosen vertex from the degree sequence
d and let Ln = ∑

i∈[n] Di denote the sum of the degrees.

4.1 Conditioning on the Degrees

In the proof of Proposition 1 we first condition on the degree sequence. We compute the
clustering coefficient conditional on the degree sequence, and after that we show that this
converges to the correct value when taking the random degrees into account. We will use the
following lemma several times:

Lemma 1 Let G be an erased configuration model where the degrees are an i.i.d. sample
from a random variable D. Then,

Pn (Du ∈ [a, b]) = OP (P (D ∈ [a, b])) , (4.1)

En [ f (Du)] = OP (E [ f (D)]) . (4.2)
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Proof By using the Markov inequality, we obtain for M > 0

P (Pn (Du ∈ [a, b]) ≥ MP (D ∈ [a, b])) ≤ E [Pn (Du ∈ [a, b])]
MP (D ∈ [a, b]) = 1

M
, (4.3)

and the second claim can be proven in a very similar way. �
In the proof of Theorem 1 we often estimate moments of D, conditional on the degrees.

The following lemma shows how to bound these moments, and is a direct consequence of
the Stable Law Central Limit Theorem:

Lemma 2 LetDu be a uniformly chosen vertex from the degree sequence, where the degrees
are an i.i.d. sample from a power-law distribution with exponent τ ∈ (2, 3). Then, for
α > τ − 1,

En
[Dα

u

] = OP

(
nα/(τ−1)−1

)
. (4.4)

Proof We have

En
[Dα

u

] = 1

n

n∑

i=1

Dα
i . (4.5)

Since the Di are an i.i.d. sample from a power-law distribution with exponent τ ,

P
(
Dα
i > t

) = P
(
Di > t1/α

) = Ct−
τ−1
α , (4.6)

so that Dα
i are distributed as i.i.d. samples from a power-lawwith exponent (τ −1)/α+1 < 2.

Then, by the Stable law Central Limit Theorem (see for example [23, Theorem 4.5.1]),

n∑

i=1

Dα
i = OP

(
n

α
τ−1

)
, (4.7)

which proves the lemma. �
We also need to relate Ln and its expected value μn. Define the event

Jn =
{
|Ln − μn| ≤ n1/(τ−1)

}
. (4.8)

By [12], P (Jn) = 1 − O(n−1/τ ) as n → ∞. When we condition on the degree sequence,
we will assume that the event Jn takes place.

4.2 Erased and Non-erased Degrees

The degree sequence of the erased configuration model may differ from the original degree
sequence of the original configuration model. We now show that this difference is small with
high probability. By [4, Eq A(9)], the probability that a half-edge incident to a vertex of
degree o(n) is removed is o(1). The maximal degree in the configuration model with i.i.d.
degrees is OP(n1/(τ−1)), so that for all i maxi∈[n] Di = oP(n). Therefore,

Di (1 − oP(1)) ≤ D(er)
i ≤ Di . (4.9)

Thus, in many proofs, we will exchange Di and D(er)
i when needed.

123



Triadic Closure in Configuration Models... 757

5 Second Moment Method on Main Contribution Wk
n (ε)

We now focus on the triangles that give the main contribution. First, we condition on the
degree sequence and compute the expected number of triangles in the main contributing
regime. Then, we show that this expectation converges to a constant when taking the i.i.d.
degrees into account. After that, we show that the variance of the number of triangles in the
main contributing regime is small, and we prove Proposition 1.

5.1 Conditional Expectation Inside Wk
n (ε)

In this section,we compute the expectation of the number of triangles in themajor contributing
ranges of 3.6 when we condition on the degree sequence. We define

gn(Du, Dv, Dw) := (1 − e−DuDv/Ln )(1 − e−DuDw/Ln )(1 − e−DvDw/Ln ). (5.1)

Then, the following lemma shows that the expectation of c(k) conditioned on the degrees is
the sum of gn(Du, Dv, Dw) over all degrees in the major contributing regime:

Lemma 3 On the event Jn defined in (4.8),

En

[
c(k,Wk

n (ε))
]

=
∑

(u,v)∈Wk
n (ε) gn(k, Du, Dv)

k(k − 1)
(1 + oP(1)). (5.2)

Proof By (3.17) and (3.18)

En

[
c(k,Wk

n (ε))
]

=
1

2Nk

∑
w:D(er)

w =k

∑
(u,v)∈Wk

n (ε) Pn
(	u,v,w = 1

)

k(k − 1)/2
, (5.3)

where 	u,v,w denotes the event that a triangle is present on vertices u, v and w. We write the
probability that a specific triangle on vertices u, v and w exists as

Pn
(	u,v,w = 1

) = 1 − Pn (Xuw = 0) − Pn (Xvw = 0) − Pn (Xuv = 0)

+ Pn (Xuw = Xvw = 0)

+ Pn (Xuv = Xvw = 0) + Pn (Xuv = Xuw = 0)

− Pn (Xuv = Xuw = Xvw = 0) . (5.4)

In themajor contributing ranges, Du, Dv, Dw = OP(n1/(τ−1)), and the product of the degrees
is O(n). By [11, Lemma 3.1]

Pn (Xuv = Xvw = 0) = e−DuDv/Lne−DvDw/Ln (1 + oP(n
−(τ−2)/(τ−1))) (5.5)

and

Pn (Xuv = Xvw = Xuw = 0)=e−DuDv/Lne−DvDw/Lne−DuDw/Ln (1 + oP(n
−(τ−2)/(τ−1))).

(5.6)

Therefore,

Pn
(	u,v,w = 1

) = (1 + oP(1))
(
1 − e−DuDv/Ln

) (
1 − e−DuDw/Ln

) (
1 − e−DvDw/Ln

)

= (1 + oP(1))gn(Du, Dv, Dw), (5.7)

where we have used that for DuDv = O(n)

1 − e−DuDv/Ln (1 + oP(n
−(τ−2)/(τ−1))) = (1 − e−DuDv/Ln )(1 + oP(1)). (5.8)
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Lemma 1 shows that, given D(er)
w = k,

gn(Dw, Du, Dv) = gn(k, Du, Dv)(1 + oP(1)). (5.9)

Thus, we obtain

En

[
c(k,Wk

n (ε))
]

=
∑

w:D(er)
w =k

∑
(u,v)∈Wk

n (ε) gn(Dw, Du, Dv)

Nkk(k − 1)
(1 + oP(1))

=
∑

(u,v)∈Wk
n (ε) gn(k, Du, Dv)

k(k − 1)
(1 + oP(1)), (5.10)

which proves the lemma. �
5.2 Analysis of Asymptotic Formula

In the previous section, we have shown that the expected value of c(k) in the major contribut-
ing regime is the sum of a function gn(k, Du, Dv) over all vertices u and v with degrees in
the major contributing regime if we condition on the degrees, that is

En

[
c(k,Wk

n (ε))
]
= 1+oP(1)

k(k − 1)

∑

(u,v)∈Wk
n (ε)

(1 − e−kDv/Ln )(1 − e−kDu/Ln )(1 − e−DuDv/Ln ).

