2,175 research outputs found

    두 p진 데시메이션 수열 간의 상호상관도

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2017. 2. 노종선.In this dissertation, the cross-correlation between two differently decimated sequences of a pp-ary m-sequence is considered. Two main contributions are as follows. First, for an odd prime pp, n=2mn=2m, and a pp-ary m-sequence of period pn1p^n -1, the cross-correlation between two decimated sequences by 22 and dd are investigated. Two cases of dd, d=(pm+1)22d=\frac{(p^m +1)^2}{2} with pm1(mod4)p^m \equiv 1 \pmod4 and d=(pm+1)2pe+1d=\frac{(p^m +1)^2}{p^e +1} with odd m/em/e are considered. The value distribution of the cross-correlation function for each case is completely deterimined. Also, by using these decimated sequences, two new families of pp-ary sequences of period pn12\frac{p^n -1}{2} with good correlation property are constructed. Second, an upper bound on the magnitude of the cross-correlation function between two decimated sequences of a pp-ary m-sequence is derived. The two decimation factors are 22 and 2(pm+1)2(p^m +1), where pp is an odd prime, n=2mn=2m, and pm1(mod4)p^m \equiv 1 \pmod4. In fact, these two sequences corresponds to the sequences used for the construction of pp-ary Kasami sequences decimated by 22. The upper bound is given as 32pm+12\frac{3}{2}p^m + \frac{1}{2}. Also, using this result, an upper bound of the cross-correlation magnitude between a pp-ary m-sequence and its decimated sequence with the decimation factor d=(pm+1)22d=\frac{(p^m +1)^2}{2} is derived.1 Introduction 1 1.1 Background 1 1.2 Overview of This Dissertation 7 2 Preliminaries 9 2.1 Finite Fields 9 2.2 Trace Functions and Sequences 11 2.3 Cross-Correlation Between Two Sequences 13 2.4 Characters and Weils Bound 15 2.5 Trace-Orthogonal Basis 16 2.6 Known Exponential Sums 17 2.7 Cross-Correlation of pp-ary Kasami Sequence Family 18 2.8 Previous Results on the Cross-Correlation for Decimations with gcd(pn1,d)=pn/2+12\gcd(p^n -1, d)=\frac{p^{n/2}+1}{2} 20 2.9 Cross-Correlation Between Two Decimated Sequences by 22 and d=4d=4 or pn+12\frac{p^n +1}{2} 23 3 New pp-ary Sequence Families of Period pn12\frac{p^n -1}{2} with Good Correlation Property Using Two Decimated Sequences 26 3.1 Cross-Correlation for the Case of d=(pm+1)22d=\frac{(p^m +1)^2}{2} 27 3.2 Cross-Correlation for the Case of d=(pm+1)2pe+1d=\frac{(p^m +1)^2}{p^e +1} 37 3.3 Construction of New Sequence Families 43 4 Upper Bound on the Cross-Correlation Between Two Decimated pp-ary Sequences 52 4.1 Cross-Correlation Between s(2t+i)s(2t+i) and s(2(pm+1)t+j)s(2(p^m +1)t +j) 53 4.2 Cross-Correlation Between s(t)s(t) and s((pm+1)22t)s(\frac{(p^m +1)^2}{2} t) 66 5 Conclusions 69 Bibliography 72 Abstract (In Korean) 80Docto

    Construction of pp-ary Sequence Families of Period (pn1)/2(p^n-1)/2 and Cross-Correlation of pp-ary m-Sequences and Their Decimated Sequences

