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Abstract

Construction of p-ary Sequence
Families of Period (pn − 1)/2 and

Cross-Correlation of p-ary
m-Sequences and Their Decimated

Sequences
Ji Youp Kim

Department of ECE
The Graduate School

Seoul National University

This dissertation includes three main contributions: a construction of

a new family of p-ary sequences of period pn−1
2 with low correlation, a

derivation of the cross-correlation values of decimated p-ary m-sequences

and their decimations, and an upper bound on the cross-correlation values

of ternary m-sequences and their decimations.

First, for an odd prime p = 3 mod 4 and an odd integer n, a new

family of p-ary sequences of period N = pn−1
2 with low correlation is pro-

posed. The family is constructed by shifts and additions of two decimated

m-sequences with the decimation factors 2 and d = N − pn−1. The up-

per bound on the maximum value of the magnitude of the correlation of

the family is shown to be 2
√
N + 1/2 =

√
2pn by using the generalized

Kloosterman sums. The family size is four times the period of sequences,

2(pn − 1).
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Second, based on the work by Helleseth [11], the cross-correlation values

between two decimated m-sequences by 2 and 4pn/2−2 are derived, where

p is an odd prime and n = 2m is an integer. The cross-correlation is at

most 4-valued and their values are {−1±pn/2

2 , −1+3pn/2

2 , −1+5pn/2

2 }. As a

result, for pm ̸= 2 mod 3, a new sequence family with the maximum

correlation value 5√
2

√
N and the family size 4N is obtained, where N =

pn−1
2 is the period of sequences in the family.

Lastly, the upper bound on the cross-correlation values of ternary m-

sequences and their decimations by d = 34k+2−32k+1+2
4 + 32k+1 is inves-

tigated, where k is an integer and the period of m-sequences is N =

34k+2 − 1. The magnitude of the cross-correlation is upper bounded by

1
2 ·3

2k+3+1 = 4.5
√
N + 1+1. To show this, the quadratic form technique

and Bluher’s results [33] are employed. While many previous results us-

ing quadratic form technique consider two quadratic forms, four quadratic

forms are involved in this case. It is proved that quadratic forms have only

even ranks and at most one of four quadratic forms has the lowest rank

4k − 2.

Keywords: Autocorrelation, cross-correlation, decimated sequence, ex-

ponential sum, Kloosterman sum, m-sequence, nonbinary sequence, quadratic

form, sequence, sequence family

Student ID: 2009-20782
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Chapter 1. Introduction

1.1. Background

Pseudorandom sequences are sequences which are generated in the de-

terministic way but have similar mathematical and statistical properties

of true random sequences. Since they are outputs of some deterministic

functions, they can be reproduced when they are needed. Thus, they are

extremely useful in the wide range of applications such as signal process-

ing, spread-spectrum communication systems, cryptography, radar sys-

tems, global positioning system (GPS), simulations, and more. Therefore,

designing good pseudorandom number generators has been important re-

search subject during several decades.

The criterion of “good” pseudorandom sequences depends on the appli-

cation. Generally in most applications, the cost of pseudorandom sequence

generator is an important aspect and thus linear recurrence sequences,

which can be efficiently generated by simple linear feedback shift regis-

ter (LFSR) circuits, are reasonable candidates for the implementation.

But in cryptographic applications, LFSR sequences are vulnerable to the

plaintext attack [68] and should not be used. Instead, cryptographically

secure pseudorandom sequences with the unpredictability property must

be employed [76]. A LFSR generator for a sequence of period 15 is shown

in Figure 1.1.

1
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LFSR LFSR LFSR LFSR

Figure 1.1: LFSR generator of m-sequence with period 15 [74].

Nevertheless, especially for non-cryptographic applications, we can set

the general randomness criterion for pseudorandom sequences. For ex-

ample, in 1955, Golomb [69] proposed the following three randomness

postulates for binary sequences [74].

1) Balance property: In every period, the number of zeros is nearly equal

to the number of ones.

2) Run property: In every period, half the runs have length 1, one fourth

have length 2, one eighth have length 3, and so on, as long as the

number of runs so indicated exceeds 1. Moreover, for each of these

lengths, there are equally many runs of 0’s and 1’s.

3) Ideal autocorrelation: The autocorrelation function C(τ) is two-valued,

2
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given by

C(τ) =


N if τ = 0 mod N

K if τ ̸= 0 mod N,

where N is the period of the sequence, K = −1 for odd N , and K = 0

for even N .

For more general cases including nonbinary sequences and cryptographic

applications, we can extend Golomb’s three randomness postulates [74].

1) Period requirement: Long period.

2) Statistical properties: The balance property, run property, and ideal

k-tuple distribution.

3) Correlation:

(a) Ideal autocorrelation.

(b) Low-valued cross-correlation: Let S be a set consisting of finite

sequences with period N . For any two sequences a, b in S, the

cross-correlation Ca,b(τ) satisfies

0 ≤ Ca,b(τ) ≤ c
√
N

where τ ̸= 0 when a = b, and c > 0 is a constant.

4) Linear span: Large ratio of linear span LS(a) to period N ,

LS(a)

N
> δ,

3



✐
✐

“KJY_Dissertation_all” — 2014/12/29 — 17:34 — page 4 — #14 ✐
✐

✐
✐

✐
✐

where δ > 0 is a constant for large N .

In some cases, sets of pseudorandom sequences, called sequence fami-

lies, are considered. In this case, families with large set size or family size

are preferred. But there are fundamental tradeoffs between sequence pe-

riod, nontrivial autocorrelations, cross-correlations, and family size. These

tradeoffs are expressed in the form of lower bounds. Welch’s lower bound

[10] and Sidel’nikov’s lower bound [6] are lower bounds for the magnitude

of correlation values given the period and the family size. In Levenshtein

bound [26], lower bounds for aperiodic correlation magnitudes are given.

If these bounds are met with the equalities for some families, then these

families of sequences are called optimal.

In this dissertation, we focus on pseudorandom sequences for the spread-

spectrum communication systems. In Figure 1.2, the system model for

the direct-sequence spread spectrum communication systems is illustrated

[75]. First, the message signal is shaped for the baseband transmission.

Then the shaped signal is directly multiplied by the spreading sequence,

which has the pseudorandom properties. The signal is modulated and

transmitted through the channel. After being demodulated in the re-

ceiver, the signal is again multiplied by the synchronized spreading se-

quence. This results in the small inter-user interferences due to the low

cross-correlations of spreading sequences. Then the baseband signal is de-

modulated and the bit decision is made. Thus in this application, the

correlation properties of sequences are most important.

There are many good binary pseudorandom sequences. M-sequences

4



✐
✐

“KJY_Dissertation_all” — 2014/12/29 — 17:34 — page 5 — #15 ✐
✐

✐
✐

✐
✐

R
e
ce

iv
e
r

Tr
a
n
sm

it
te

r

S
h
a
p
in

g
 

Fi
lt
e
r

S
p
re

a
d
in

g
 

S
e
q
u
e
n
ce

s

M
o
d
u
la

to
r

D
e
m

o
d
u
la

to
r S
yn

ch
ro

n
iz

e
r S

p
re

a
d
in

g
 

S
e
q
u
e
n
ce

s

S
h
a
p
in

g
 

Fi
lt
e
r

D
e
ci

si
o
n

C
h
a
n
n
e
l

F
ig

ur
e

1.
2:

Sp
re

ad
in

g
se

qu
en

ce
s

in
C

D
M

A
co

m
m

un
ic

at
io

n
sy

st
em

s
[7

5]
.

5



✐
✐

“KJY_Dissertation_all” — 2014/12/29 — 17:34 — page 6 — #16 ✐
✐

✐
✐

✐
✐

[69] are the most important one because they satisfy all randomness cri-

terion except the large linear span property. They have elegant mathe-

matical description based on the finite field arithmetic and are efficiently

generated by LFSR circuits. Also m-sequences are building blocks for other

good pseudorandom sequences. GMW sequences [14] are the generaliza-

tion of m-sequences and have large linear span and ideal autocorrelation.

Legendre sequences [1] are constructed from power residues of the finite

field and have ideal autocorrelation. Gold sequences [4] are families of bi-

nary sequences constructed from preferred pairs of m-sequences. Kasami

sequence families [3] have smaller correlation values than Gold sequence

families but have smaller set size. No sequence families [15] generalize

GMW sequences and Kasami sequences. Bent function sequences [13] are

sequence families based on the bent functions. Kasami, No, and Bent func-

tion sequence families are all known to be asymptotically optimal with

respect to Welch’ lower bound. Besides these, many studies on binary

sequences are given [16]-[20] [22].

For nonbinary sequences, m-sequences and GMW sequences can be

generalized to p-ary sequences. Liu and Komo [24] extended Kasami se-

quence families to p-ary alphabets. Kumar and Moreno [23] generalized

bent function sequence families to nonbinary case. Based on this, Kim,

Jang, No, and Helleseth [30] further generalized p-ary bent function se-

quences. Sidel’nikov sequences [5] are one of the most important nonbinary

sequences and any integer M can be used as the alphabet. Kim, Chung,

No, and Chung [31] constructed three families of M -ary sequences us-

6
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ing the M -ary Sidel’nikov sequences of period pn − 1. Later, Chung, No,

and Chung [45] proposed a family of M -ary sequences with low corre-

lation by the addition of cyclic shifts of an M -ary Sidel’nikov sequence

and its reverse sequence. Yu and Gong [39] constructed M -ary sequence

families with low correlation using column sequences of the array struc-

ture of Sidel’nikov sequences. By combining the methods for generating

p-ary extended sequences and p-ary d-form sequences, No [21] presented

a construction method of p-ary unified sequences with ideal autocorre-

lation property. Helleseth and Gong [12] proposed p-ary sequences with

ideal autocorrelation called HG sequences. Jang, Kim, No, and Helleseth

[32] constructed families of p-ary sequences of period pn − 1 with optimal

correlation property. Yu and Gong [40] investigated the Weil bound to

construct polyphase sequence families with low correlation. Schmidt [44]

proposed nested sequence families using multiplicative and additive char-

acters. Xia [47] constructed families of p-ary sequences from decimated

sequences.

There are three main contributions in this dissertation. First, using

half-period
(
N = pn−1

2

)
m-sequences decimated by 2 and 2d = pn − 1 −

2pn−1, we have constructed new families of p-ary sequences of period pn−1
2

with low correlation and large family size. The alphabet size p must be

an odd prime p = 3 mod 4 and n is an odd integer. The upper bound

on the maximum nontrivial correlations between sequences are given as

2
√
N + 1

2 =
√
2pn/2. The derivation of this bound involved character

sums and generalized Kloosterman sums. The maximum magnitude of

7
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the correlation is twice of the Welch’s lower bound and 1.5 times of the

Sidel’nikov’s lower bound. The size of the sequence family is 2(pn − 1) =

4N , which is four times of the period of sequences. This work has been

published in [57] [58].

Second, based on the work bt Helleseth [11], the cross-correlation val-

ues between two decimated m-sequences by the decimation factors 2 and

4pn/2 − 2 are derived. Here p is an odd prime and n = 2m is given

as an even integer. The cross-correlation functions is shown to be at

most 4-valued, that is,
{

−1±pn/2

2 , −1+3pn/2

2 , −1+5pn/2

2

}
. From this result,

for pm ̸= 2 mod 3, new sequence families with family size 4N and the

maximum correlation magnitude upper bounded by −1+5pn/2

2 ≈ 5√
2

√
N

is constructed, where N = pn−1
2 is the period of sequences in the family.

This work will be published as in [60].

Third, we consider the cross-correlation of ternary m-sequences and dec-

imated ternary m-sequences. The period of sequences is 3n−1 = 34k+2−1,

where k is an integer. The decimation is given as d = 34k+2−32k+1+3−1
3+1 +

32k+1. For analysis of the correlation, the quadratic form theory is used,

and four quadratic forms are involved since we use the substitution x =

y3
n−1+1 and gcd(3n − 1, 3n−1 + 1) = 4 for transforming the correlation

into the quadratic forms. To derive the upper bound on the maximum

magnitude of the correlation, we have shown that quadratic forms have

only even ranks and among four quadratic forms, at most one of them has

the lowest rank. In the proof, Bluher’s result [33] is proven to be crucial.

Consequently, the cross-correlation is upper bounded by 4.5 · 32k+1 + 1.

8
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This result was presented in [59].

1.2. Overview of Dissertation

This dissertation is organized as follows. In Chapter 2, we briefly overview

basic concepts of pseudorandom sequences. Some necessary definitions and

preliminaries for sequence analysis are given. Then we consider sequences

with low autocorrelation, and introduce some well-known sequences with

ideal autocorrelation. After that, sequence families with low correlation

are discussed shortly.

In Chapter 3, we propose a new family of p-ary sequences of period pn−1
2

with low correlation and large family size. For this, we introduce defini-

tions and basic facts of characters, Gaussian sums, Kloosterman sums, and

generalized Kloosterman sums. Using these exponential sums, we show

that the sequence family has the maximum correlation bound 2
√
N + 1

2

where N is the period of sequences.

In Chapter 4, for an odd prime p and an even integer n = 2m, the

cross-correlation function between two p-ary m-sequences decimated by 2

and d′ = 4pn/2 − 2 are considered. This decimation is based on the work

by Helleseth [11], and we show that the number of the cross-correlation

is at most four and possible correlation values are −1±pn/2

2 , −1+3pn/2

2 , and

−1+5pn/2

2 . From this, for pm ̸= 2 mod 3, a new family of p-ary sequences

of period pn−1
2 with low correlation and large family size is constructed.

The maximum magnitude of correlation is upper bounded by −1+5pn/2

2

and the family size is 4N .