(5.11)

This expected value does not yet take into account that the degrees are sampled i.i.d. from a
power-law distribution. In this section, we will prove that this expected value converges to a
constant when we take the randomness of the degrees into account. We will make use of the
following lemmas:

Lemma 4 Let A ⊂ R
2 be a bounded set and f (t1, t2) be a bounded, continuous function on

A. Let M (n) be a random measure such that for all S ⊆ A, M (n)(S)
P−→ λ(S) = ∫

S dλ(t1, t2)
for some deterministic measure λ. Then,

∫

A
f (t1, t2)dM

(n)(t1, t2)
P−→

∫

A
f (t1, t2)dλ(t1, t2). (5.12)

Proof Fix η > 0. Since f is bounded and continuous on A, for any ε > 0, we can find
m < ∞, disjoint sets (Bi )i∈[m] and constants (bi )i∈[m] such that ∪Bi = A and

∣
∣
∣
∣
∣
f (t1, t2) −

m∑

i=1

bi1{(t1,t2)∈Bi }

∣
∣
∣
∣
∣
< ε, (5.13)

for all (t1, t2) ∈ A. Because M (n)(Bi )
P−→ λ(Bi ) for all i ,

lim
n→∞P

(∣
∣M (n)(Bi ) − λ(Bi )

∣
∣ > η/m

) = 0. (5.14)

Then,
∣
∣
∣
∣

∫

A
f (t1, t2)dM

(n)(t1, t2) −
∫

A
f (t1, t2)dλ(t1, t2)

∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫

A
f (t1, t2) −

m∑

i=1

bi1{(t1,t2)∈Bi }dM (n)(t1, t2)

∣
∣
∣
∣
∣
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+
∣
∣
∣
∣
∣

∫

A
f (t1, t2) −

m∑

i=1

bi1{(t1,t2)∈Bi }dλ(t1, t2)

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

m∑

i=1

bi (M
(n)(Bi ) − λ(Bi ))

∣
∣
∣
∣
∣

≤ εM (n)(A) + ελ(A) + oP(η). (5.15)

Now choosing ε < η/λ(A) proves the lemma. �

The following lemma is a straightforward one-dimensional version of Lemma 4:

Lemma 5 Let M (n)[a, b] be a random measure such that for all 0 < a < b, M (n)[a, b] P−→
λ[a, b] = ∫ b

a dλ(t) for some deterministic measure λ. Let f (t) be a bounded, continuous
function on [ε, 1/ε]. Then,

∫ 1/ε

ε

f (t)dM (n)(t)
P−→

∫ 1/ε

ε

f (t)dλ(t). (5.16)

Proof This proof follows the same lines as the proof of Lemma 4. �

Using these lemmas we investigate the convergence of the expectation of c(k) conditioned
on the degrees. We treat the three ranges separately, but the proofs follow the same structure.
First, we define a random measure M (n) that counts the normalized number of vertices with
degrees in the major contributing regime. We then show that this measure converges to a
deterministic measure λ, using that the degrees are i.i.d. samples of a power-law distribution.
We then write the conditional expectation of the previous section as an integral over measure
M (n). Then, we can use Lemmas 4 or 5 to show that this converges to a deterministic integral.

First, we consider the case where k is in Range I:

Lemma 6 (Range I) For 1 < k = o(n(τ−2)/(τ−1)),

En
[
c(k,Wk

n (ε))
]

n2−τ log(n)

P−→ μ−τC2 3 − τ

τ − 1

∫ 1/ε

ε

t1−τ (1 − e−t )dt. (5.17)

Proof Since the degrees are i.i.d. samples from a power-law distribution, Du = OP(n1/(τ−1))

uniformly in u ∈ [n]. Thus, when k = o(n(τ−2)/(τ−1)), kDu = oP(n) uniformly in u ∈ [n].
Therefore, we can Taylor expand the first two exponentials in (5.11), using that 1 − e−x =
x + O(x2). By Lemma 3, this leads to

En

[
c(k,Wk

n (ε))
]

= (1 + oP(1))
k2

k(k − 1)

∑

(u,v)∈Wk
n (ε)

DuDv(1 − e−DuDv/Ln )

L2
n

. (5.18)

Furthermore, since Du = OP(n1/(τ−1)) while also DuDv = Θ(n) in the major contributing
regime, we can add the indicator that K1n(τ−2)/(τ−1) < Du < K2n1/(τ−1) for 0 < K1, K2 <

∞. We then define the random measure

M (n)[a, b] = (μn)τ−1

log(n)n2
∑

u �=v∈[n]
1{DuDv∈nμ[a,b],K1n(τ−2)/(τ−1)<Du<K2n1/(τ−1)}. (5.19)
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We write the expected value of this measure as

E
[
M (n)[a, b]] = (μn)τ−1

log(n)n2
E

[∣
∣
∣
{
u �= v : DuDv ∈ [a, b]μn, Du ∈ [K1n

(τ−2)/(τ−1), K2n
1

τ−1 ]
}∣
∣
∣
]

= (μn)τ−1(n − 1)

log(n)n
P

(
D1D2 ∈ [a, b]μn, D1 ∈ [K1n

(τ−2)/(τ−1), K2n
1

τ−1 ]
)

= (μn)τ−1

log(n)

∫ K2n
1

τ−1

K1n(τ−2)/(τ−1)

∫ bμn/x

aμn/x
C2(xy)−τdydx

= C2 (μn)τ−1(n − 1)

log(n)n

∫ K2n
1

τ−1

K1n(τ−2)/(τ−1)

1

x
dx

∫ bμn

aμn
u−τdu

= C2 n − 1

n

∫ b

a
t−τdt

(
3 − τ

τ − 1
+ log(K2/K1)

log(n)

)

, (5.20)

where we have used the change of variables u = xy and t = u/(μn). Thus,

lim
n→∞E

[
M (n)[a, b]] = C2 3 − τ

τ − 1

∫ b

a
t−τdt =: λ[a, b]. (5.21)

Furthermore, the variance of this measure can be written as

Var
(
M (n)[a, b]) = (μn)2τ−6μ2

log2(n)

∑

u,v,w,z

(
P

(
DuDv, DwDz ∈ μn[a, b],

Du, Dw ∈ [K1n
(τ−2)/(τ−1), K2n

1
τ−1 ]

)

− P

(
DuDv ∈ μn[a, b], Du ∈ [K1n

(τ−2)/(τ−1), K2n
1

τ−1 ]
)

× P

(
DwDz ∈ μn[a, b], Dw ∈ [K1n

(τ−2)/(τ−1), K2n
1

τ−1 ]
) )

.