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2015. 2. 노종선.This dissertation includes three main contributions: a construction of a new family of pp-ary sequences of period pn12\frac{p^n-1}{2} with low correlation, a derivation of the cross-correlation values of decimated pp-ary m-sequences and their decimations, and an upper bound on the cross-correlation values of ternary m-sequences and their decimations. First, for an odd prime p=3mod4p = 3 \mod 4 and an odd integer nn, a new family of pp-ary sequences of period N=pn12N = \frac{p^n-1}{2} with low correlation is proposed. The family is constructed by shifts and additions of two decimated m-sequences with the decimation factors 2 and d=Npn1d = N-p^{n-1}. The upper bound on the maximum value of the magnitude of the correlation of the family is shown to be 2N+1/2=2pn2\sqrt{N+1/2} = \sqrt{2p^n} by using the generalized Kloosterman sums. The family size is four times the period of sequences, 2(pn1)2(p^n-1). Second, based on the work by Helleseth \cite{Helleseth1}, the cross-correlation values between two decimated m-sequences by 2 and 4pn/224p^{n/2}-2 are derived, where pp is an odd prime and n=2mn = 2m is an integer. The cross-correlation is at most 4-valued and their values are {1±pn/22,1+3pn/22,1+5pn/22}\{\frac{-1\pm p^{n/2}}{2}, \frac{-1+3p^{n/2}}{2}, \frac{-1+5p^{n/2}}{2}\}. As a result, for pm2mod3p^m \neq 2 \mod 3, a new sequence family with the maximum correlation value 52N\frac{5}{\sqrt{2}} \sqrt{N} and the family size 4N4N is obtained, where N=pn12N = \frac{p^n-1}{2} is the period of sequences in the family. Lastly, the upper bound on the cross-correlation values of ternary m-sequences and their decimations by d=34k+232k+1+24+32k+1d = \frac{3^{4k+2}-3^{2k+1}+2}{4}+3^{2k+1} is investigated, where kk is an integer and the period of m-sequences is N=34k+21N = 3^{4k+2}-1. The magnitude of the cross-correlation is upper bounded by 1232k+3+1=4.5N+1+1\frac{1}{2} \cdot 3^{2k+3}+1 = 4.5 \sqrt{N+1}+1. To show this, the quadratic form technique and Bluher's results \cite{Bluher} are employed. While many previous results using quadratic form technique consider two quadratic forms, four quadratic forms are involved in this case. It is proved that quadratic forms have only even ranks and at most one of four quadratic forms has the lowest rank 4k24k-2.Abstract i Contents iii List of Tables vi List of Figures vii 1. Introduction 1 1.1. Background 1 1.2. Overview of Dissertation 9 2. Sequences with Low Correlation 11 2.1. Trace Functions and Sequences 11 2.2. Sequences with Low Autocorrelation 13 2.3. Sequence Families with Low Correlation 17 3. A New Family of p-ary Sequences of Period (p^n−1)/2 with Low Correlation 21 3.1. Introduction 22 3.2. Characters 24 3.3. Gaussian Sums and Kloosterman Sums 26 3.4. Notations 28 3.5. Definition of Sequence Family 29 3.6. Correlation Bound 30 3.7. Size of Sequence Family 35 3.8. An Example 38 3.9. Related Work 40 3.10. Conclusion 41 4. On the Cross-Correlation between Two Decimated p-ary m-Sequences by 2 and 4p^{n/2}−2 44 4.1. Introduction 44 4.2. Decimated Sequences of Period (p^n−1)/2 49 4.3. Correlation Bound 53 4.4. Examples 59 4.5. A New Sequence Family of Period (p^n−1)/2 60 4.6. Discussions 61 4.7. Conclusion 67 5. On the Cross-Correlation of Ternary m-Sequences of Period 3^{4k+2} − 1 with Decimation (3^{4k+2}−3^{2k+1}+2)/4 + 3^{2k+1} 69 5.1. Introduction 69 5.2. Quadratic Forms and Linearized Polynomials 71 5.3. Number of Solutions of x^{p^s+1} − cx + c 78 5.4. Notations 79 5.5. Quadratic Form Expression of the Cross-Correlation Function 80 5.6. Ranks of Quadratic Forms 83 5.7. Upper Bound on the Cross-Correlation Function 89 5.8. Examples 93 5.9. Related Works 94 5.10. Conclusion 94 6. Conclusions 96 Bibliography 98 초록 109Docto

    Orthonormal and biorthonormal filter banks as convolvers, and convolutional coding gain