9
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In Chapter 5, we study the cross-correlation between ternary m-sequences

and their decimated sequences by d = 34k+2−32k+1+3−1
3+1 +32k+1, where the

period of sequences is given as 34k+2 − 1. We derive the upper bound

on the cross-correlation and the quadratic form technique is used as the

main tool of analysis. In this work, four quadratic forms are considered

and rank combinations of quadratic forms are investigated. Bluher’s work

[33] turns out to be essential in this approach.

Finally, in Chapter 6, the concluding remarks are given.

10
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Chapter 2. Sequences with Low
Correlation

In this chapter, we introduce some necessary notations and definitions.

First, we define the trace function, sequences, and autocorrelation of se-

quences. Then we define the ideal autocorrelation property and discuss

several known sequences with ideal autocorrelation. Later, the definition

of sequence families is introduced, and the tradeoffs between the sequence

period, the family size, and the maximum correlation magnitude are dis-

cussed. Finally we explain the decimation of sequences and show that the

sequence family can be constructed by the shift-and-add method and the

decimation.

2.1. Trace Functions and Sequences

Sequences with low correlation can be constructed in various ways. But

many sequences with good correlation properties are defined in terms of

the trace function. The trace function is a mapping defined on the finite

field and the trace representation of sequences enables easy analysis of

pseudorandom sequences. The precise definition of the trace function is

given below.

Definition 2.1. Let p be a prime and n, m be integers such that m|n.
Let Fpn be the finite field with pn elements. Then the trace function

11
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trmn (x) : Fpn → Fpm is defined as

trnm(x) =

n/m−1∑
i=0

xp
im

where x ∈ Fpn . 2

The trace function has many important properties. Some of them are

summarized as in the following [71].

Lemma 2.2. The trace function satisfies

(1) trnm(ax+by) = atrnm(x)+btrnm(y), for all a, b ∈ Fpm and all x, y ∈ Fpn .

(2) trnm(xp
m
) = trnm(x) for all x ∈ Fpn .

(3) Let k,m, n be integers such that k|m|n. Then we have

trnk(x) = trmk (trnm(x)), for all x ∈ Fpn .

(4) For any b ∈ Fpm , it holds that

|{x ∈ Fpn |trnm(x) = b}| = pn−m.

(5) Let a ∈ Fpn . If trnm(ax) = 0 for all x ∈ Fpn , then a = 0. 2

A sequence is a function s(t) from the set of natural numbers N to A

where A is a set. In this case, A is called an alphabet of s(t). If A = ZM ,

then s(t) is an M -ary sequence.

The autocorrelation is one of the most important metric of the random-

ness of sequences. The autocorrelation of a sequence is the measure of

similarity between the sequence and its shifted version and is defined as

follows.

12
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Definition 2.3. Let s(t) be an M -ary sequence of period N . Then we
define the autocorrelation Cs(τ) of s(t) as

Cs(τ) =
N−1∑
t=0

ω
s(t+τ)−s(t)
M

where ωM is the primitive M -th root of unity, i. e., ej2π/M , and t + τ is
computed mod N . 2

When τ ̸= 0, then we call Cs(τ) the nontrivial autocorrelation.

A sequence is balanced if the number of occurrences of each symbol

differs by at most one [74]. Also a sequence satisfies the ideal k-tuple

distribution if for 1 ≤ j ≤ k, each of the j-tuples occurs equally many

times except one choice of j-tuple in one period [14]. These properties are

the measure of the uniformity of sequence values.

A linear complexity is particularly important for the cryptographic ap-

plication since it is the measure of the unpredictability. Linear complexity

is defined to be the minimal number of LFSRs for generating the sequence.

Generally, if the linear complexity of the sequence is comparable to the

period, then it is considered to be sufficiently large [74].

2.2. Sequences with Low Autocorrelation

Sequences with low autocorrelation can be easily distinguished from its

shifted version. Thus, sequences with small autocorrelation are employed

in radar systems, synchronization, ranging systems, and so forth. If the

nontrivial autocorrelation of a sequence is always zero, then the sequence

is called perfect sequence. It is the best autocorrelation property, but in

13
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Figure 2.1: Ideal autocorrelation property.

many cases, perfect autocorrelation property is not possible. For example,

for an odd prime p and an integer n, a p-ary sequence of period pn − 1

cannot be perfect. Instead, we define the ideal autocorrelation as follows.

Definition 2.4. For a prime p, a p-ary sequence s(t) has the ideal auto-
correlation if

Cs(τ) =

N if τ = 0 mod N

−1 otherwise

where N is period of s(t). 2

The ideal autocorrelation is presented in Figure 2.1. Note that the re-

semblance between the autocorrelation of the white noise and that of the

sequence with ideal autocorrelation.

There are many sequences with ideal autocorrelation. Among them, m-

sequences are the most important. The “m” refers the maximum length

because m-sequences are the longest sequences given the same number of

14
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LFSRs. The definition of m-sequences are given below.

Definition 2.5. Let p be an odd prime and let n be an integer. Then,
m-sequence m(t) of period pn − 1 is defined as

m(t) = trn1 (α
t)

where α is a primitive element of the finite field Fpn . 2

M-sequences have many desirable properties. They have the largest

possible period pn − 1 and the ideal autocorrelation property. They also

satisfy the balance property, the n-tuple distribution property, and the run

property. Major drawback of m-sequences is small linear complexity. They

have linear complexity n, which is significantly small compared to the

period pn−1. Therefore, m-sequences are inappropriate for cryptographic

applications.

Another important sequence with ideal autocorrelation is the GMW

sequence. It has large linear complexity compared with the m-sequence.

Definition 2.6 (Scholtz and Welch [14]). Let p be an odd prime and let
n,m be an integer satisfying m|n. Let r be integers with 1 ≤ r ≤ pm − 2

and gcd(r, pn − 1) = 1. Then, GMW sequence g(t) of period pn − 1 is
defined as

g(t) = trm1 ({trnm(αt)}r)

where α is a primitive element of the finite field Fpn . 2

Helleseth and Gong [12] constructed the following p-ary sequences with

ideal autocorrelation. They are called HG sequences.

Theorem 2.7 (Helleseth and Gong [12]). Let α be a primitive element
of Fpn . Let n = (2m+ 1)k and let s, 1 ≤ s ≤ 2m be an integer such that

15
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gcd(s, 2m + 1) = 1. Define b0 = 1, bis = (−1)i, and bi = b2m+1−i for
i = 1, 2, ...,m. Let u0 = b0/2 = (p + 1)/2 and ui = b2i for i = 1, 2, ...,m.
Let q = pk. Define

f(x) =
m∑
i=0

uix
(q2i+1)/2

or

f(x) =
m−i∑
i=0

uix
(q2i+1+1)/(q+1).

Then the sequences defined by

s(t) = trn1 (f(α
t))

has the ideal autocorrelation, where all indices of the bi’s are taken modulo
2m+ 1. 2

No [21] introduced p-ary unified sequences, which are very general class

of p-ary sequences including the binary and nonbinary extended sequences

and the d-form sequences.

Theorem 2.8 (No [21]). Let p be a prime number, m,n be positive
integers such that m|n. Define N = pn−1,M = pm−1, and T = N/M =

(pn−1)/(pm−1). Let α be a primitive element of Fpn and β = αT . Assume
that for an index set I, the sequence bu(t1) of period M given by

bu(t1) =
∑
a∈I

batrm1 (βat1), ba ∈ F∗
p

has the ideal autocorrelation property. Let s = d mod M for all s in
some index set J , where d is relatively prime to M . Assume that the
p-ary sequence c(t) of period N given by

c(t) =
∑
s∈J

cstrn1 (α
st), cs ∈ F∗

p

16
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has the ideal autocorrelation property. For an integer r, 1 ≤ r ≤ M − 1,
relatively prime to M , the unified sequence cu(t) of period N defined by

cu(t) =
∑
a∈I

batrm1

{[∑
s∈J

cstrnm(αst)

]ar}

also has the ideal autocorrelation property. 2

In 1998, Lin [25] proposed a conjecture that a class of ternary sequences

has the ideal autocorrelation property. Arasu, Dillon, and Player [41] and

Hu, Shao, Gong, and Helleseth [28], using different methods, proved that

the conjecture is true. We introduce the result here.

Theorem 2.9 (Lin [25], Arasu, Dillon, and Player [41], Hu, Shao, Gong,
and Helleseth [28]). Let n = 2m+1 andm be integers. Let α be a primitive
element of F3n . Then a sequence defined by

s(t) = trn1 (α
t + α(2·3m+1)t)

has the ideal autocorrelation. 2

2.3. Sequence Families with Low Correlation

A set of sequences is called a family of sequences or a sequence family.

Usually we deal with the sequence family within which all sequences have

the same length and the same alphabet. The set size of the sequence

family is called the family size. Here we only count sequences which are

cyclically inequivalent, that is, only those sequences a(t), b(t) such that

a(t+ τ) ̸= b(t) for all 0 ≤ τ < N , where N is the period of sequences. The

cross-correlation between sequences a(t) and b(t) is defined as follows.

Definition 2.10. Let a(t), b(t) be M -ary sequences of period N . Then

17
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the cross-correlation Ca,b(τ) of a(t), b(t) at time shift τ is defined as

Ca,b(τ) =

N−1∑
t=0

ω
a(t+τ)−b(t)
M

where ωM is the primitive M -th root of unity, i.e., ej2π/M , and t + τ is
computed mod N . 2

The primary metric of the sequence family is the maximum magnitude

of correlation which is defined as in the following definition.

Definition 2.11. Let S be a sequence family. The maximum magnitude
of correlation Cmax(S) is given as

Cmax(S) = max{|Ca,b(τ)||a, b ∈ S, a ̸= b or τ ̸= 0}.

2

If Cmax(S) ≤ c
√
N + d for a constant c, d and the period N , then

we say that S has low correlation. In general, smaller correlation and

larger family size are desirable. But for the given period, the maximum

correlation magnitude and the family size have the fundamental tradeoff.

This tradeoff is described by several lower bounds on the cross-correlation

magnitude. Here we introduce two of such bounds, Welch’s lower bound

[10] and Sidel’nikov’s lower bound [6].

Theorem 2.12 (Welch [10]). Let S be the sequence family with sequences
of period N and family size M . Then for any a, b ∈ S and 0 ≤ τ < N , we
have

|Ca,b(τ)| ≥

√
1

M − 1

[
MN2

N
−N2

]
.

2

18
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Theorem 2.13 (Sidel’nikov [6]). Let S be the sequence family of period
N and family size M . Let a, b ∈ S and 0 ≤ τ < N . In the case of M = 2,
then we have

|Ca,b(τ)| ≥

√
(2k + 1)(n− k) +

k(k + 1)

2
− 2kN2k+1

M(2k)!
(
n
k

) , 0 ≤ k
2N

5
.

In the case of M > 2, then we have

|Ca,b(τ)| ≥

√
k + 1

2
(2n− k)− 2kN2k+1

M(k!)2
(
2n
k

) , k ≥ 0.

2

For a sequence s(t) of period N and an integer d, the decimated se-

quence of s(t) by the decimation d is defined as s(dt). Note that the

period of the decimated sequence is N/gcd(d, N). Thus decimation yields

a short period sequence. Many sequence families can be constructed us-

ing m-sequences and decimated m-sequences. For example, Gold sequence

family [4] is constructed by the shift-and-add method and the decimation.

Definition 2.14 (Gold [4]). Let n, k be integers such that

gcd(n, k) =

1, for n odd

2, for n = 2 mod 4.

Let d = 2k + 1 or d = 22k − 2k + 1. Let m(t) be a binary m-sequence of
period N = 2n − 1. Then Gold sequence family is defined as

S = {si(t)|0 ≤ t ≤ N − 1, 0 ≤ i ≤ N + 1}

where si(t) = m(t) + m(dt + i), 0 ≤ i ≤ N − 1, sN (t) = m(t), and
sN+1(t) = m(dt). 2

The Gold sequence family is known to be optimal for odd n with respect
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to the Sidel’nikov’s lower bound. Its correlation values are

{−2
n+1
2 − 1,−1, 2

n+1
2 − 1} for odd n

{−2
n+2
2 − 1,−1, 2

n+2
2 − 1} for even n.

Many other sequence families are constructed by the shift-and-add

method. In this dissertation, we will propose new families of sequences

of period pn−1
2 with low correlation.
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Chapter 3. A New Family of p-ary
Sequences of Period (pn − 1)/2 with Low

Correlation

In this chapter, for an odd prime p congruent to 3 modulo 4 and an odd

integer n, a new family of p-ary sequences of period N = pn−1
2 with low

correlation is proposed. The family is constructed by shifts and additions

of two decimated m-sequences with the decimation factors 2 and 2d, d =

N − pn−1. The upper bound on the maximum magnitude of nontrivial

correlations of this family is derived using well known Kloosterman sums.

The upper bound is shown to be 2
√
N + 1

2 =
√
2pn, which is twice the

Welch’s lower bound and approximately 1.5 times the Sidel’nikov’s lower

bound. The size of the family is 2(pn − 1), which is four times the period

of sequences.1

1The material of this chapter is primarily based on the following paper and pro-
ceeding: c⃝2010 IEEE. Reprinted, with permission, from Ji-Youp Kim, Sung-Tai Choi,
Jong-Seon No, and Habong Chung, “A new family of p-ary decimated sequences with
low correlation,” IEEE International Symposium on Information Theory, Austin, TX,
Jun. 2010 and c⃝2011 IEEE. Reprinted, with permission, from Ji-Youp Kim, Sung-Tai
Choi, Jong-Seon No, and Habong Chung, “A new family of p-ary sequences of period
(pn − 1)/2 with low correlation,” IEEE Transactions on Information Theory, vol. 57,
no. 6, pp. 3825-3830, Jun. 2011.
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3.1. Introduction

Many families of pseudorandom sequences have been reported to have

good correlation properties. Gold sequence family has low cross-correlation

and large family size [4]. Kasami sequence family [2] [3] has lower cross-

correlation than that of Gold, but it has smaller family size. Gold and

Kasami sequence families are optimal with respect to the Sidel’nikov’s

and the Welch’s lower bounds, respectively. Besides these binary sequence

families, there have been many researches on nonbinary sequence fami-

lies. Liu and Komo [24] generalized Kasami sequence family to nonbinary

case. Helleseth [11] investigated into various cross-correlations between

m-sequences and their decimations. From these results, p-ary sequence

families of period pn − 1, the maximum correlation bound 1 + 2
√
pn, and

family size pn + 1 has been constructed [23]. Based on the result of Tra-

chenberg [7], a nonbinary sequence family with the maximum correlation

bound 1 +
√
pn+1 and family size pn + 1 is obtained [23]. Kumar and

Moreno [23] designed an asymptotically optimal family with the correla-

tion upper bound 1 +
√
pn.