(5.22)

Since the degrees are sampled i.i.d. from a power-law distribution, the contribution to the
variance for |{u, v, w, z}| = 4 is zero. The contribution from |{u, v, w, z}| = 3 can be
bounded as

(μn)2τ−6μ2

log2(n)

∑

u,v,w

P (DuDv, DuDw ∈μn[a, b]) = μ2τ−4n2τ−3

log2(n)
P (D1D2, D1D3 ∈ μn[a, b])

= μ2τ−4n2τ−3

log2(n)

∫ ∞

1
Cx−τ

(∫ bn/x

an/x
Cy−τdy

)2

dx

≤ K
n−1

log2(n)
, (5.23)

for some constant K . Similarly, the contribution for u = z, v = w can be bounded as

(μn)2τ−6μ2

log2(n)

∑

u,v

P (DuDv ∈ μn[a, b]) = μ2τ−6n2τ−4

log2(n)
P (D1D2 ∈ μn[a, b])

≤ K
n2τ−4

log2(n)
n1−τ log(n) = K

nτ−3

log(n)
, (5.24)
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for some constant K . Thus, Var
(
M (n)[a, b]) = oP(1). Therefore, a second moment method

yields that for every a, b > 0,

M (n)[a, b] P−→ λ[a, b]. (5.25)

Using the definition of M (n) in (5.19) and that L−1
n = (μn)−1(1 + oP(1)),

∑

(u,v)∈Wk
n (ε)

DuDv(1 − e−DuDv/Ln )

L2
n

= μ1−τn3−τ log(n)

∫ 1/ε

ε

t

Ln
(1−e−t )dM (n)(t)

= μ−τn2−τ log(n)

∫ 1/ε

ε

t (1 − e−t )dM (n)(t)(1 + oP(1)). (5.26)

By Lemma 5 and (5.25),
∫ 1/ε

ε

t (1 − e−t )dM (n)(t)
P−→

∫ 1/ε

ε

t (1 − e−t )dλ(t)

= C2 3 − τ

τ − 1

∫ 1/ε

ε

t1−τ (1 − e−t )dt. (5.27)

If we first let n → ∞, and then K1 → 0 and K2 → ∞, then we obtain from (5.18), (5.26)
and (5.27) that

En
[
c(k),Wk

n (ε)
]

n2−τ log(n)

P−→ C2μ−τ 3 − τ

τ − 1

∫ 1/ε

ε

t1−τ (1 − e−t )dt. (5.28)

�
Lemma 7 (Range II) When k = Ω(n(τ−2)/(τ−1)) and k = o(

√
n),

En
[
c(k,Wk

n (ε))
]

n2−τ log(n/k2)
P−→ C2μ−τ

∫ 1/ε

ε

t1−τ (1 − e−t )dt. (5.29)

Proof We split the major contributing regime into three parts, depending on the values of Du

and Dv , as visualized in Fig. 7. We denote the contribution to the clustering coefficient where
Du ∈ [k/ε2, εn/k] (area A of Fig. 7) by c1(k,Wk

n (ε)), the contribution from Du or Dv ∈
[εn/k, n/(εk)] (area B of Fig. 7) by c2(k,Wk

n (ε)) and the contribution from Du ∈ [k, k/ε2]
and Dv ∈ [ε3n/k, εn/k] (area C of Fig. 7) by c3(k,Wk

n (ε)). We first study the contribution
of area A. In this situation, Du, Dv < εn/k, so that we can Taylor expand the exponentials
e−kDu/Ln and e−kDv/Ln in (5.11). This results in

En

[
c1(k,W

k
n (ε))

]
= 1

k2
∑

(u,v)∈Wk
n (ε),

Du∈[k/ε2,εn/k]

(
1 − e−kDu/Ln

) (
1 − e−kDv/Ln

) (
1 − e−Du Dv/Ln

)

= (1 + oP(1))
∑

(u,v)∈Wk
n (ε),

Du∈[k/ε2,εn/k]

DuDv

L2
n

(1 − e−DuDv/Ln ). (5.30)

Now we define the random measure

M (n)

1 [a, b] = (μn)τ−1

log(ε3n/k2)n2
∑

u,v∈[n]
1{DuDv∈μn[a,b],Du∈[k/ε2,εn/k]}. (5.31)

123



762 R. van der Hofstad et al.

Fig. 7 Contributing regime for
n(τ−2)/(τ−1) < k <

√
n

A similar reasoning as in (5.25) shows that

M (n)

1 [a, b] P−→ C2
∫ b

a
t−τdt := λ2[a, b]. (5.32)

By (5.30), we can write the contribution to the expected value of c(k) in this regime as

En

[
c1(k,W

k
n (ε))

]
= (1 + oP(1))

∑

(u,v)∈Wk
n (ε),

Du∈[k/ε3,εn/k]

DuDv

L2
n

(1 − e−DuDv/Ln )

= (1 + oP(1))μ
−τn2−τ log(ε3n/k2)

∫ 1/ε

ε

t (1 − e−t )dM (n)

1 (t).

(5.33)

Thus, by Lemma 5,

En

[
c1(k,W

k
n (ε))

]
= (1 + oP(1))2μ

−τn2−τ log(ε3n/k2)
∫ 1/ε

ε

t (1 − e−t )dλ2(t).