    Get PDF
    Convolution theorems for filter bank transformers are introduced. Both uniform and nonuniform decimation ratios are considered, and orthonormal as well as biorthonormal cases are addressed. All the theorems are such that the original convolution reduces to a sum of shorter, decoupled convolutions in the subbands. That is, there is no need to have cross convolution between subbands. For the orthonormal case, expressions for optimal bit allocation and the optimized coding gain are derived. The contribution to coding gain comes partly from the nonuniformity of the signal spectrum and partly from nonuniformity of the filter spectrum. With one of the convolved sequences taken to be the unit pulse function,,e coding gain expressions reduce to those for traditional subband and transform coding. The filter-bank convolver has about the same computational complexity as a traditional convolver, if the analysis bank has small complexity compared to the convolution itself

    Oversampling PCM techniques and optimum noise shapers for quantizing a class of nonbandlimited signals

    Get PDF
    We consider the efficient quantization of a class of nonbandlimited signals, namely, the class of discrete-time signals that can be recovered from their decimated version. The signals are modeled as the output of a single FIR interpolation filter (single band model) or, more generally, as the sum of the outputs of L FIR interpolation filters (multiband model). These nonbandlimited signals are oversampled, and it is therefore reasonable to expect that we can reap the same benefits of well-known efficient A/D techniques that apply only to bandlimited signals. We first show that we can obtain a great reduction in the quantization noise variance due to the oversampled nature of the signals. We can achieve a substantial decrease in bit rate by appropriately decimating the signals and then quantizing them. To further increase the effective quantizer resolution, noise shaping is introduced by optimizing prefilters and postfilters around the quantizer. We start with a scalar time-invariant quantizer and study two important cases of linear time invariant (LTI) filters, namely, the case where the postfilter is the inverse of the prefilter and the more general case where the postfilter is independent from the prefilter. Closed form expressions for the optimum filters and average minimum mean square error are derived in each case for both the single band and multiband models. The class of noise shaping filters and quantizers is then enlarged to include linear periodically time varying (LPTV)M filters and periodically time-varying quantizers of period M. We study two special cases in great detail

    One- and two-level filter-bank convolvers

    Get PDF
    In a recent paper, it was shown in detail that in the case of orthonormal and biorthogonal filter banks we can convolve two signals by directly convolving the subband signals and combining the results. In this paper, we further generalize the result. We also derive the statistical coding gain for the generalized subband convolver. As an application, we derive a novel low sensitivity structure for FIR filters from the convolution theorem. We define and derive a deterministic coding gain of the subband convolver over direct convolution for a fixed wordlength implementation. This gain serves as a figure of merit for the low sensitivity structure. Several numerical examples are included to demonstrate the usefulness of these ideas. By using the generalized polyphase representation, we show that the subband convolvers, linear periodically time varying systems, and digital block filtering can be viewed in a unified manner. Furthermore, the scheme called IFIR filtering is shown to be a special case of the convolver

    Phase and precession evolution in the Burgers equation

    Full text link
    We present a phenomenological study of the phase dynamics of the one-dimensional stochastically forced Burgers equation, and of the same equation under a Fourier mode reduction on a fractal set. We study the connection between coherent structures in real space and the evolution of triads in Fourier space. Concerning the one-dimensional case, we find that triad phases show alignments and synchronisations that favour energy fluxes towards small scales --a direct cascade. In addition, strongly dissipative real-space structures are associated with entangled correlations amongst the phase precession frequencies and the amplitude evolution of Fourier triads. As a result, triad precession frequencies show a non-Gaussian distribution with multiple peaks and fat tails, and there is a significant correlation between triad precession frequencies and amplitude growth. Links with dynamical systems approach are briefly discussed, such as the role of unstable critical points in state space. On the other hand, by reducing the fractal dimension DD of the underlying Fourier set, we observe: i) a tendency toward a more Gaussian statistics, ii) a loss of alignment of triad phases leading to a depletion of the energy flux, and iii) the simultaneous reduction of the correlation between the growth of Fourier mode amplitudes and the precession frequencies of triad phases
    corecore