More recently, Kim, Chung, No, and Chung [31] constructed M -ary se-

quence families from Sidel’nikov sequences. Han and Yang [38] proposed

M -ary sequence families having the same upper bound on the maximum

correlation magnitudes, but larger family size. Yu and Gong [40] refined

the Weil bound to construct polyphase sequence families including some

known families in [38] as a special case. They also presented the array
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structure of M -ary Sidel’nikov sequences and constructed M -ary sequence

families with low correlation from column sequences of the array struc-

ture in [40]. Schmidt [44] proposed nested families of polyphase sequences

which have prime period.

This chapter presents a new construction of a p-ary sequence family

with low correlation. For a prime p of 3 mod 4 and an odd integer n, a

new p-ary sequence family of period pn−1
2 having the maximum correla-

tion magnitude
√
2pn is constructed. This maximum correlation magni-

tude is asymptotically twice the Welch’s lower bound and 1.5 times the

Sidel’nikov’s lower bound, but its family size is four times the period of

sequences. This family can be obtained from shifts and additions of two

decimated p-ary m-sequences by 2 and 2d, d = pn−1
2 − pn−1, and the size

of the family is 2(pn − 1).

This chapter is organized as follows. In Section 3.2, we introduce the

concept of characters and give definitions of additive characters and mul-

tiplicative characters. Next in Section 3.3, Gaussian sums, Kloosterman

sums, and generalized Kloosterman sums are defined, and related lem-

mas are reviewed. In Section 3.4, notations used throughout this chapter

are collected. In Section 3.5, the construction of the sequence family is

given. The upper bound on the maximum magnitude of correlation of

the sequence family is proved in Section 3.6. The family size is discussed

in Section 3.7. An example of the family is given in Section 3.8. Some

generalization of this work by Kim, Chae, and Song [61] is introduced in

Section 3.9. Finally, we conclude this chapter in Section 3.10.
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3.2. Characters

In this chapter, character sums are used for computation of the corre-

lation. Generally, the character is defined as follows [72] [73].

Definition 3.1 (Characters [72] [73]). LetG be a finite group and GLm(C)
be a general linear group of degree m over the complex field. Let φ : G→
GLm(C) be a group homomorphism. Then the function f = tr◦φ : G→ C

f(x) = tr(φ(x)), g ∈ G

is called a character. 2

In this section, we consider two different characters. The first one is an

additive character, in which G = Fpn is an additive group and m = 1, i.e.,

GLm(C) = C∗ = C\{0}. The precise definition of the additive character

is given as follows.

Definition 3.2 (Additive characters [70]). Let p be a prime number and
n be an integer. The additive character χ is a group homomorphism

χ : Fpn → C∗.

In particular, the canonical character χ1 is given as

χ1(x) = e
2π

√
−1

p
trn1 (x)

where x ∈ Fpn . 2

It is known that any additive character can be expressed as χa(x) =

χ1(ax) for some a ∈ Fpn . Trivial additive character χ0 is a character

which maps every element of Fpn into 1. The conjugate character of χ is

the character such that χ̄(x) = χ(x), where (̄) denotes complex conjugate.
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The second one is a multiplicative character, in which G = F∗
pn =

Fpn\{0} is a multiplicative group andm = 1, i.e., GLm(C) = C∗ = C\{0}.

The multiplicative character is defined as follows.

Definition 3.3 (Multiplicative characters [70]). Let p be a prime number
and n be an integer. The multiplicative character ψ is a group homomor-
phism

ψ : F∗
pn → C∗.

Every multiplicative character can be given as

ψj(α
k) = e

2π
√
−1jk

pn−1

for some 0 ≤ j, k < pn − 1. 2

Here ψ0 is called a trivial multiplicative character. Conjugate characters

of multiplicative characters are defined similarly as in the case of additive

characters.

The multiplicative character of the particular importance is the quadratic

character. It is defined as follows.

Definition 3.4 (Quadratic characters [70]). Let p be a prime number and
n be an integer. The quadratic character η is given as

η(x) =

1, if x is a nonzero square in Fpn

−1, if x is a nonzero nonsquare in Fpn .

2
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3.3. Gaussian Sums and Kloosterman Sums

Gaussian sums and Kloosterman sums are two important classes of the

exponential sums. They are useful to represent the correlation function

by the exponential sum. First we give the definition of Gaussian sums.

Definition 3.5 (Gaussian sums [70]). Let ψ be a multiplicative character
and χ be an additive character. Then the Gaussian sum G(ψ, χ) is defined
as

G(ψ, χ) =
∑
c∈F∗

pn

ψ(c)χ(c).

2

The following lemmas for the Gaussian sum are needed for proof of the

main theorem of this chapter.

Lemma 3.6 (Theorem 5.11 [70]). Let ψ be a multiplicative character and
χ an additive character of Fpn . Then the Gaussian sum G(ψ, χ) satisfies

G(ψ, χ) =


pn − 1 for ψ = ψ0 and χ = χ0

−1 for ψ = ψ0 and χ ̸= χ0

0 for ψ ̸= ψ0 and χ = χ0

and

|G(ψ, χ)| =
√
pn for ψ ̸= ψ0 and χ ̸= χ0.

2

Now we define the Kloosterman sum as follows.

Definition 3.7 (Kloosterman sums [70]). Let a and b be elements of
Fpn and χ be an additive character of Fpn . Then the Kloosterman sum
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K(χ; a, b) is defined as

K(χ; a, b) =
∑

y∈F∗
pn

χ(ay + by−1).

2

In the proof of the main theorem, we need the upper bound on the

Kloosterman sum. We can use the following well-known upper bound.

Lemma 3.8 (Theorem 5.45 [70]). If χ is a nontrivial additive character
of Fpn and a, b ∈ Fpn are not both 0, then the Kloosterman sum K(χ; a, b)

satisfies

|K(χ; a, b)| ≤ 2
√
pn.

2

Note that contrary to Gaussian sums, Kloosterman sums only involve

additive characters. The Kloosterman sum can be generalized to include

a multiplicative character.

Definition 3.9 (Generalized Kloosterman sums [70]). Let ψ be a multi-
plicative character and χ an additive character of Fpn . For a, b ∈ Fpn , a
generalized Kloosterman sum is defined as

K(ψ, χ; a, b) =
∑

y∈F∗
pn

ψ(y)χ(ay + by−1).

2

Many results are reported for the Gaussian and the Kloosterman sums.

Here we list some of them which are used in this chapter.

Lemma 3.10 (Exercise 5.83 [70]). Let ψ be a multiplicative character
and χ an additive character of Fpn . The generalized Kloosterman sum
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reduces to a Gaussian sum if ab = 0, in the sense that

K(ψ, χ; a, b) =


ψ(b)G(ψ̄, χ) if a = 0, b ̸= 0

ψ̄(a)G(ψ, χ) if a ̸= 0, b = 0

G(ψ, χ0) if a = 0, b = 0.

2

Lemma 3.11 (Exercise 5.84 [70]). Let η be the quadratic character of
Fpn , p an odd prime, and a, b ∈ Fpn with η(ab) = −1. Then we have

K(η, χ; a, b) = 0

for any additive character χ of Fpn . 2

Lemma 3.12 (Exercise 5.85 [70]). Let η be the quadratic character of
Fpn , p an odd prime, and a, b ∈ Fpn with ab = e2 for some e ∈ F∗

pn . Then
we have

K(η, χ; a, b) = η(b)G(η, χ)(χ(2e) + χ(−2e))

for any additive character χ of Fpn . 2

3.4. Notations

Here we collect notations used in this chapter.

• p is an odd prime (3 mod 4);

• n is an odd positive integer;

• N = pn−1
2 ;

• d = N − pn−1;

• α is a primitive element of Fpn ;
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• ω is a primitive p-th root of unity;

• QR = {a ∈ F∗
pn |x2 = a has a solution in Fpn};

• QNR = {a ∈ F∗
pn |x2 = a has no solution in Fpn}.

3.5. Definition of Sequence Family

In this section we present the construction method of the sequence

family. Let m(t) be an m-sequence of period pn − 1. Since pn − 1 is even,

the decimated sequence s(2t) has the period N = (pn − 1)/2. In order

to construct the sequence family, the sequence m(2t) and its decimated

sequence m(2dt) are considered. Since gcd(N , d) = 1, the period of m(2dt)

is also N .

The family S of our interest is defined as

S =
4⋃

j=1

S|

where

S∞ = {m(2t) +m(2d(t+ j))|0 ≤ j < N}

S∈ = {m(2t+ 1) +m(2d(t+ j))|0 ≤ j < N}

S∋ = {m(2t) +m(2d(t+ j) + 1)|0 ≤ j < N}

S△ = {m(2t+ 1) +m(2d(t+ j) + 1)|0 ≤ j < N}.

In the following section, we will show that the magnitude of cross-

correlation and nontrivial autocorrelation values of the p-ary sequences in

S are upper bounded by 2
√
N + 1

2 =
√
2pn.
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3.6. Correlation Bound

The upper bound on the correlation magnitude of the sequence family

S is derived in the main theorem. For the proof of the main theorem, we

need the following lemma.

Lemma 3.13. For a and b ∈ Fpn , let L(χ1; a, b) be defined as

L(χ1; a, b) =
∑

y∈F∗
pn

η(y)ωtrn1 (ay+by−1)

where η is the quadratic character. Then we have

|L(χ1; a, b)| ≤ 2
√
pn.

Proof. We consider the following three cases:
i) ab = 0;
In this case, we can use Lemma 3.10. Since |η(x)| ≤ 1 for any x ∈ Fpn , we
have

|L(χ1; a, b)| =
∣∣ ∑
y∈F∗

pn

η(y)ωtrn1 (ay+by−1)
∣∣

= |K(η, χ1; a, b)|

≤


|G(η̄, χ1)| if a = 0, b ̸= 0

|G(η, χ1)| if a ̸= 0, b = 0

|G(η, χ0)| if a = 0, b = 0.

Since η is not trivial, Lemma 3.6 indicates that

|L(χ1; a, b)| ≤
√
pn.

ii) ab ∈ QR;
Here ab = e2 for some e ∈ F∗

pn . Then by applying Lemma 3.12, we have

|L(χ1; a, b)| = |K(η, χ1; a, b)|
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= |η(b)G(η, χ1)(χ1(2e) + χ1(−2e))|

≤ 2|G(η, χ1)|

≤ 2
√
pn.

iii) ab ∈ QNR;
Using η(ab) = −1 and Lemma 3.11, we have

|L(χ1; a, b)| = |K(η, χ1; a, b)|

= 0.

Therefore, for any a, b ∈ Fpn , we have

|L(χ1; a, b)| ≤ 2
√
pn.

Now we are ready to prove the main theorem of this chapter.

Theorem 3.14. The magnitudes of cross-correlation and nontrivial au-
tocorrelation values of sequences in S are upper bounded by 2

√
N + 1

2 .

Proof. First we consider the cross-correlation of sequences in S∞. All the
other cases can be similarly proved. The cross-correlation function be-
tween two sequences in S∞, m(2t)+m(2d(t+j)) and m(2t)+m(2d(t+k)),
is given as

C(τ) =
N−1∑
t=0

ωtrn1 (α2(t+τ))+trn1 (α2d(t+τ+j))−trn1 (α2t)−trn1 (α2d(t+k))

=

N−1∑
t=0

ωtrn1 (α2t(α2τ−1))+trn1 (α2dt(α2d(τ+j)−α2dk)). (3.1)

Let a = α2τ − 1 and b′ = α2d(τ+j) − α2dk. Then (3.1) can be written as

C(τ) =
N−1∑
t=0

ωtrn1 (aα2t+b′α2dt).
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Here, note that

2dt = 2(N − pn−1)t

= 2(
pn − 1

2
− pn−1)t

= (pn − 1− 2pn−1)t

= −2pn−1t

= −2p−1t (mod pn − 1).

Since 2dt = −2p−1t (mod pn − 1), we have

trn1 (b
′α2dt) = trn1 (b

′α−2p−1t)

= trn1 ((b
′α−2p−1t)p)

= trn1 (b
′pα−2t).

Let b = b′p. Then we have

C(τ) =
N−1∑
t=0

ωtrn1 (aα2t+bα−2t)

=
N−1∑
t=0

ωtrn1 (a(αt)2+b(αt)−2)

=
∑
y∈QR

ωtrn1 (ay+by−1). (3.2)

In order to compute C(τ) in (3.2), we can use the Kloosterman sum and
the generalized Kloosterman sum given as

K(χ1; a, b) =
∑

y∈F∗
pn

ωtrn1 (ay+by−1)

=
∑
y∈QR

ωtrn1 (ay+by−1) +
∑

y∈QNR

ωtrn1 (ay+by−1)

L(χ1; a, b) =
∑

y∈F∗
pn

η(y)ωtrn1 (ay+by−1)

32



✐
✐

“KJY_Dissertation_all” — 2014/12/29 — 17:34 — page 33 — #43 ✐
✐

✐
✐

✐
✐

=
∑
y∈QR

ωtrn1 (ay+by−1) −
∑

y∈QNR

ωtrn1 (ay+by−1).