(5.34)

Then we study the contribution of area B in Fig. 7. This area consists of two parts, the
part where Du ∈ [εn/k, n/(kε)], and the part where Dv ∈ [εn/k, n/(kε)]. By symmetry,
these two contributions are the same and therefore we only consider the case where Du ∈
[εn/k, n/(kε)]. Then, we can Taylor expand e−Dvk/Ln in (5.11), which yields

En

[
c2(k,W

k
n (ε))

]
= 2

k2
∑

(u,v)∈Wk
n (ε),

Du>εn/k

(
1 − e−kDu/Ln

) Dvk

Ln

(
1 − e−DuDv/Ln

)
. (5.35)

Define the random measure

M (n)

2 ([a, b], [c, d]) := (μn)τ−1

n2
∑

u,v∈[n]
1{DuDv∈μn[a,b],Du∈(μn/k)[c,d]}. (5.36)
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Then we obtain

En

[
c2(k,W

k
n (ε))

]
= 2

kLn

∑

(u,v)∈Wk
n (ε),

Du>εn/k

Ln
Duk

(
1−e−kDu/Ln

) DuDvk

Ln

(
1−e−DuDv/Ln

)

= 2μ−τ n2−τ

∫ 1/ε

ε

∫ 1/ε

ε

t1
t2

(1 − e−t1)(1 − e−t2 )dM (n)

2 (t1, t2)(1 + oP(1)).

(5.37)

Again, using a first moment method and a second moment method, we can show that

M (n)

2 ([a, b], [c, d]) P−→ C2
∫ b

a
t−τdt

∫ d

c

1

v
dv =: λ[a, b]ν[c, d]. (5.38)

Very similarly to the proof of Lemma 4 we can show that

∫ 1/ε

ε

∫ 1/ε

ε

t1
t2

(1 − e−t1)(1 − e−t2)dM (n)

2 (t1, t2)
P−→

∫ 1/ε

ε

∫ 1/ε

ε

t1
t2

(1 − e−t1)(1 − e−t2)dλ(t1)dν(t2). (5.39)

The latter integral can be written as

∫ 1/ε

ε

∫ 1/ε

ε

t1
t2

(1 − e−t1)(1 − e−t2)dλ(t1)dν(t2)

= C2
∫ 1/ε

ε

∫ 1/ε

ε

t−2
2 t1−τ

1 (1 − e−t2)(1 − e−t1)dt1dt2

= C2
∫ 1/ε

ε

1

t22
(1 − e−t2)dt2

∫ 1/ε

ε

t1−τ
1 (1 − e−t1)dt1. (5.40)

The left integral results in

∫ 1/ε

ε

1

t22
(1 − e−t2)dt2 =

[
e−t2 − 1

t2
+ Ei(t2)

]t2=1/ε

t2=ε

= ε(e−1/ε − 1) − e−ε − 1

ε
+

∫ ∞

1/ε

1

u
e−udu − log(ε) −

∞∑

j=1

εk

k!k

= log

(
1

ε

)

+
∫ ∞

1/ε

1

u
e−udu + ε(e−1/ε − 1) − e−ε − 1

ε
−

∞∑

j=1

εk

k!k

= log

(
1

ε

)

+ f (ε), (5.41)

where Ei denotes the exponential integral and we have used the Taylor series for the expo-
nential integral. We can show that f (ε) < ∞ for fixed ε ∈ (0,∞). In fact, f (ε) → 1 as
ε → 0.

Finally, we study the contribution of area C in Fig. 7, where Du ∈ [k, k/ε2] and Dv ∈
[n/kε3, n/kε]. In this regime, Duk = o(n) and Dvk = o(n) so that we can Taylor expand
the first two exponentials in (5.11). This results in
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En

[
c3(k,W

k
n (ε))

]
= (1 + o(1))

∑

u,v:Dv∈[ε3n/k,εn/k],DuDv>εn,

Du∈[k,k/ε2]

(1 − e−DuDv/Ln )
DuDv

Ln
.

(5.42)

We define the random measure

M (n)

3 ([a, b], [c, d]) := (μn)τ−1

n2
∑

u,v

1{Du∈√
μk[a,b],Dv∈(

√
μn/k)[c,d]}. (5.43)

Then,

En

[
c3(k,W

k
n (ε))

]
= (1 + oP(1))n2−τμ−τ

∫ 1/ε2

1

∫ ε

ε/t1
(t1t2)(1 − e−t1t2)dM (n)

3 (t1, t2).

(5.44)

Again using a first moment method and a second moment method we can show that

M (n)

3 ([a, b], [c, d]) P−→ C2
∫ b

a
u−τdu

∫ d

c
v−τdv. (5.45)

In a similar way, we can show that for B ⊆ [1, 1/ε2] × [ε3, ε], M (n)

3 (B)
P−→

C2
∫ ∫

B(uv)−τdudv. Thus, by Lemma 4,

∫ 1/ε2

1

∫ ε

ε/t1
(t1t2)(1 − e−t1t2)dM (n)

3 (t1, t2)
P−→ C2

∫ 1/ε2

1

∫ ε

ε/x
(xy)1−τ (1 − e−xy)dydx .

(5.46)

We evaluate the latter integral as

∫ 1/ε2

1

∫ ε

ε/x
(xy)1−τ (1 − e−xy)dydx =

∫ 1/ε2

1

∫ εv

ε

1

v
u1−τ (1 − e−u)dudv

=
∫ 1/ε

ε

∫ 1/ε2

u/ε

1

v
u1−τ (1 − e−u)dvdu

= log

(
1

ε

)∫ 1/ε

ε

u1−τ (1 − e−u)du

+
∫ 1/ε

ε

log

(
1

u

)

u1−τ (1 − e−u)du, (5.47)

where we have used the change of variables u = xy and v = x . Summing all three contribu-
tions to the expectation under En of the clustering coefficient yields

En

[
c(k,Wk

n (ε))
]

= En

[
c1(k,W

k
n (ε))

]
+ En

[
c2(k,W

k
n (ε))

]
+ En

[
c3(k,W

k
n (ε))

]

= C2μ−τn2−τ (1 + oP(1))

[ ∫ 1/ε

ε

t1−τ
1 (1 − e−t1 )dt1

×
(

log

(
nε2

k2

)

+ 3 log

(
1

ε

)

+ 2 f (ε)

)

+
∫ 1/ε

ε

log

(
1

u

)

u1−τ (1 − e−u)du

]
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= C2(1 + oP(1))μ
−τn2−τ

[ ∫ 1/ε

ε

t1−τ
1 (1 − e−t1 )dt1

(
log

( n

k2

)
+ 2 f (ε)

)

+
∫ 1/ε

ε

log

(
1

u

)

u1−τ (1 − e−u)du

]

. (5.48)

Dividing by n2−τ log(n/k2) and taking the limit of n → ∞ then shows that

En
[
c(k,Wk

n (ε))
]

n2−τ log(n/k2)
P−→ C2μ−τ

∫ 1/ε

ε

x1−τ (1 − e−x )dx . (5.49)

�

Lemma 8 (Range III) For k = Ω(
√
n),

En
[
c(k,Wk

n (ε))
]

n5−2τ k2τ−6
P−→ C2μ3−2τ

(∫ 1/ε

ε

t1−τ (1 − e−t )dt

)2

. (5.50)

Proof When k = Ω(
√
n), the major contribution is from u, v with Du, Dv = Θ(n/k), so

that DuDv = o(n). Therefore, we can Taylor expand the exponential e−DuDv/Ln in (5.11).
Thus, we write the expected value of c(k) as

En

[
c(k,Wk

n (ε))
]

= 1

k2
∑

(u,v)∈Wk
n (ε)

(
1 − e−kDu/Ln

) (
1 − e−kDv/Ln

) (
1 − e−Du Dv/Ln

)
(1 + oP(1))

= 1

k2
∑

(u,v)∈Wk
n (ε)

(
1 − e−kDu/Ln

) (
1 − e−kDv/Ln

) DuDv

Ln
(1 + oP(1)).

(5.51)

Define the random measure

N (n)

1 [a, b] = (μn)τ−1

n
k1−τ

∑

u∈[n]
1{Du∈(μn/k)[a,b]}, (5.52)

and let N (n) be the product measure N (n)

1 × N (n)

1 . Since all degrees are i.i.d. samples from a
power-law distribution, the number of vertices with degrees in interval [q1, q2] is distributed
as a Bin(n,C(q1−τ

1 − q1−τ
2 )) random variable. Therefore,

N (n)

1 ([a, b]) = (μn)τ−1k1−τ

n
|{i : Di ∈ (μn/k)[a, b]}|

P−→ lim
n→∞(μn)τ−1k1−τ

P (Di ∈ (μn/k)[a, b])

= (μn)τ−1k1−τ

∫ bμn/k

aμn/k
Cx−τdx = C

∫ b

a
t−τdt := λ([a, b]), (5.53)

where we have used the substitution t = xk/(μn). Then,
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∑

(u,v)∈Wk
n (ε)

(
1 − e−kDu/Ln

) (
1 − e−kDv/Ln

) DuDv

Ln

= Ln

k2
∑

(u,v)∈Wk
n (ε)

(
1 − e−kDu/Ln

) (
1 − e−kDv/Ln

) Duk

Ln

Dvk

Ln

= (1 + oP(1))μ
3−2τn5−2τ k2τ−4

∫ 1/ε

ε

∫ 1/ε

ε

t1t2(1−e−t1 )(1−e−t2 )dN (n)(t1, t2). (5.54)

Combining this with (5.51) yields

En
[
c(k,Wk

n (ε))
]

n5−2τ k2τ−4
= (1 + oP(1))μ

2τ−3
∫ 1/ε

ε

∫ 1/ε

ε

t1t2(1 − e−t1)(1 − e−t2)dN (n)(t1, t2)

= (1 + oP(1))μ
2τ−3

(∫ 1/ε

ε

t1(1 − e−t1)dN (n)

1 (t1)

)2

.
(5.55)

We then use Lemma 5, which shows that
∫ 1/ε

ε

t1−τ
1 (1 − e−t1)dN (n)

1 (t1)
P−→ C

∫ 1/ε

ε

t1(1 − e−t1)dλ(t1)

= C
∫ 1/ε

ε

t1−τ
1 (1 − e−t1)dt1. (5.56)

Then, we can conclude from (5.55) and (5.56) that

En
[
c(k,Wk

n (ε)
]

n5−2τ k2τ−6
P−→ C2μ3−2τ

(∫ 1/ε

ε

t1−τ
1 (1 − e−t1)dt1

)2

. (5.57)

�
5.3 Variance of the Local Clustering Coefficient

In the following lemma, we give a bound on the variance of c(k,Wk
n (ε)):

Lemma 9 For all ranges, under Jn,

Varn
(
c(k,Wk

k (ε))
)

En
[
c(k,Wk

n (ε))
]2

P−→ 0. (5.58)

Proof We will analyze the variance in a very similar way as we have analyzed the expected
value of c(k) conditioned on the degrees in Sect. 5.1.We canwrite the variance of c(k,Wk

n (ε))

as

Varn
(
c(k,Wk

n (ε))
)

= 1

k2(k − 1)2N 2
k

∑

i, j : D(er)
i ,D(er)

j =k
∑

(u,v),(w,z)∈Wk
n (ε)

Pn
(	i,u,v	 j,w,z

) − Pn
(	i,u,v

)
Pn

(	 j,w,z
)
,

(5.59)

where 	i,u,v again denotes the event that vertices i, u and v form a triangle. Equation (5.59)
splits into various cases, depending on the size of {i, j, u, v, w, z}.We denote the contribution
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of |{i, j, u, v, w, z}| = r to the variance by V (r)(k). We first consider V (6)(k). By a similar
reasoning as (5.7)

Varn
(
c(k,Wk

n (ε))
)

= 1

N 2
k k

2(k − 1)2

∑

i, j :D(er)
i ,D(er)

j =k

∑

(u,v),(w,z)∈Wk
n (ε)

(
gn(k, Du, Dv)

× gn(k, Dw, Dz)(1 + oP(1)) − gn(k, Du, Dv)gn(k, Dw, Dz)(1 + oP(1))
)

=
∑

(u,v),(w,z)∈Wk
n (ε)

oP

(
gn(k, Du, Dv)gn(k, Dw, Dz)

k2(k − 1)2

)

= oP

(

En

[
c(k,Wk

n (ε))
]2
)

, (5.60)

wherewe have again replaced gn(Di , Du, Dv) by gn(k, Du, Dv) because of (5.9). Since there
are no overlapping edges when |{i, j, u, v, w, z}| = 5, V (5)(k) can be bounded similarly. This
already shows that the contribution to the variance from 5 or 6 different vertices involved is
small in all three ranges of k.