From Lemma 3.13, we have an upper bound on L(χ1; a, b), namely |L(χ1; a, b)| ≤
2
√
pn.
Since p is an odd prime which is 3 mod 4 and n is an odd integer, −1

is nonsquare. Therefore, as y runs through QR, −y does through QNR

and we have ∑
y∈QR

ωtrn1 (ay+by−1) =
∑

y∈QNR

ωtrn1 (ay+by−1).

Now we are ready to show that the absolute value of cross-correlation
C(τ) is upper bounded by 2

√
N + 1

2 =
√
2pn.

From the previous argument, we can set∑
y∈QR

ωtrn1 (ay+by−1) = u+ v
√
−1

and ∑
y∈QNR

ωtrn1 (ay+by−1) = u− v
√
−1

where u, v are real numbers.
From the definitions of the Kloosterman and the generalized Klooster-

man sums, we obtain

K(χ1; a, b) = 2u (3.3)

L(χ1; a, b) = 2v
√
−1. (3.4)

For cross-correlation and nontrivial autocorrelation, it can be easily shown
that a ̸= 0 or b ̸= 0. If a = 0, then by definition of a, α2τ = 1, which
implies τ = N = 0 (mod N). Also note that

dp = p
pn − 1

2
− pn−1p
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=
pn+1 − p

2
− 1

=
(p− 1)pn + pn − p

2
− 1

=
p− 1

2
pn +

pn − p

2
− 1

=
p− 1 + pn − p

2
− 1

=
pn − 1

2
− 1

= −1 ( mod pn − 1).

Therefore we have

b = α2d(τ+j)p − α2dkp

= α−2(τ+j) − α−2k

=
α−2j

a+ 1
− α−2k.

It is easy to check that a = b = 0 corresponds to the in-phase autocorre-
lation. Therefore, from Lemma 3.8, we have |K(χ1; a, b)| ≤ 2

√
pn.

Thus from Lemmas 3.8 and 3.13 and (3.3) and (3.4), we have

|u| ≤
√
pn

|v| ≤
√
pn.

Finally, we obtain

|R(τ)| =
∣∣ ∑
y∈QR

ωtrn1 (ay+by−1)
∣∣

= |u+ vi|

≤
√

2pn

= 2

√
N +

1

2
.

The proof for cross-correlation bound in each of the other cases is quite
similar, because the cross-correlation expression eventually becomes the
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Table 3.1: Values of a and b for each case.

Sequence set 1 Sequence set 2 a b

S1 S1 α2τ − 1 (α2d(τ+j) − α2dk)p

S1 S2 α2τ − α (α2d(τ+j) − α2dk)p

S1 S3 α2τ − 1 (α2d(τ+j) − α2dk+1)p

S1 S4 α2τ − α (α2d(τ+j) − α2dk+1)p

S2 S2 α2τ+1 − α (α2d(τ+j) − α2dk)p

S2 S3 α2τ+1 − 1 (α2d(τ+j) − α2dk+1)p

S2 S4 α2τ+1 − α (α2d(τ+j) − α2dk+1)p

S3 S3 α2τ − 1 (α2d(τ+j)+1 − α2dk+1)p

S3 S4 α2τ − α (α2d(τ+j)+1 − α2dk+1)p

S4 S4 α2τ+1 − α (α2d(τ+j)+1 − α2dk+1)p

c⃝2011 IEEE.

Kloosterman sum over the quadratic residue as in (3.2) using the same
technique. The only differences are values of constants a and b in (3.1).
We summarize values of a and b for each case in Table 3.1.

Thus the proof is complete.

3.7. Size of Sequence Family

The family size of S is 2(pn − 1), which is four times larger than the

period. In the following theorem, we can show that any two sequences in

S are cyclically inequivalent.

Theorem 3.15. The family size of S is 2(pn − 1). More precisely, there
are no cyclically equivalent sequences in S.

Proof. Suppose that there are two sequences v(t) and w(t) in S which are
cyclically equivalent each other. Let C(τ) be a cross-correlation between
v(t) and w(t). Then there exists τ0 such that 0 ≤ τ0 < N and C(τ0) = N .
Recall that any cross-correlation values of sequences in S can be written
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as a Kloosterman sum over the quadratic residue. Let

C(τ0) =
∑
y∈QR

ωtrn1 (ay+by−1) = u+ vi

∑
y∈QNR

ωtrn1 (ay+by−1) = u− vi.

Since C(τ0) = N , we have v = 0. Therefore u = N . Thus

K(χ; a, b) = 2u = 2N =⇒ K(χ; a, b) = pn − 1.

It is known that if K(χ; a, b) = pn − 1, then a, b = 0. Therefore it suffices
to show that a, b = 0 implies v(t) = w(t). It is already discussed that
a, b = 0 implies v(t) = w(t) when v(t), w(t) ∈ S∞. The proofs for the case
of S∈,S∋,S△ are similar. It is also easily verified that if v(t) ∈ S∥ and
w(t) ∈ S↕ for k ̸= l, then a ̸= 0 or b ̸= 0. For example, let l = 1, k = 2.
Then

Ci,j(τ0)

=
N−1∑
t=0

ωtrn1 (α2(t+τ0))+trn1 (α2d(t+τ0+i))−trn1 (α2t+1)−trn1 (α2d(t+j))

=
N−1∑
t=0

ωtrn1 (α2t(α2τ0−α))+trn1 (α2dt(α2dτ0+2di−α2dj))

=
N−1∑
t=0

ωtrn1 (α2t(α2τ0−α))+trn1 (α2dpt(α2dpτ0+2dpi−α2dpj))

=

N−1∑
t=0

ωtrn1 (α2t(α2τ0−α))+trn1 (α−2t(α−2τ0−2i−α−2j))

=
∑
y∈QR

ωtrn1 (ay+by−1)

where a = α2τ0 − α and b = α−2τ0−2i − α−2j . Since α2τ0 ∈ QR and
α ∈ QNR, we can conclude that a ̸= 0. The proofs for the other cases are
similar.
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The new family is not optimal with respect to the Welch bound, which

is rather insensitive to the family size. In fact, the upper bound on the

correlation magnitudes of the proposed sequence family is approximately

twice the Welch’s lower bound, but its family size is four times the period

of the sequences. On the other hand, the Sidel’nikov lower bound [23]

on the maximum correlation magnitude depends not only on the period

but also on the family size. Here, we are going to measure how close

the proposed sequence family is to the optimality with respect to the

Sidel’nikov’s bound given below.

Lemma 3.16 (Sidel’nikov [6]). Let S be a family of M p-ary sequences of
period N , where p is an odd prime. Let Cmax be the maximum magnitude
of correlation values. Then

C2
max >

k + 1

2
(2N − k)− 2kN2k+1

M(k!)2
(
2N
k

)
for all k ≥ 0. 2

Here, let k = 1 and M = 4N . Then we have

C2
max > 2N − 1− 2N3

4N2N
= 2N − 1− 1

4
N =

7

4
N − 1.

Thus

Cmax >

√
7

4
N − 1 ≈ 1.3228

√
N.

Therefore we can see that the maximum magnitude of the nontrivial corre-

lation values of the proposed family is approximately 0.7
√
N larger than

the Sidel’nikov’s bound. Table 3.2 shows the parameters of some well
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known sequence families and the new family derived in this chapter.

3.8. An Example

For p = 3, n = 3, we have N = 13 and d = 4. Let α be a primitive

element of F33 with a minimal polynomial x3+2x+1. Then the sequence

family is given as:

S∞ = {(0020022220020), (1201121211021), (0012111121002),

(1122010221111), (2221001222202), (0211211200110),

(0110011012221), (2101012100001), (2011020011100),

(1111102122120), (2112220202022), (2120101001010),

(2202212021220)}

S∈ = {(0110220002100), (1021022020101), (0102012200112),

(1212211000221), (2011202001012), (0001112012220),

(0200212121001), (2221210212111), (2101221120210),

(1201000201200), (2202121011102), (2210002110120),

(2022110100000)}

S∋ = {(0200000101122), (0001200022011), (1010202201201),

(1100221020102), (2000112212112), (1002021102210),

(1021110000222), (1212002010012), (0121222111212),

(2210120120211), (0102100210200), (2022201110121),

(1220210112000)}
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S△ = {(0020201210202), (0121101101121), (1100100010011),

(1220122102212), (2120010021222), (1122222211020),

(1111011112002), (1002200122122), (0211120220022),

(2000021202021), (0222001022010), (2112102222201),

(1010111221110)}

In general, the number of correlation values or the correlation distribution

is irregular. For instance, the cross-correlation distribution between a(t) =

(1201121211021) and b(t) = (0102012200112) is given as:

Ca,b(τ) =



−3.5 + 2.59808
√
−1 once

−3.5− 2.59808
√
−1 once

−0.5− 2.59808
√
−1 once

1 3 times

4 2 times

−5 once

4 + 5.19615
√
−1 once

−2 + 5.19615
√
−1 once

−2− 5.19615
√
−1 once

−2 once.
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But for c(t) = (0001200022011) and d(t) = (1100100010011), the cross-

correlation is

Cc,d(τ) =



2.5− 2.59808
√
−1 2 times

−0.5 + 2.59808
√
−1 3 times

−0.5− 2.59808
√
−1 2 times

4 + 5.19615
√
−1 2 times

−2 2 times

1 2 times.

Note that the number of cross-correlation values and the correlation dis-

tribution are different.

3.9. Related Work

After [57] and [58] are published, a generalization of the sequence family

is given. Kim, Chae, and Song [61] proposed the generalization method

by extending the alphabet and the decimation parameters. Specifically,

for an integer e satisfying e|pn − 1, they proposed a family of e2N p-

ary sequences, each sequence in S has period N , and the magnitudes of

correlations of sequences in S are upper bounded by 2
√
pn = 2

√
eN + 1

[61].

Definition 3.17 (Kim, Chae, and Song [61]). Let p be a prime and n

be a positive integer. Let m(t) be a p-ary m-sequence of period pn − 1.
Let N = pn−1

e , where e is a positive divisor of pn − 1 and d = N − pn−1.
Since gcd(d, N) = 1, the decimated sequences m(et) and m(edt) have the
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period N = (pn − 1)/e. Define the family S of sequences of period N to
be

S = {sk,i,u(t)|0 ≤ t < N} (3.5)

where k = 0, 1, ..., e− 1, u = 0, 1, ..., e− 1, i = 0, 1, ..., N − 1, and

sk,i,u(t) = m(et+ k) +m(ed(t+ i) + u).

2

The following theorem shows that the family consists of sequences which

are cyclically inequivalent.

Theorem 3.18 (Kim, Chae, and Song [61]). Let S be the family of se-
quences defined in (3.5). Then, the magnitude of nontrivial autocorrelation
and cross-correlation of sequences in S is upper bounded by 2

√
pn and no

two sequences in S are cyclically equivalent and thus, |S| = e2N , provided
that

e <

√
pn − 1/

√
pn

2
.

2

Note that by appropriately choosing e, we can utilize the tradeoff be-

tween the family size e2N and the period pn−1
2 .

3.10. Conclusion

In this chapter, a new family of p-ary sequences with low correlation is

constructed. The sequence family can be constructed in Fpn , with a prime

p of 3 mod 4 and an odd integer n. The period of sequences is pn−1
2 . Se-

quences in the family are obtained using shifts and additions of decimated
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m-sequences m(2t) and m(2dt) with the decimation factor d = N − pn−1.

The upper bound on the magnitude of nontrivial correlation values of

the sequence family can be deduced by the Kloosterman sums, which

is asymptotically two times the Welch’s lower bound and approximately

1.5 times the Sidel’nikov’s lower bound. The size of the sequence family is

2(pn−1), 4 times the period of the sequences. Some example of the family

is given and the generalization of Kim, Chae, and Song [61] is discussed.
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Table 3.2: Comparison of well-known families of sequences.