We then consider the contribution from V (4), which is the contribution from two triangles
where one edge overlaps. We show that these types of overlapping triangles are rare, so that
their contribution to the variance is small. If for example i = j and u = z, then one edge
from the vertex of degree k overlaps with another triangle. To bound this contribution, we

use that Pn

(
X̂i j = 1

)
≤ min

(
1,

Di D j
Ln

)
. Then we can bound the summand in (5.59) as

Pn
(	i,u,v	i,w,u

) − Pn
(	i,u,v

)
Pn

(	i,w,u
)

≤ Pn
(	i,u,v	i,w,u

)

≤ min

(

1,
kDu

Ln

)

min

(

1,
kDv

Ln − 2

)

min

(

1,
DuDv

Ln − 4

)

× min

(

1,
kDw

Ln − 6

)

min

(

1,
DwDu

Ln − 8

)

= (1 + O
(
n−1))min

(

1,
kDu

Ln

)

min

(

1,
kDv

Ln

)

min

(

1,
DuDv

Ln

)

× min

(

1,
kDw

Ln

)

min

(

1,
DwDu

Ln

)

. (5.61)

We first consider k in Ranges I or II, where k = o(
√
n). For the terms involving k we bound

this by taking the second term of the minimum, while we bound min(DuDv/Ln, 1) ≤ 1.
Combining this with (5.61) results in the bound

Pn
(	i,u,v	i,w,u

) − Pn
(	i,u,v

)
Pn

(	i,w,u
)

≤ (1 + O
(
n−1))

k3DuDvDw

L3
n

≤ O(1)ε−1 k
3Dw

L2
n

, (5.62)

where we have used that DuDv < n/ε when (u, v) ∈ Wk
n (ε). Therefore, the contribution to

the variance in this situation can be bounded by
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k3

k4N 2
k

∑

i :D(er)
i =k

∑

(u,v),(w,u)∈Wk
n (ε)

ε−1Dw

L2
n

= 1

kNk

∑

(u,v),(w,u)∈Wk
n (ε)

ε−1Dw

L2
n

≤ ε−1

kNk
O

(
n−1

) ∑

u∈[n]

1

εDu

⎛

⎝
∑

w∈[n]
1{Dw>εn/Du }

⎞

⎠

2

,

(5.63)

where we have used that Dw = O(n/Du) in Wk
n (ε). We then use Lemma 1 to further bound

this as

k3

k4N 2
k

∑

i :D(er)
i =k

∑

(u,v),(w,u)∈Wk
n (ε)

ε−1Dw

L2
n

≤ K (ε)OP

(
1

nk1−τ

∑

u

(
n

Du

)3−2τ
)

≤ K (ε)OP

(
n3−2τ kτ−1n(2−τ)/(τ−1)

)
. (5.64)

Here K (ε) is a constant only depending on ε. Since n(2−τ)/(τ−1)kτ−1 = o(n) when k =
o(

√
n) and τ ∈ (2, 3), we have proven that this contribution is smaller than n4−2τ log2(n)

and smaller than n4−2τ log2(n/k2), as required by Lemmas 6 and 7 respectively. Now we
consider the contribution from triangles that share the edge between vertices u and v. Using
a similar reasoning as in (5.61), the contribution from the case i �= j and u = z and v = w

can be bounded as

1

k4N 2
k

∑

i, j :Di ,Dj=k

∑

(u,v)∈Wk
n (ε)

Pn
(	i,u,v	 j,v,w

) − Pn
(	i,u,v

)
Pn

(	 j,v,w

)

≤
∑

(u,v)∈Wk
n (ε)

k4D2
u D

2
v

k4L4
n

≤ ε−2
Pn

(
(Du,Dv) ∈ Wk

n (ε)
)

= ε−2OP

(
n1−τ log(n)

)
, (5.65)

where we have used Lemma 1 and that DuDv = O(n) when (u, v) ∈ Wk
n (ε). Since

n1−τ log(n) = o(n4−2τ log2(n)) for τ ∈ (2, 3), this shows that this contribution is small
enough.

When k is in Range III, we use similar bounds for V (4), now using that Du, Dv, Dw <

ε−1n/k. If Nk = 0, then by definition Varn (c(k)) = 0. Therefore, we only consider the case
Nk ≥ 1. Again, we start by considering the case i = j and u = z. We can use (5.61), where
we use that DuDv < n2/(kε)2 and DuDw < n2/(kε)2, and we take 1 for the other minima.
This yields

Pn
(	i,u,v	i,w,u

) − Pn
(	i,u,v

)
Pn

(	i,w,u
) ≤ O(n2)k−4ε−4. (5.66)

Thus, the contribution to the variance from this case can be bounded as

1

k4Nk

∑

(u,v),(u,w)∈Wk
n (ε)

O(n2)k−4ε−4 ≤ 1

k4
OP

(
n5k−8ε−4

P (D > n/(εk))3
)

≤ OP

(

n5k−8ε−4
( n

kε

)3−3τ
)

= OP

(
k3τ−11n8−3τ ) ε3τ−7, (5.67)
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where we used Lemma 1. When k = Ω(
√
n) and τ ∈ (2, 3), this contribution is smaller that

n10−4τ k4τ−12, as required by Lemma 8. In the case where i �= j , u = z and v = w, we use
a similar reasoning as the one in (5.61) to show that

Pn
(	i,u,v	i,w,u

) − Pn
(	i,u,v

)
Pn

(	i,w,u
) ≤ O(n)k−2ε−2. (5.68)

Then the contribution of this situation to the variance can be bounded as

1

k4
∑

(u,v)∈Wk
n (ε)

O(n)k−2ε−2 ≤ O

(

ε−2n3k−6
( n

εk

)2−2τ
)

= O
(
n5−2τ k2τ−8

)
. (5.69)

Again, this is smaller than n10−4τ k4τ−12, as required. Thus, the contribution of V (4) is small
enough in all three ranges.

Finally, V (3) can be bounded as

1

k4N 2
k

∑

i :Di=k

∑

(u,v)∈Wk
n (ε)

Pn
(	i,u,v

) = 1

k4Nk
En

[
c(k,Wk

n (ε))
]

= 1

k4Nk
OP ( f (k, n)) .

(5.70)

In Ranges I and II, we use that Nk = OP

(
nk−τ

)
. Thus, this gives a contribution of

V (3)(k) = OP

(
n2−τ log(n)

k4−τn

)

= OP

(
n1−τ log(n)kτ−4) , (5.71)

which is small enough since n1−τ kτ−4 < n4−2τ for τ ∈ (2, 3) and k = o(
√
n). In Range

III, again we assume that Nk ≥ 1, since otherwise the variance of c(k) would be zero, and
therefore small enough. Then (5.70) gives the bound

V (3)(k) = OP

(
n5−2τ k2τ−10

)
, (5.72)

which is again smaller than n10−4τ k4τ−12 for τ ∈ (2, 3) and k = Ω(
√
n). Thus, all contri-

butions to the variance are small enough, which proves the claim. �
Proof of Proposition 1 Combining Lemma 9 and the fact that P (Jn) = 1− O(n−1/τ ) shows
that

c(k,Wk
n (ε))

En
[
c(k,Wk

n (ε))
]

P−→ 1. (5.73)

Then, Lemmas 7 and 8 show that

c(k,Wk
n (ε))

f (k, n)

P−→
⎧
⎨

⎩

C2
∫ 1/ε
ε

t1−τ e−tdt + O(εκ) for k = o(
√
n)

C2
(∫ 1/ε

ε
t1−τ e−tdt

)2 + O(εκ) for k = Ω(
√
n).