Family Alphabet Period N Rmax Family size

Gold, odd n [4] 2 2n − 1 1 +
√

2(N + 1) N + 2

Gold, even n [4] 2 2n − 1 1 + 2
√
N + 1 N + 2

Kasami [2] [3] 2 2n − 1 1 +
√
N + 1

√
N

Trachtenberg
[7]

odd p pn − 1 1 +
√

(N + 1)p N + 2

Helleseth [11] odd p pn − 1 1 + 2
√
N + 1 N + 2

KM [23] odd p pn − 1 1 +
√
N + 1 N + 1

LK [24] odd p pn − 1 1 +
√
N

√
N

V(c1) [39]
M > 2

even
pn − 1

(odd p)
2
√
N + 1 + 2 N +M − 1

V [39] M
pn − 1

(odd p)
3
√
N + 1 + 1 (N

2
+ 1)(M − 1)

Ũ [39] M even
pn − 1

(odd p)
2
√
N + 1 + 6 (N + 1)M

2
− 1

U [39] M
pn − 1

(odd p)
3
√
N + 1 + 5 M(M−1)(N−1)

2
+M − 1

Ωr [44]
(0 ≤ r ≤ p− 2)

p p (r + 1)
√
N + 2 (N − 2)Nr

L (p = 2) [31] M 2n − 1 3
√
N + 1 + 5 (M − 1)2(N−1

2
) +M − 1

L (odd p) [31] M pn − 1 3
√
N + 1 + 5

(M − 1)2(N
2

− 1)

+M(M−1)
2

F(a)
r [38] M p 2

√
N + 5 N−1

2
+M − 1

Fr [38] M p 3
√
N + 4 (M−1)2(N−1)

2
+M − 1

F̃s [38] M pn − 1 2
√
N + 1 + 6 (M−1)

2
N+⌊M−1

2
⌋

G(δ,2)
r [39]
(δ ̸= 0)

M p 4
√
N + 7

(M − 1)

+(N−1
2

)(M − 1)2

+ (N−1)(N−3)
8

(M2−3M+3)

H(2)
r [39] M p 5

√
N + 6

(M − 1)

+(N−1
2

)(M − 1)2

+ (N−1)(N−3)
8

(M − 1)3

G(δ,2)
s [39]
(δ ̸= 0)

M pn − 1 4
√
N + 1 + 8

(M − 1)

+(N−2
2

)(M − 1)2

+ (N−2)(N−4)
8

(M2−3M+3)

H(2)
s [39] M pn − 1 5

√
N + 1 + 7

(M − 1)

+(N−2
2

)(M − 1)2

+ (N−2)(N−4)
8

(M − 1)3

New p (3 mod 4) pn−1
2

2
√

N + 1
2

4N

c⃝2011 IEEE.
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Chapter 4. On the Cross-Correlation
between Two Decimated p-ary
m-Sequences by 2 and 4pn/2 − 2

Based on the work by Helleseth [71], for an odd prime p and an even

integer n = 2m, the cross-correlation values between two decimated m-

sequences by the decimation factors 2 and 4pn/2 − 2 are derived. Their

cross-correlation function is at most 4-valued, that is, −1±pn/2

2 , −1+3pn/2

2 ,

and −1+5pn/2

2 . From this result, for pm ̸= 2 mod 3, a new sequence fam-

ily with family size 4N and the maximum correlation magnitude upper

bounded by −1+5pn/2

2 ≃ 5√
2

√
N is constructed, where N = pn−1

2 is the

period of sequences in the family. 1

4.1. Introduction

Pseudonoise sequences have wide applications in various areas, includ-

ing signal processing, channel estimation, radar, cryptography, and com-

munications. In particular, for code-division multiple access communica-

tion systems, each user in the cell is assigned a user signature sequence

and correlation values between sequences should be low for multiplexing
1The material of this chapter is primarily based on the following paper: Copyright

c⃝2015 IEICE from Ji-Youp Kim, Chang-Min Cho, Wi-Jik Lee and Jong-Seon No, “On
the Cross-Correlation between Two Decimated p-Ary m-Sequences by 2 and 4pn/2−2,”
to apper in IEICE Transactions on Communications, vol. E98-B, no. 3, Mar. 2015.
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message signals. Low autocorrelation of each sequence is important for

synchronization and low cross-correlation between sequences are crucial

for intra-cell interference mitigation. Therefore, many studies have con-

structed sequence families with low auto- and cross-correlations. Also,

since large family size implies that a large number of users can commu-

nicate with each other in one cell, sequence families with low correlation

and large family size are preferred.

One of the popular methods to construct sequence families is to inves-

tigate the correlation property of decimated m-sequences. If m-sequence

m(t) and decimated sequence m(dt) by the decimation factor d have low

cross-correlation, then by using shift-and-add method, a sequence fam-

ily with good correlation property can be constructed easily. Thus, many

researchers have attempted to find “good” decimation values and to in-

vestigate the correlation values of the decimated sequences. Helleseth [71]

studied various decimation values for binary and nonbinary m-sequences.

For an odd prime p, n = 4k, Seo, Kim, No, and Shin [37] derived the exact

correlation distribution between m-sequences and their p2k+1
2 decimated

sequences by d = (p
2k+1
2 )2. Luo [42] extended the result of [37] to the case

n = 2m and pm = 1 mod 4. Muller [27] employed the quadratic form

technique to derive an upper bound on the cross-correlation between the

ternary m-sequence and its decimated sequence by d = 3n+1
3+1 + 3n−1

2 . Hu,

Li, Mills, Muller, Sun, Willems, Yang, and Zhang [28] generalized this re-

sult to the case p = 3 mod 4. Xia, Zeng, and Hu [46] calculated the exact

distribution of correlation values. Later, Choi, Kim, and No [55] extended
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Xia’s result to the more general decimation factor d = pn+1
pk+1

+ pn−1
2 . Seo,

Kim, No, and Shin [36] derived the cross-correlation distribution between

p-ary m-sequences and decimated sequences by d = pk + 1 with even n

and gcd(n, k) = 1. Choi, Lim, No, and Chung [52] investigated an up-

per bound on the correlation magnitude for d = (pm+1)2

2(p+1) and n = 2m,

where m is an odd integer. Luo, Helleseth, and Kholosha [43] extended

the result for p = 3 mod 4 case to the decimation d = (pm+1)2

2(pk+1)
with

odd m and k|m, and derived the correlation distribution. Sun, Wang, Li,

and Yan [56] derived the exact distribution of the cross-correlation for

p = 1 mod 4 and d = (pm+1)2

2(pk+1)
when m is odd and k|m. Xia and Chen

[48] determined the distribution of the cross-correlation values for more

general case d = (pm+1)2

2(pk+1)
, where p is any odd prime and m is any integer

with odd m/k. Kim, Choi, Lim, No, and Chung [59] studied the cross-

correlation between ternary m-sequences and their decimated sequences

by d = 34k+2−32k+1+2
4 + 32k+1, where n = 4k + 2 and obtained the up-

per bound. Later, Xia, Chen, Helleseth, and Li [49] generalized the result

to the arbitrary odd prime p and d = (pm+1)(pm+p−1)
(p+1) and derived the

correlation values. Some recent results on the cross-correlation between

m-sequences and their decimated sequences are summarized in Table 4.1.

For more detail, the reader is referred to [54].

Recently, there have been some results for “half-period” (N = pn−1
2 )

sequence family construction. Using decimation d = pn−1
2 − pn−1, Kim,

Choi, and No [58] constructed a p-ary sequence family of period pn−1
2 ,

where p = 3 mod 4 and n is an odd integer. Kim, Chae, and Song [61]

46



✐
✐

“KJY_Dissertation_all” — 2014/12/29 — 17:34 — page 47 — #57 ✐
✐

✐
✐

✐
✐

T
ab

le
4.

1:
P

re
vi

ou
s

w
or

ks
on

th
e

cr
os

s-
co

rr
el

at
io

n
be

tw
ee

n
p
-a

ry
m

-s
eq

ue
nc

es
an

d
th

ei
r

de
ci

m
at

ed
se

qu
en

ce
s.

A
lp

ha
be

t
n

d
N

C
m
a
x

H
el

le
se

th
[1

1]
od

d
p

ev
en

n
,p

n
/
2
̸=

2
m
o
d
3

2
p
n
/
2
−
1

4
−
1
+
2
p
n
/
2

Se
o

et
al

.
[3

7]
od

d
p

4
k

(
p
2
k
+
1

2
)2

4
−
1
+
2
p
n
/
2

Lu
o

[4
2]

p
m

=
1

m
o
d
4

n
=

2m
(
p
m
+
1

2
)2

4
−
1
+
2
p
n
/
2

M
ul

le
r

[2
7]

p
=

3
od

d
3
n
+
1

3
+
1
+

3
n
−
1

2
⋆

1
+
2
√
p
n

H
u

et
al

.
[2

8]
p
=

3
m
o
d
4

od
d

p
n
+
1

p
+
1
+

p
n
−
1

2
⋆

1
+

p
+
1

2

√
p
n

X
ia

et
al

.
[4

6]
p
=

3
m
o
d
4

od
d

p
n
+
1

p
+
1
+

p
n
−
1

2
9

−
1
−
p
n
/
2
√
−
1
(p

+
1
)

2

C
ho

ie
t
al

.
[5

5]
p
=

3
m
o
d
4

od
d
n
,k

|n
p
n
+
1

p
k
+
1
+

p
n
−
1

2
9

−
1
−
j
p
k
+
1

2
p
n
/
2

Se
o

et
al

.
[3

6]
od

d
p

ev
en

n
,g

cd
(n

,k
)

=
1

p
k
+
1

9
≃
p
√
p
n
+
1

C
ho

ie
t
al

.
[5

2]
od

d
p

n
=

2m
,m

od
d

(p
m
+
1
)2

2
(p

+
1
)

⋆
1
+

p
+
1

2
p
n
/
2

Lu
o

et
al

.
[4

3]
p
=

3
m
o
d
4

n
=

2m
,m

od
d,
k
|m

(p
m
+
1
)2

2
(p

k
+
1
)

6
1 2
(−

1
−
p
k
)p

m
−

1

Su
n

et
al

.
[5

6]
p
=

1
m
o
d
4

n
=

2m
,m

od
d,
k
|m

(p
m
+
1
)2

2
(p

k
+
1
)

6
1 2
(1

−
p
k
)p

m
−

1

X
ia

an
d

C
he

n
[4

8]
od

d
p

n
=

2m
,k

|m
,m

/k
od

d
(p

m
+
1
)2

2
(p

k
+
1
)

6
1 2
(−

1
−
p
k
)p

m
−

1

K
im

et
al

.
[5

9]
p
=

3
n
=

4k
+
2

3
4
k
+

2
−
3
2
k
+

1
+
2

4
+
3
2
k
+
1

⋆
4.
5
√
p
n
+
1

X
ia

et
al

.
[4

9]
od

d
p

n
=

2m
,o

dd
m

(p
m
+
1
)(
p
m
+
p
−
1
)

(p
+
1
)

2
p
+
1

−
1
−
p
m

+
1

⋆
de

no
te

s
th

at
th

e
au

th
or

s
de

ri
ve

on
ly

th
e

up
pe

r
bo

un
d

on
th

e
m

ag
ni

tu
de

of
th

e
co

rr
el

at
io

n.
N

is
th

e
nu

m
be

r
of

co
rr

el
at

io
n

va
lu

es
an

d
C

m
a
x

is
th

e
m

ax
im

um
m

ag
ni

tu
de

of
th

e
co

rr
el

at
io

n.
c ⃝

20
15

IE
IC

E
.

47



✐
✐

“KJY_Dissertation_all” — 2014/12/29 — 17:34 — page 48 — #58 ✐
✐

✐
✐

✐
✐

generalized this result to the arbitrary odd prime p and any integer n,

where the period is pn−1
e with e|pn − 1 and e <

√
pn−1/

√
pn

2 . For d =

pm + 1, Xia and Chen [47] constructed a half-period sequence family and

derived its correlation distribution. Lee, Kim, and No [62] constructed p-

ary sequence families of period pn−1
2 with low correlation for d = 4 and

pn+1
2 . Lately, Cho, Kim, and No [64], based on the previous works by Seo,

Kim, No, and Shin [37] and Luo [42], studied the cross-correlation between

two decimated m-sequences by 2 and (pm+1)2

2 . In Table 4.2, we list these

works for comparison.

In this chapter, based on the Helleseth’s work [71], for an odd prime

p and an even integer n = 2m, the cross-correlation values between two

decimated m-sequences by 2 and d′ = 4pn/2 − 2 are derived. The cross-

correlation is at most 4-valued and takes the values of −1±pn/2

2 , −1+3pn/2

2 ,

and −1+5pn/2

2 . Using this result, for pm ̸= 2 mod 3, a new sequence fam-

ily with family size 4N and the maximum correlation magnitude upper

bounded by −1+5pn/2

2 ≃ 5√
2

√
N is constructed, where N = pn−1

2 is the

period of sequences in the family.

This chapter is organized as follows. In Section 4.2, we introduce half-

period sequence families, previous works, and preliminaries. Next, in Sec-

tion 4.3, we derive the values of the cross-correlation between p-ary m-

sequences and decimated sequences by 2 and 4pn/2 − 2. In Section 4.4,

we give examples of actual correlation values. Then we propose the con-

struction of the half-period sequence families and derive the correlation

values in Section 4.5. In Section 4.6, we discuss about the distribution of
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the correlation. Lastly, we conclude this chapter in Section 4.7.

4.2. Decimated Sequences of Period pn−1
2

Let m(t) be a p-ary m-sequence of period pn− 1 and d be a decimation

factor. Consider two decimated sequences m(2t+ i) and m(2dt+j), where

0 ≤ i, j ≤ 1. Note that we decimate m(dt) further by 2 as m(2dt). The

period ofm(2t+i) isN = pn−1
2 . Then the cross-correlation Ci,j(τ) between

m(2t+ i) and m(2dt+ j) is given as

Ci,j(τ) =
N−1∑
t=0

ωm(2(t+τ)+i)−m(2dt+j)

=
N−1∑
t=0

ωtrn1 (α
2(t+τ)+i−α2dt+j). (4.1)

Since gcd(2d, pn − 1) is a multiple of 2, we have

N−1∑
t=0

ωtrn1 (α
2(t+τ)+i−α2dt+j) =

pn−2∑
t=N

ωtrn1 (α
2(t+τ)+i−α2dt+j).

Therefore, (4.1) can be rewritten as

Ci,j(τ) =
1

2

pn−2∑
t=0

ωtrn1 (α
2(t+τ)+i−α2dt+j)

=
1

2

∑
x∈F∗

pn

ωtrn1 (ax
2−bx2d)

where x = αt, a = α2τ+i, and b = αj .

In Chapter 3, for an odd prime p = 3 mod 4 and an integer n, families

of p-ary sequences of period pn−1
2 with low correlation and family size

2(pn − 1) were introduced. Later, Xia and Chen [47] proposed families
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of p-ary half-period sequences for more general p. We introduce these as

previous works for half-period sequence constructions.

Theorem 4.1 (in Chapter 3). Let p = 3 mod 4 be an odd prime and n
be an odd integer. Let N = pn−1

2 and d = N − pn−1. Let α be a primitive
element of Fpn . Then the sequence family is defined as

S = {trn1 (α2t+i) + trn1 (α
2d(t+k)+j)|0 ≤ i, j ≤ 1, 0 ≤ k < N}.

Then the maximum magnitude of the correlation between sequences in S
is upper bounded by 2

√
N + 1

2 and the family size is 4N = 2(pn − 1). 2

Theorem 4.2 (Xia and Chen [47]). Let p be an odd prime and m,n

be positive integers. Suppose e = gcd(m,n) and n
e ≥ 3. Let N = pn−1

2 ,
d = pm+1, and α be a primitive element of Fpn . Then the sequence family
is defined as

S = {trn1 (α2t+i) + trn1 (α
d(t+k)+j)|0 ≤ i, j ≤ 1, 0 ≤ k < N}.

Then the maximum magnitude of the correlation between sequences in S
is 

1
2(p

e√pn + 1), if η(−1) = 1

1
2(p

e
√
pn + 1

p2e
), if η(−1) = −1

and the family size is 4N = 2(pn − 1), where η is a quadratic character
defined on Fpn . 2

Recently, Cho, Kim, and No [64] derived the distribution of cross-

correlation values of the above form for 2d = 2(p
m+1
2 )2, n = 2m, and

pm = 1 mod 4, where the original decimation factor d = (p
m+1
2 )2 was

first studied by Seo, Kim, No and Shin [37] and later by Luo [42].

Theorem 4.3 (Cho, Kim, and No [63] [64]). Let p be an odd prime
and n = 2m with pm = 1 mod 4. Let d = (p

m+1
2 )2. Then the cross-

correlation distribution between trn1 (α2t+i) and trn1 (α2dt), i ∈ {0, 1}, is
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given as follows.
(i) For i = 0

C(τ) =


−1−pm

2 , 1
8(3p

n − 4pm − 7) times
−1+pm

2 , pm+1
2 times

−1+3pm

2 , 1
8(p

n − 1) times.

(ii) For i = 1

C(τ) =


−1−pm

2 , 1
4(p

n − 1) times
−1+pm

2 , 1
4(p

n − 1) times.

2

Lee, Kim, and No [62], using Weil bound, constructed two families of

p-ary sequences of period pn−1
2 with low correlation. The decimations are

d = 4 and d = pn+1
2 .

Theorem 4.4 (Lee, Kim, and No [62]). Let p be an odd prime and n be
an odd integer. Let N = pn−1

2 and d = 4 or d = pn+1
2 = N + 1. Let α be

a primitive element of Fpn . Then the sequence family is defined as

S = {trn1 (α2t+i) + trn1 (α
2d(t+k)+j)|0 ≤ i, j ≤ 1, 0 ≤ k < N}.

Then the maximum magnitude of the correlation between sequences in S
is upper bounded by 3√

2

√
N + 1

2 + 1
2 . The family size is given as 4N =

2(pn − 1). 2

In this chapter, we derive cross-correlation values for d′ = 2d = 4pn/2−

2, where the original decimation d = 2pn/2 − 1 was investigated by Helle-

seth [11]. The original result by Helleseth is given below.

Theorem 4.5 (Helleseth [11]). Let p be an odd prime and n be an even
integer. Let pn/2 ̸= 2 mod 3 and d = 2pn/2 − 1. Then gcd(d, pn − 1) = 1
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and the cross-correlation between trn1 (αt) and trn1 (αdt) takes the following
values

(i) −1− pn/2 occurs 1
3(p

n − pn/2) times

(ii) −1 occurs 1
2(p

n − pn/2 − 2) times

(iii) −1 + pn/2 occurs pn/2 times

(iv) −1 + 2pn/2 occurs 1
6(p

n − pn/2) times. 2

The following lemmas are used for derivation of cross-correlation values.

These are due to Baumert and McEliece [9] and Helleseth [11].

Lemma 4.6 (Helleseth [11]). Let p be an odd prime and n be an even
integer. Then we have

∑
y∈Fpn

ωtrn1 (ay
pn/2+1) =

pn, if a+ ap
n/2

= 0

−pn/2, if a+ ap
n/2 ̸= 0.

2

Lemma 4.7 (Helleseth [11]). Let p be an odd prime and n be an integer.
Then we have∑

y∈Fpn

ωtrn1 (ay
2)

=


pn, if a = 0

(−1)n+1((−1)
p−1
2 p)n/2, if a is a square in F∗

pn

(−1)n((−1)
p−1
2 p)n/2, if a is a nonsquare in F∗

pn .

2

4.3. Correlation Bound

Throughout this section, we use the following notations.
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• p is an odd prime.

• n = 2m, where m is an integer.

• d = 2pn/2 − 1 and d′ = 2d = 4pn/2 − 2.

• N = pn−1
2 .

• α is a primitive element of Fpn .

Now we determine the correlation values between m(2t+i) and m(d′t+

j) as in the following theorem.

Theorem 4.8. Let p be an odd prime and n = 2m be an even integer.
Let d′ = 2d = 4pn/2 − 2 and m(t) be a p-ary m-sequence of period pn − 1.
Then the cross-correlation function between m(2t + i) and m(d′t + j),

0 ≤ i, j ≤ 1, takes values in
{

−1±pn/2

2 , −1+3pn/2

2 , −1+5pn/2

2

}
.

Proof. The proof can be done using the similar method as in [11] but
with some modifications. The correlation function Ci,j(τ) of m(2t + i)

and m(d′t+ j) can be written as

Ci,j(τ) =
1

2

∑
x∈F∗

pn

ωtrn1 (ax
2−bx2d)

where a = α2τ+i and b = αj . Let x = αky
pm+1

2 , 0 ≤ k < pm+1
2 , and

define the set Ck = {z ∈ Fpn : z = αt, t = k mod pm+1
2 }. Then as y runs

through all field elements of Fpn , x runs through Ck
pm+1

2 times and 0
once. Thus if k takes values from 0 to pm−1

2 and y runs through Fpn , then
x runs through Fpn

pm+1
2 times. Since pm+1

2 d′ = pm + 1 mod pn − 1 and

x = αky
pm+1

2 , we have

pm + 1

2
(Ci,j(τ) +

1

2
) =

pm + 1

2

1

2

∑
x∈Fpn

ωtrn1 (ax
2−bx2d)

54



✐
✐

“KJY_Dissertation_all” — 2014/12/29 — 17:34 — page 55 — #65 ✐
✐

✐
✐

✐
✐

=
1

2

pm−1
2∑

k=0

∑
y∈Fpn

ωtrn1 (aα
2kyp

m+1−bα2dkyp
m+1)

=
1

2

pm−1
2∑

k=0

∑
y∈Fpn

ωtrn1 (y
pm+1(aα2k−bα2dk)).

Now suppose that K(a, b) is the number of solutions k of

(aα2k − bα2dk)p
m
+ aα2k − bα2dk = 0. (4.2)

Then by Lemma 4.6, we obtain

Ci,j(τ) +
1

2
= pm(K(a, b)− 1

2
)

and thus

Ci,j(τ) =
1

2
((2K(a, b)− 1)pm − 1).

Therefore it suffices to show that K(a, b) can take only 0, 1, 2, and 3. We
consider the following two cases.

1) pm = 3 mod 4

In this case, we use the following notations:

• β = α2(pm+1) and thus β
pm−1

2 = 1.

• γ = α
pm−1

2 and thus γ2(pm+1) = 1.

Then the followings hold as

• gcd(12(p
m − 1), 2(pm + 1)) = 1

• α = βγ

• βp
m
= β

• γp
m
= −γ−1.
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By substituting 2k by l, we have 2dk = dl. Then (4.2) can be expressed
as

(aαl − bαdl)p
m
+ aαl − bαdl

= (a(βγ)l − b(βγ)dl)p
m
+ a(βγ)l − b(βγ)dl

= ap
m
βl(−γ−1)l − bp

m
βdl(−γ−1)dl + aβlγl − bβdlγdl. (4.3)

Note that

d = 2pm − 1 =

1, mod 1
2(p

m − 1)

−3, mod 2(pm + 1).

Thus, (4.3) can be rewritten as

ap
m
βlγ−l − bp

m
βlγ3l + aβlγl − bβlγ−3l = 0

⇐⇒ ap
m
γ−l − bp

m
γ3l + aγl − bγ−3l = 0

⇐⇒ ap
m
γ2l − bp

m
γ6l + aγ4l − b = 0

⇐⇒ ap
m
γ2l − bp

m
(γ2l)3 + a(γ2l)2 − b = 0. (4.4)

This is the cubic equation of γ2l. Since l = 2k, we have 0 ≤ l < pm. But
we have

γ2l1 = γ2l2

⇐⇒ 2l1 = 2l2 mod 2(pm + 1)

⇐⇒ l1 = l2 mod pm + 1.

Therefore, the number of solutions is less than or equal to three. Thus the
proof for the case pm = 3 mod 4 is done.

2) pm = 1 mod 4:
In this case, the definition for β and γ is modified as follows:

• β = α
pm+1

2 and thus β2(pm−1) = 1.

• γ = α2(pm−1) and thus γ
pm+1

2 = 1.

Then the following properties hold in this case as

56



✐
✐

“KJY_Dissertation_all” — 2014/12/29 — 17:34 — page 57 — #67 ✐
✐

✐
✐

✐
✐

• gcd(2(pm − 1), 1
2(p

m + 1)) = 1

• α = βγ

• βp
m
= −β

• γp
m
= γ−1.

Using

d = 2pm − 1 =

1, mod 2(pm − 1)

−3, mod 1
2(p

m + 1),

we have

(aαl − bαdl)p
m
+ aαl − bαdl = 0

⇔ ap
m
(−β)lγ−l − bp

m
(−β)lγ3l + aβlγl − bβlγ−3l = 0

⇔ ap
m
βlγ−l − bp

m
βlγ3l + aβlγl − bβlγ−3l = 0

⇔ ap
m
γ−l − bp

m
γ3l + aγl − bγ−3l = 0

⇔ ap
m
γ2l − bp

m
γ6l + aγ4l − b = 0

⇔ ap
m
γ2l − bp

m
(γ2l)3 + a(γ2l)2 − b = 0. (4.5)

This is the cubic equation as in the case of pm = 3 mod 4. Furthermore,
we have

γ2l1 = γ2l2

⇐⇒ 2l1 = 2l2 mod
1

2
(pm + 1)

⇐⇒ l1 = l2 mod
1

2
(pm + 1)

since 1
2(p

m + 1) is odd. Therefore, the number of solutions is less than or
equal to three. Thus the proof is done.

Remark 4.9. In [11], Helleseth used Theorem 3.8 [11] to derive the equa-
tion similar to (4.2). Since we deal with the cross-correlation of two half-
period sequences, we cannot directly apply Theorem 3.8 [11] to this case.
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Instead, we follow steps similar to the proof of Theorem 3.8 [11] with
some modification to accomodate decimations. This technique was also
employed in [37] [64]. The idea of considering the cases of pm = 3 mod 4

and pm = 1 mod 4 separately is due to Helleseth [11].

Remark 4.10. In [11], the correlation is exactly 4-valued and the value
distribution of the cross-correlation is derived. But in this case, the number
of the correlation values can be three or four, as proved in Corollary 4.11.
Also the technique in [11] cannot be applied to derive the distribution since
the correlation considered in this chapter is that of half-period sequences.

In addition, we can obtain the following result for the cross-correlation.

Corollary 4.11. The cross-correlation function between m(2t + i) and

m(d′t+j), 0 ≤ i, j ≤ 1, in Theorem 4.8 takes values in
{

−1±pn/2

2 , −1+3pn/2

2

}
if
1) pm = 3 mod 4 and j = 1, or
2) pm = 1 mod 4 and j = 0.

Proof. 1) pm = 3 mod 4 and j = 1:
In this case, b = αj = α. Thus (4.4) can be expressed as

ap
m
γ2l − bp

m
(γ2l)3 + a(γ2l)2 − b = 0

⇔ bp
m
(γ2l)3 − a(γ2l)2 − ap

m
γ2l + b = 0.

Suppose that three distinct solutions γ2l1 , γ2l2 , and γ2l3 exist. Then we
have

γ2l1γ2l2γ2l3 = γ2(l1+l2+l3) = −b1−pm = α
pn−1

2
−(pm−1).

Therefore

2
pm − 1

2
(l1 + l2 + l3) =

pn − 1

2
− (pm − 1) mod pn − 1

⇔ (l1 + l2 + l3) =
pm − 1

2
mod pm + 1.
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But the left-hand side is even and the right-hand side is odd. Thus the
number of solutions of (4.4) is at most 2.

2) pm = 1 mod 4 and j = 0:
Since pm = 1 mod 4 and j = 0, we have b = 1. Then (4.5) can be

written as

ap
m
γ2l − (γ2l)3 + a(γ2l)2 − 1 = 0

⇔ (γ2l)3 − a(γ2l)2 − ap
m
γ2l + 1 = 0.

Now suppose that three distinct solutions γ2l1 , γ2l2 , and γ2l3 exist. Then
we have

γ2l1γ2l2γ2l3 = γ2(l1+l2+l3) = −1 = α
pn−1

2 .

Therefore

4(pm − 1)(l1 + l2 + l3) =
(pm − 1)(pm + 1)

2
mod pn − 1

⇔ 4(l1 + l2 + l3) =
pm + 1

2
mod pm + 1.

As in the case of 1), the left-hand side is even and the right-hand side
is odd. Thus the number of solutions of (4.5) is at most 2. Therefore the
proof is complete.

4.4. Examples

Here are two examples of the theorem and corollary in the previous

section.

Example 4.12. First, consider the case p = 3, n = 8, i = 1, j = 0,
2d = 322, that is, pm = 1 mod 4. Then by numerical computations, the
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cross-correlation function between m(2t+ 1) and m(2dt) can be given as

C1,0(τ) =


−41, 2040 times

40, 840 times

121, 400 times.

Example 4.13. Now let p = 7, n = 6, i = 0, j = 0, 2d = 1370, that is,
pm = 3 mod 4. By computer experiment, the cross-correlation is given as

C0,1(τ) =



−172, 34188 times

171, 22120 times

514, 85 times

857, 2431 times.

One can easily verify that the above examples coincide with the results

of Theorem 4.8 and Corollary 4.11.

4.5. A New Sequence Family of Period pn−1
2

Based on Theorem 4.8, a new sequence family of period pn−1
2 can be

constructed using shift-and-add method.