(5.74)

which proves the proposition. �

6 Contributions Outside Wk
n (ε)

In this section, we show that the contribution of triangles with degrees outside of the major
contributing ranges as described in (3.6) is negligible. The following lemma bounds the
contribution from triangles with vertices with degrees outside of Wk

n (ε):
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Lemma 10 There exists κ > 0 such that

En
[
c(k, W̄ k

n (ε))
]

f (n, k)
= OP

(
εκ

)
. (6.1)

Proof To compute the expected value of c(k), we use that Pn

(
X̂i j = 1

)
≤ min(1,

Di D j
Ln

).

This yields

En [c(k)] ≤
n2En

[
min(1, kDu

Ln
)min(1, kDv

Ln
)min(1, DuDv

Ln
)
]

k(k − 1)
. (6.2)

Using Lemma 1, we obtain

En [c(k)] = n2k−2OP

(

E

[

min

(

1,
kDu

μn

)

min

(

1,
kDv

μn

)

min

(

1,
DuDv

μn

)])

, (6.3)

where Du and Dv are two independent copies of D. Similarly,

En

[
c(k, W̄ k

n (ε))
]

= n2k−2OP

(

E

[

min

(

1,
kDu

μn

)

min

(

1,
kDv

μn

)

min

(

1,
DuDv

μn

)

1{
(Du ,Dv)∈W̄ k

n (ε)
}

])

,

(6.4)

where

E

[

min

(

1,
kDu

μn

)

min

(

1,
kDv

μn

)

min

(

1,
DuDv

μn

)

1{
(Du ,Dv)∈W̄ k

n (ε)
}

]

=
∫ ∫

(x,y)∈W̄ k
n (ε)

(xy)−τ min

(

1,
kx

μn

)

min

(

1,
ky

μn

)

min

(

1,
xy

μn

)

dydx . (6.5)

We analyze this expression separately for all three ranges of k. For ease of notation, we
assume that μ = 1 in the rest of this section.

We first consider Range I, where k = o(n(τ−2)/(τ−1)). Then we have to show that the
contribution from vertices u and v such that DuDv < εn or DuDv > n/ε is small. First,
we study the contribution to (6.5) for DuDv < εn. We bound this contribution by taking the
second term of the minimum in all three cases, which gives

k2

n3

∫ n

1

∫ εn/x

1
(xy)2−τdydx = k2

n3

∫ n

1

1

x

∫ εn

x
u2−τdudx = k2ε3−τ

3 − τ
O

(
n−τ log(n)

)
.

(6.6)

Then, we study the contribution for DuDv > n/ε. This contribution can be bounded very
similarly by taking kDu

Ln
and kDuv

Ln
and 1 for the minima in (6.5) as

nk2

n2

∫ n

1

∫ n

n/(εx)
(xy)1−τdydx = k2

n2

∫ n

1

1

x

∫ nx

n/ε

u1−τdudx = k2ετ−2

τ − 2
O

(
n−τ log(n)

)
.

(6.7)

Thus, by (6.4),

En

[
c(k, W̄ k

n (ε))
]

= OP

(
n2−τ log(n)εκ

)
. (6.8)
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Multiplying by n2k−2 and dividing by n2−τ log(n) and taking the limit for n → ∞ then
proves the lemma in Range I by (6.4).

Nowwe consider Range II, where k = Ω(n(τ−2)/(τ−1)) and k = o(
√
n). We show that the

contribution fromverticesu and v such that DuDv < εn or DuDv > n/ε or Du, Dv > n/(kε)
is small. We first show that the contribution to (6.5) for Du > n/(kε) is small. In this setting,
Duk > n, so that the firstminimum in (6.5) is attained by 1. The contribution can be computed
as

∫ ∞

n/(kε)

∫ ∞

1
(xy)−τ min

(

1,
ky

n

)

min
(
1,

xy

n

)
dydx

= k

n2

∫ ∞

n/(εk)

∫ n/x

1
x1−τ y2−τdydx + k

n

∫ ∞

n/(kε)

∫ n/k

n/x
x−τ y1−τdydx

+
∫ ∞

n/(kε)

∫ ∞

n/k
x−τ y−τdydx

= k2O
(
n−τ

) + k2O
(
n−τ

) + ετ−1O
(
n2−2τ k2τ−2) . (6.9)

By (6.4), multiplying by n2k−2 and then dividing by n2−τ log(n/k2) and letting n go to
infinity shows that this contribution is small. Thus, we may assume that Du, Dv < n/(kε).
Now we show that the contribution from DuDv < εn is negligible. Then, DuDv < n, so that
the third minimum in (6.5) is attained for DuDv/n. The contribution then splits into various
cases, depending on Du .

1

n

∫ ∫

xy<εn
(xy)1−τ min

(

1,
kx

n

)

min

(

1,
ky

n

)

dydx

=
∫ k

1

∫ εn/x

1
(xy)−τ kx

2y

L2
n

dydx

+
∫ n/k

k

∫ εn/x

1
(xy)−τ k

2x2y2

L3
n

dydx +
∫ ∞

n/k

∫ εn/x

1
(xy)−τ kxy

2

L3
n

dydx

= k2O
(
n−τ

)
ε2−τ + k2εn−τ O

(
log(n/k2)

) + k2O
(
n−τ

)
ε3−τ . (6.10)

The contribution of DuDv > n/ε can be bounded similarly as

∫ ∫

xy>n/ε

(xy)−τ min

(

1,
kx

n

)

min

(

1,
ky

n

)

dydx

=
∫ k

1

∫ ∞

n/(εx)
(xy)−τ kx

Ln
dydx +

∫ n/k

k

∫ ∞

n/(εx)
(xy)−τ k

2xy

L2
n

dydx

+
∫ ∞

n/k

∫ ∞

n/(εx)
(xy)−τ ky

Ln
dydx

= k2ετ−1O
(
n−τ

) + k2ετ−2O
(
n−τ log(n/k2)

) + k2O
(
n−τ

)
ετ−2. (6.11)

By (6.4), multiplying by k−2n2 and then dividing by k(k − 1)n2−τ log(n/k2) proves the
lemma in Range II.