Theorem 4.14. Let p be an odd prime and n = 2m be an even integer
with pm ̸= 2 mod 3. Suppose d′ = 2d = 4pn/2 − 2 and m(t) is a p-ary
m-sequence of period pn − 1. Define the sequence family

S = {si,j,k(t) = m(2t+ i) +m(d′(t+ k) + j)}

where 0 ≤ i, j ≤ 1, 0 ≤ k < N = pn−1
2 . The correlation function of the se-

quences in S is at most five-valued in
{

pn−1
2 , −1±pn/2

2 , −1+3pn/2

2 , −1+5pn/2

2

}
,

that is, the maximum magnitude of the correlation is upper bounded by
−1+5pn/2

2 and the family size is 4N = 2(pn − 1).
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Proof. Suppose si1,j1,k1(t), si2,j2,k2(t) ∈ S. Then the cross-correlation C(τ)
between these two sequences is given as

C(τ) =
N−1∑
t=0

ωtrn1 (α
2(t+τ)+i1 )−trn1 (α

2t+i2 )+trn1 (α
d′(t+τ+k1)+j1 )−trn1 (α

d′(t+k2)+j2 )

=
N−1∑
t=0

ωtrn1 (α
2(t+τ)+i1−α2t+i2 )+trn1 (α

d′(t+τ+k1)+j1−αd′(t+k2)+j2 )

=
N−1∑
t=0

ωtrn1 ((α
2τ+i1−αi2 )α2t)+trn1 ((α

(d′(τ+k1)+j1−αd′k2+j2 )αd′t)

=
N−1∑
t=0

ωtrn1 (aα
2t−bαd′t)

where a = α2τ+i1 − αi2 and b = αd′(τ+k1)+j1 − αd′k2+j2 . But this is the
same form as the cross-correlation between m(2t + i) and m(d′t + j) in
Theorem 3 if a ̸= 0 and b ̸= 0. If a = b = 0, then τ = 0, i1 = i2, j1 = j2,
and k1 = k2, which implies the in-phase autocorrelation. If a = 0, b ̸= 0

or a ̸= 0, b = 0, then by Lemma 4.7, the correlation value is −1±pm

2 .
Therefore, the maximum magnitude of the correlation is upper bounded
by −1+5pn/2

2 . Also it is easily checked that the family size of S is 4N

since pm ̸= 2 mod 3 implies gcd(pn − 1, d) = 1. Therefore the proof is
complete.

Note that the condition pm ̸= 2 mod 3 is not too restrictive because

pm = 2 mod 3 is equivalent to p = 2 mod 3 and m is odd. Thus we can

construct the proposed family if p = 1 mod 3 or m is even. For compari-

son, some known half-period sequence families are listed in Table 4.2.

4.6. Discussions

To derive the distribution of the cross-correlation, generally we need to

compute
∑N−1

τ=0 Ci,j(τ),
∑N−1

τ=0 Ci,j(τ)
2,
∑N−1

τ=0 Ci,j(τ)
3 because the corre-
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lation is at most 4-valued. In the case of Corollary 4.11 where the number

of the correlation values is three, only
∑N−1

τ=0 Ci,j(τ)and
∑N−1

τ=0 Ci,j(τ)
2 are

needed. The summation
∑N−1

τ=0 Ci,j(τ) is easily obtained, but
∑N−1

τ=0 Ci,j(τ)
2

is not. This problem will be discussed below.

Lemma 4.15. For pm = 1 mod 4 and pm ̸= 2 mod 3, the cross-correlation
function Ci,0(τ) between m(2t + i) and m(d′t + j), 0 ≤ i ≤ 1, j = 0, in
Theorem 4.8 satisfies

N−1∑
τ=0

Ci(τ) =

1
2(−p

m − 1)2, i = 0

1
2(p

m − 1)(pm + 1), i = 1.

Proof. We have

N−1∑
τ=0

Ci(τ) =
1

2

N−1∑
τ=0

∑
x∈F∗

pn

ωtrn1 (ax2−bx2d) =
1

2

∑
x∈F∗

pn

ω−trn1 (bx2d)
N−1∑
τ=0

ωtrn1 (ax2).

Letting y = ατ and a = y2αi, it follows that

N−1∑
τ=0

ωtrn1 (ax2) =
1

2

∑
y∈F∗

pn

ωtrn1 (y2αix2)

1
2(−p

m − 1), i = 0

1
2(p

m − 1), i = 1

by Lemma 4.7. Also, note that∑
x∈F∗

pn

ω−trn1 (bx2d) =
∑

x∈F∗
pn

ωtrn1 (−bx2) =
∑

x∈F∗
pn

ωtrn1 (−x2) = −pm − 1

since gcd(2d, pn − 1) = 2 and −1 is a square. Thus,

N−1∑
τ=0

Ci(τ) =

1
2(−p

m − 1)2, i = 0

1
2(p

m − 1)(pm + 1), i = 1.

Now we deal with the second moment of the correlation,
∑N−1

τ=0 Ci,j(τ)
2.
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For this, we need the following result [66] [64]. Here QR and QNR are

sets of squares and nonsquares of Fpn , respectively.

Lemma 4.16 (Dickson [66]). Let z ∈ F∗
pn . Then if −1 is a square, we

have

1 + z2 ∈


{0}, 2 times

QR, pn−5
2 times

QNR, pn−1
2 times.

When −1 is a nonsquare, we have

1 + z2 ∈


{0}, 0 times

QR, pn−3
2 times

QNR, pn+1
2 times.

2

Now we define N1, N2, N3, N4 as

N1 = |{z ∈ F∗
pn : 1 + z2 ∈ QR, 1 + z2d ∈ QR}|

N2 = |{z ∈ F∗
pn : 1 + z2 ∈ QR, 1 + z2d ∈ QNR}|

N3 = |{z ∈ F∗
pn : 1 + z2 ∈ QNR, 1 + z2d ∈ QR}|

N4 = |{z ∈ F∗
pn : 1 + z2 ∈ QNR, 1 + z2d ∈ QNR}|.

Then we have the following result.

Lemma 4.17. For pm = 1 mod 4 and pm ̸= 2 mod 3, the cross-correlation
function C0,0(τ) between m(2t+ i) and m(d′t+ j) for i = 0, j = 0 in The-
orem 4.8 satisfies

N−1∑
τ=0

C0,0(τ)
2
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=
1

8
[2(pn − 1)2 − 4pm + pn − 3 + pn(N1 +N4 −N2 −N3)].

Proof. We have

N−1∑
τ=0

C0,0(τ)
2 =

1

4

N−1∑
τ=0

∑
x1∈F∗

pn

ωtrn1 (ax2
1−x2d

1 )
∑

x2∈F∗
pn

ωtrn1 (ax2
2−x2d

2 ).

Let a = α2τ and y = ατ . Thus α2τ = y2 = a. Then,

N−1∑
τ=0

C0,0(τ)
2 =

1

4

∑
x1∈F∗

pn

∑
x2∈F∗

pn

ω−trn1 (x2d
1 +x2d

2 ) 1

2

∑
y∈F∗

pn

ωtrn1 (y2(x2
1+x2

2))

=
1

8

∑
x1∈F∗

pn

∑
x2∈F∗

pn

ω−trn1 (x2d
1 +x2d

2 )
∑

y∈F∗
pn

ωtrn1 (y2(x2
1+x2

2))

=
1

8

∑
x1∈F∗

pn

∑
z∈F∗

pn

ω−trn1 (x2d
1 (1+z2d))

∑
y∈F∗

pn

ωtrn1 (y2x2
1(1+z2))

where we take z = x2/x1. Define

X(x1, z) = ω−trn1 (x2d1(1+z2d))
∑

y∈F∗
pn

ωtrn1 (y2x2
1(1+z2)).

Then we have

N−1∑
τ=0

C0,0(τ)
2 =

1

8

∑
x1∈F∗

pn

[ ∑
z ∈ F∗

pn

1 + z2 = 0

X(x1, z) +
∑

z ∈ F∗
pn

1 + z2 ∈ QR

X(x1, z)

+
∑

z ∈ F∗
pn

1 + z2 ∈ QNR

X(x1, z)

]
.

Since (d, pn − 1) = 1, we have 1 + z2 = 0 ⇔ 1 + z2d = 0. Therefore,∑
x1∈F∗

pn

∑
z ∈ F∗

pn

1 + z2 = 0

X(x1, z)
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=
∑

x1∈F∗
pn

∑
z ∈ F∗

pn

1 + z2 = 0

ω−trn1 (x2d
1 (1+z2d))

∑
y∈F∗

pn

ωtrn1 (y2x2
1(1+z2))

=
∑

x1∈F∗
pn

∑
z ∈ F∗

pn

1 + z2 = 0

ω−trn1 (x2d
1 (1+z2d))(pn − 1) = 2(pn − 1)2.

Thus, we have∑
x1∈F∗

pn

∑
z ∈ F∗

pn

1 + z2 ∈ QR

X(x1, z)

=
∑

x1∈F∗
pn

∑
z ∈ F∗

pn

1 + z2 ∈ QR

ω−trn1 (x2d
1 (1+z2d))

∑
y∈F∗

pn

ωtrn1 (y2x2
1(1+z2))

=
∑

x1∈F∗
pn

∑
z ∈ F∗

pn

1 + z2 ∈ QR

ω−trn1 (x2d
1 (1+z2d))(−pm − 1)

=(−pm − 1)
∑

x1∈F∗
pn

∑
z ∈ F∗

pn

1 + z2 ∈ QR

ω−trn1 (x2d
1 (1+z2d))

=(−pm − 1)
∑

x1∈F∗
pn

∑
z ∈ F∗

pn

1 + z2 ∈ QR

1 + z2d ∈ QR

ω−trn1 (x2d
1 (1+z2d))

+ (−pm − 1)
∑

x1∈F∗
pn

∑
z ∈ F∗

pn

1 + z2 ∈ QR

1 + z2d ∈ QNR

ω−trn1 (x2d
1 (1+z2d))

=(−pm − 1)
∑

x1∈F∗
pn

∑
z ∈ F∗

pn

1 + z2 ∈ QR

1 + z2d ∈ QR

(−pm − 1)

+ (−pm − 1)
∑

x1∈F∗
pn

∑
z ∈ F∗

pn

1 + z2 ∈ QR

1 + z2d ∈ QNR

(pm − 1)

=(−pm − 1)2N1 + (−pm − 1)(pm − 1)N2.
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Likewise,∑
x1∈F∗

pn

∑
z ∈ F∗

pn

1 + z2 ∈ QNR

X(x1, z)

=
∑

x1∈F∗
pn

∑
z ∈ F∗

pn

1 + z2 ∈ QNR

ω−trn1 (x2d
1 (1+z2d))

∑
y∈F∗

pn

ωtrn1 (y2x2
1(1+z2))

=
∑

x1∈F∗
pn

∑
z ∈ F∗

pn

1 + z2 ∈ QNR

ω−trn1 (x2d
1 (1+z2d))(pm − 1)

=(pm − 1)
∑

x1∈F∗
pn

∑
z ∈ F∗

pn

1 + z2 ∈ QNR

ω−trn1 (x2d
1 (1+z2d))

=(pm − 1)
∑

x1∈F∗
pn

∑
z ∈ F∗

pn

1 + z2 ∈ QNR

1 + z2d ∈ QR

ω−trn1 (x2d
1 (1+z2d))

+ (pm − 1)
∑

x1∈F∗
pn

∑
z ∈ F∗

pn

1 + z2 ∈ QNR

1 + z2d ∈ QNR

ω−trn1 (x2d
1 (1+z2d))

=(pm − 1)
∑

x1∈F∗
pn

∑
z ∈ F∗

pn

1 + z2 ∈ QNR

1 + z2d ∈ QR

(−pm − 1)

+ (pm − 1)
∑

x1∈F∗
pn

∑
z ∈ F∗

pn

1 + z2 ∈ QNR

1 + z2d ∈ QNR

(pm − 1)

=(pm − 1)(−pm − 1)N3 + (pm − 1)2N4.

Therefore, combining these results, we have

N−1∑
τ=0

C0,0(τ)
2 =

1

8

∑
x1∈F∗

pn

[ ∑
z ∈ F∗

pn

1 + z2 = 0

X(x1, z) +
∑

z ∈ F∗
pn

1 + z2 ∈ QR

X(x1, z)
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+
∑

z ∈ F∗
pn

1 + z2 ∈ QNR

X(x1, z)

]

=
1

8
[2(pn − 1)2 − 4pm + pn − 3 + pn(N1 +N4 −N2 −N3)].

Therefore, we compute N1, N2, N3, N4 and then
∑N−1

τ=0 C0,0(τ)
2 is ob-

tained, and thus we can derive the distribution for the case pm = 1

mod 4, i = 0, j = 0. From Lemma 4.16, we can show that N2 = N3

and N1 + 2 = N4. Thus, we need one more equation over N1, N2, N3, N4

to do this. But evaluation of these numbers does not seem to be easy.

Thus we remain it as a further work.

In Table 4.3, values ofN1, N2, N3, N4 are tabulated for some parameters

p, n, and m. Note that relations N2 = N3 and N1 + 2 = N4 are valid for

pm ̸= 2 mod 3 cases. But for p = 5 and n = 6, we have pm = 125 = 2

mod 3. One can check that N2 ̸= N3 and N1 + 2 ̸= N4 in this case.