Finally, we prove the lemma in Range III, where k = Ω(
√
n). Here we have to show that

the contribution from Du, Dv < εn/k or Du, Dv > n/(εk) is small. We again bound this
using (6.5). The contribution to (6.5) for Du > n/(kε) can be computed as
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∫ ∞

n/(kε)

∫ ∞

1
(xy)−τ min

(

1,
ky

n

)

min
(
1,

xy

n

)
dydx

=
∫ k

n
kε

∫ ∞

n/x
x−τ y−τ dydx +

∫ k

n
kε

∫ n/x

n/k

1

n
x−τ+1y−τ+1dydx +

∫ k

n
kε

∫ n/k

0

k

n2
x−τ+1y−τ+2dydx

+
∫ ∞

k

∫ ∞

n/k
x−τ y−τ dydx +

∫ ∞

k

∫ n/k

n/x

k

n
x−τ y−τ+1dydx +

∫ ∞

k

∫ n/x

0

k

n2
x−τ+1y−τ+2dydx

= O

(

log

(
k2ε

n

)

n1−τ

)

+ O
(
ετ−2k2τ−4n3−2τ

)
+ O

(
n1−τ

)
+ O

(
ετ−2n3−2τ k2τ−4

)

+ O
(
n1−τ

)
+ O

(
n1−τ

)
+ O

(
n1−τ

)
= O

(
ετ−2k2τ−4n3−2τ

)
. (6.12)

Multiplying this by n2k−2 and then dividing by n5−2τ k2τ−6 shows that this contribution is
small.

Then we study the contribution to (6.5) for Du < εn/k. This can be computed as

1

n

∫ εn/k

1

∫ ∞

1
(xy)1−τ min

(

1,
ky

n

)

min
(
1,

xy

n

)
dydx

=
∫ nε

k

0

∫ n/k

0

k2

n3
x−τ+2y−τ+2dydx +

∫ nε
k

0

∫ n/x

n/k

k

n2
x−τ+2y−τ+1dydx

+
∫ nε

k

0

∫ ∞

n/x

k

n
x−τ+1y−τdydx

= O
(
ε3−τ k2τ−4n3−2τ )+O

(
ε3−τ k2τ−4n3−2τ )+O

(
εn1−τ

)=O
(
ετ−2k2τ−4n3−2τ ) .

(6.13)

Thus, dividing these estimates by n3−2τ k2τ−6 and noting that n1−τ < n3−2τ k2τ−4 for k =
Ω(

√
n) and k = o(n) completes the proof in Range III. �

6.1 Proof of Theorem 2

We now show how we adjust the proof of Theorem 1 to prove Theorem 2. We use the same
major contributing triangles as the ones in Range III in (3.6). Then, in fact Lemmas 3, 9 and
Proposition 2 still hold. It is easy to derive a similar lemma as Lemma 8 for the situation
k = Θ(

√
n). The only difference with the proof of Lemma 8 is that we do not Taylor expand

the exponentials in (5.51). This then proves Theorem 2. �
6.2 Proof of Theorem 3

We now prove that the scaling limit of k 
→ c(k) is continuous around k = √
n. When B is

large, we rewrite (3.4) as

c(k)

n2−τ

P−→ C2μ2−2τ B2τ−4
∫ ∞

0

∫ ∞

0
(xy)−τ (1 − e−x )(1 − e−y)(1 − e−xyμ/B2

)dxdy.

(6.14)

Taylor expanding the last exponential then yields

c(k)

n2−τ
= (1 + oP(1))C2μ3−2τ B2τ−6

∫ ∞

0

∫ ∞

0
(xy)1−τ (1 − e−x )(1 − e−y)dxdy

= (1 + oP(1))C2μ3−2τ B2τ−6A2. (6.15)
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Substituting k = B
√
n in Range III of Theorem 1 gives

c(k)

n2−τ
= (1 + oP(1))C2μ3−2τ B2τ−6A2, (6.16)

which is the same as the result obtained from Theorem 2. Therefore, the scaling limit of
k 
→ c(k) is smooth for k >

√
n.

For B small, we can Taylor expand the first two exponentials in (3.4) as long as x and y
are much smaller than 1/B. The contribution where x, y < 1/B and B < μxy < 1/B can
be written as

C2μ2−2τ

(∫ 1

B2

∫ 1/B

B/(μx)
(xy)1−τ (1 − e−μxy)dydx +

∫ 1/B

1

∫ 1/(Bx)

B/(μx)
(xy)1−τ (1 − e−μxy)dydx

)

= C2μ−τ

(∫ 1

B2

∫ v/B

B

1

v
u1−τ (1 − e−u)dudv +

∫ 1/B

1

∫ 1/B

B

1

v
u1−τ (1 − e−u)dudv

)

= C2μ−τ

(

log(1/B2)

∫ 1/B

B
u1−τ (1 − e−u)du +

∫ 1/B

B
log(1/u)u1−τ (1 − e−u)du

)

, (6.17)

where we have used the change of variables u = μxy and v = x . The contribution of the
second integral becomes small compared to the first part as B gets small, as the second
integral is finite for B > 0. We can show that the contributions from x, y > 1/B, or from
xy > 1/B can also be neglected by using that 1 − e−x ≤ min(1, x). Thus, as B becomes
small, Theorem 2 shows that c(k) for k = B

√
n can be approximated by

c(k)

n2−τ
≈ C2 log(B−2)

∫ ∞

0
u1−τ (1 − e−u)du, (6.18)

which agrees with the value for k = B
√
n in Range II of Theorem 1.

To prove the continuity around k = n(τ−2)/(τ−1), we note that the proofs of Lemmas 7,9
and 10 for Range II still hold if we assume that k ≥ an(τ−2)/(τ−1) for some a > 0 instead
of k = Ω(n(τ−2)/(τ−1)). Thus, we can also apply the result of Range II in Theorem 1 to
k = an(τ−2)/(τ−1), which yields

c(k) = n2−τμ−τC2A

(
3 − τ

τ − 1
log(n) + log(a−2)

)

(1 + oP(1)). (6.19)

This agrees with the k 
→ c(k) curve in Range I when n grows large. �
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