4.7. Conclusion

In this chapter, for any odd prime p and an even integer n = 2m, the

cross-correlation values between two decimated m-sequences by 2 and d′ =

4pn/2 − 2 are determined. The cross-correlation is at most 4-valued and

takes values in
{

−1±pn/2

2 , −1+3pn/2

2 , −1+5pn/2

2

}
. Based on this, for pm ̸= 2

mod 3, a new half-period sequence family is constructed by the shift-and-

add method. The maximum magnitude of the correlation values of the

sequences in the family is upper bounded by −1+5pn/2

2 and the family size
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Table 4.3: Values of N1, N2, N3, N4.

p n m pm N1 N2 N3 N4

3 4 2 1 mod 4 22 16 16 24
6 3 3 mod 4 194 168 168 196
8 4 1 mod 4 1678 1600 1600 1680
10 5 3 mod 4 14882 14640 14640 14884

5 4 2 1 mod 4 182 128 128 184
6 3 1 mod 4 4018 3792 4040 3768
8 4 1 mod 4 98286 97024 97024 98288

7 4 2 1 mod 4 606 592 592 608
6 3 3 mod 4 29510 29312 29312 29512

11 4 2 1 mod 4 3782 3536 3536 3784
13 4 2 1 mod 4 7270 7008 7008 7272

is 4 times of the period of sequences, 4N .
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Chapter 5. On the Cross-Correlation of
Ternary m-Sequences of Period 34k+2 − 1

with Decimation 34k+2−32k+1+2
4 + 32k+1

In this chapter, for an integer k, we evaluate an upper bound on the

cross-correlation of a ternary m-sequence of period N = 34k+2 − 1 and

its decimated sequence with decimation d = 34k+2−32k+1+2
4 + 32k+1. It is

found that the cross-correlation is upper bounded by 4.5 · 32k+1 + 1. To

prove this, we use the quadratic form theory. Unlike the previous works,

we have four quadratic forms involved, and using Bluher’s result [33], we

restrict the number of zeros of linearized polynomials by 1, 9, and 81. Also

we prove that among four linearized polynomials, at most one polynomial

can have 81 zeros. 1

5.1. Introduction

The cross-correlation between p-ary m-sequences and their decimated

sequences by d has been extensively studied by many researchers. Tracht-

enberg [7] investigated the cross-correlation for the decimation d = pk+2
2

1The material of this chapter is primarily based on the following proceeding: c⃝2012
IEEE. Reprinted, with permission, from Ji-Youp Kim, Sung-Tai Choi, Taehyung Lim,
Jong-Seon No, and Habong Chung, “On the cross-correlation of ternary m-sequences
of period 34k+2−1 with decimation (34k+2−32k+1+2)/4+32k+1,” IEEE International
Symposium on Information Theory, Cambridge, MA, Jul. 2012
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and d = p2k − pk + 1 when p is an odd prime. Helleseth [11] summa-

rized many known results and evaluated cross-correlation distributions

for various values of decimations. Muller [27] proved that for odd n, the

cross-correlation between a ternary m-sequence and its decimation by

d = 3n+1
3+1 + 3n−1

2 is upper bounded by 2
√
pn. Hu, Li, Mills, Muller, Sun,

Willems, Yang, and Zhang [28] generalized Muller’s result to p = 3 mod 4,

and Xia, Zeng, and Hu [46] have evaluated the correlation distribution.

More recently, Ness, Helleseth, and Kholosha [34] derived the distribution

of the cross-correlation values for p = 3, d = 3k+1
2 , where k is an odd in-

teger with gcd(k, n) = 1. For an odd prime p, even n, and d = pk+1 with

gcd(n, k) = 1, Seo, Kim, No, and Shin [36] estimated the upper bound

1 + p
√
pn. Choi, Lim, No, and Chung [52] investigated cross-correlation

values for an odd prime p and decimation d = (pm+1)2

2(p+1) , where m is odd.

For a more detailed overview on this subject, we refer the reader to [54].

In this chapter, for an integer k, we derived an upper bound on the cross-

correlation of a ternary m-sequence of period 34k+2−1 and its decimation

with d = 34k+2−32k+1+2
4 +32k+1. It is shown that the upper bound is given

as 4.5 · 32k+1 + 1. For the derivation, we use the quadratic form theory

as in [27] [28] [34] [36] [46] [52], but in this case four quadratic forms

are involved. To obtain possible rank combinations of quadratic forms,

Bluher’s result [33] [35] is employed. It is shown that quadratic forms

have only even ranks and among four quadratic forms, at most one of

them has the lowest rank.

The remainder of this chapter is organized as follows. In Section 5.2,
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we introduce the basic facts for the quadratic forms and linearized poly-

nomials. In Section 5.3, we present the Bluher’s result [33]. In Section 5.4,

we collect notations and explain the step of the proof. In Section 5.5, we

discuss how to transform the cross-correlation into the quadratic form.

Next, we investigate the possible rank combination of quadratic forms

in Section 5.6. In Section 5.7, we derive the upper bound on the cross-

correlation magnitude. Some examples are given in Section 5.8 and the

related result by Xia, Chen, Hellseth, and Li [49] is introduced in Section

5.9. Finally, concluding remarks are given in Section 5.10.

5.2. Quadratic Forms and Linearized Polynomials

In this section, we introduce the quadratic form, which is the main

tool for analyzing the cross-correlation in this chapter. Also, linearized

polynomials, whose zero sets are the kernels of corresponding quadratic

forms, are defined. The following discussion can be found in [72] [73].

Let V be an n-dimensional vector space over the field F . We can define

a bilinear form B as follows.

Definition 5.1 (Bilinear forms [73]). A bilinear form B is a function
B : V × V → F such that

(1) B(ax+ by, z) = aB(x, z) + bB(y, z) for all x, y, z ∈ V and a, b ∈ F

(2) B(x, ay+ bz) = aB(x, y)+ bB(x, z) for all x, y, z ∈ V and a, b ∈ F . 2

That is, the bilinear form is linear for each argument. Let B = {v1, ..., vn}

be an ordered basis of V . Then we can map the bilinear form B to its
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associated matrix [B]B as

[B]B =
(
B(vi, vj)

)
.

Thus each (i, j) component of [B]B is B(vi, vj). Conversely, for each n×n

matrix J over F , we can define the bilinear form BJ
E : Fn × Fn → F as

BJ
E(x, y) = xTJy

where x, y ∈ Fn and E is a standard basis of F . It is immediate that BJ
E

is indeed a bilinear form on Fn.

One can show that the set of all bilinear form over V and the set of all

n× n matrices over F are vector spaces over F . Furthermore, it is easily

shown that these are isomorphic each other by the mapping

B 7−→ [B]B.

Symmetric bilinear forms are of particular interest to us.

Definition 5.2 (Symmetric bilinear forms [73]). A bilinear form B is
called symmetric if

B(x, y) = B(y, x) for all x, y ∈ V.

2

For example, the inner product defined on the Euclidean space Rn is a

special case of symmetric bilinear forms.

Now we define the quadratic form.

Definition 5.3 (Quadratic forms [73]). Let V be a finite dimensional
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vector space over the field F . Then the function Q : V → F is quadratic
form over V if

(1) Let BQ : V × V → F be the function defined by

BQ(v, w) = Q(v + w)−Q(v)−Q(w)

where v, w ∈ V . Then BQ is a bilinear form over V .

(2) For all v ∈ V, c ∈ F , we have

Q(cv) = c2Q(v).

2

Therefore, if we are given the quadratic form, then we have the associ-

ated bilinear form. The converse is also true.

Lemma 5.4 (Exercise 14.2.3 [73]). Let B be a symmetric bilinear form
over the finite dimensional vector space V over the field F . Let Q : V → F

be the function defined by

2Q(v) = B(v, v)

where v ∈ V . Then Q is a quadratic form over V . Furthermore, we have
B = BQ. 2

Thus we can say that quadratic forms and symmetric bilinear forms are

equivalent. Furthermore, quadratic forms can be expressed as quadratic

equations over F . Suppose Q is a quadratic form over V and let B =

{v1, ..., vn} be an ordered basis of V . Then we can find the symmetric

matrix J = (aij) such that BQ = BJ
B. For each v =

∑n
i=1 xivi ∈ V , let
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[v]B = (x1, ..., xn)
T . Then we have

2Q(v) = BQ(v, v) = [v]TBJ [v]B =
∑
i,j

aijxixj .

Therefore, Q(v) is a quadratic equation of x1, ..., xn. Conversely, consider

a quadratic equation

2Q(x1, ..., xn) =
∑
i,j

aijxixj

where aij = aji. Let v, w ∈ V such that [v]B = (x1, ..., xn)
T , [w]B =

(y1, ..., yn)
T and Q(v) = Q(x1, ..., xn). Then,

2BQ(v, w) = 2Q(v + w)−Q(v)−Q(w)

=
∑
i,j

aij(xi + yi)(xj + yj)

−
∑
i,j

aijxixj −
∑
i,j

aijyiyj

= 2
∑
i,j

aijxiyj .

Therefore, by letting J = (aij), J is symmetric and

BQ(v, w) =
∑
i,j

xiaijyj = [v]TBJ [w]B.

ThusBQ is a bilinear form over V . Therefore,Q is a quadratic form over V .

This implies that quadratic forms are equivalent to quadratic equations.

In this case, (V,B) or simply V , is called a quadratic space.

In this chapter, we deal with the problem of finding the dimension of

kernels of bilinear forms.
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Definition 5.5 (Kernels of bilinear forms [72]). Let B be a bilinear form
of a vector space V . Then the left kernel of B is defined as

{v ∈ V |B(v, x) = 0 for all x ∈ x}

and the right kernel of B is similarly defined as

{v ∈ V |B(x, v) = 0 for all x ∈ x}.

2

The computation of dimensions of these kernels is important to cal-

culate the correlation bound. Note that if a bilinear form is symmetric,

then its left kernel and right kernel are equal. In this case, the left ker-

nel and the right kernel are simply called the kernel and denoted by V ⊥.

If V ⊥ is a zero vector space, then we call V a nondegenerate quadratic

space and its bilinear form nondegenerate. The rank of a bilinear form is

dim(V )− dim(V ⊥). Therefore, the rank of a nondegenerate bilinear form

is always the full dimension.

In this chapter, we deal with the quadratic forms defined over the finite

field. For a prime p and an integer n, let Fpn be the finite field of pn ele-

ments. Since Fpn is a n-dimensional vector space over Fp, we identify Fpn

as Fn
p . Then a quadratic form f over Fpn is expressed by a homogeneous

polynomial of degree 2 in Fp[x1, ..., xn]. That is,

f(x1, x2, ..., xn) =
n∑

i,j=1

aijxixj

where aij ∈ Fp. The matrix A = (aij) is called a coefficient matrix of f

and det(f) = ∆ is defined to be det(A). If the rank of A is k for some

75



✐
✐

“KJY_Dissertation_all” — 2014/12/29 — 17:34 — page 76 — #86 ✐
✐

✐
✐

✐
✐

0 ≤ k ≤ n, then it follows that the rank of f is also k. If rank(f) = n,

then f is nondegenerate [70].

A quadratic character η(x) of Fpn is defined as

η(x) =



1, if x is a nonzero square in Fpn

−1, if x is a nonzero nonsquare in Fpn

0, if x = 0.

For a nondegenerate quadratic form f over Fp, one can calculate the

number of solutions of f(x1, x2, ..., xn) = b for b ∈ Fp by the following

lemma.

Lemma 5.6 (Theorem 6.26, 6.27 [70]). Let η be the quadratic character
of Fp. The number of solutions N(b) of f(x1, x2, ..., xn) = b in Fn

p , when
f is a nondegenerate quadratic form of rank n with determinant ∆ and
b ∈ Fp, is given as follows:
Case 1) n even;

N(b) =

pn−1 − ϵp
n−2
2 , if b ̸= 0

pn−1 − ϵ(p− 1)p
n−2
2 , if b = 0

where ϵ = η((−1)n/2∆).
Case 2) n odd;

N(b) =

pn−1 + ϵη(b)p
n−1
2 , if b ̸= 0

pn−1, if b = 0

where ϵ = η((−1)(k−1)/2∆). 2

From Lemma 5.6, the following lemma is easily derived.

Lemma 5.7 (Ness, Helleseth, and Kholosha [34]). Let η be the quadratic
character of F3. Let f be a nondegenerate quadratic form in n variables
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with determinant ∆ and ω be the 3rd root of unity. Then

S =
∑

x∈F3n

ωf(x)

is given by

S =

ϵ3n/2, if n is even

ϵ
√
−13n/2, if n is odd

where ϵ = η((−1)n/2∆) for even n and ϵ = η((−1)(n−1)/2∆) for odd n. 2

For the case of rank(f) = k < n, we can obtain the number of solutions

by multiplying the result of Lemma 5.6 or Lemma 5.7 by pn−k. Since the

rank of quadratic form can be computed from the dimension of the kernel,

we have:

Lemma 5.8 (Muller [27]). Let f ∈ Fp[x1, x2, ..., xn] be a quadratic form.
Define

Z = {z ∈ Fn
p : f(x+ z)− f(x) = 0 for all x ∈ Fn

p}.

Then Z is a subspace of Fn
p and rank(f) = n− dim(Z). 2

Note that Z is the kernel of f .

Let q be a prime power and m be an integer. A polynomial of the form

L(x) =
∑
i

aix
qi

with coefficients in Fqm is called a linearized polynomial over Fqm . For an

extension field F of Fqm , we have

L(x+ y) = L(x) + L(y), for all x, y ∈ F
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L(cx) = cL(x), for all x ∈ F and c ∈ Fq.

Thus the set of roots of a linearized polynomial is a vector space over Fq

and the number of roots is a power of q.

5.3. Number of Solutions of xps+1 − cx+ c

The following lemmas will be used to determine the number of solutions

of some linearized polynomials.

Lemma 5.9 (Bluher [33], Zeng, Li, and Hu [35]). Let hc(x) = xp
s+1 −

cx + c, c ∈ F∗
pn . Then hc(x) = 0 has either 0, 1, 2, or pgcd(s,n) + 1 roots

in F∗
pn . 2

Lemma 5.10 (Bluher [33]). Let F be a finite field of characteristic p
and c ∈ F ∗. Suppose q is a power of p and F ∩ Fq = FQ. Define f(x) =
xq+1 − cx+ c. Then the following are equivalent:

1) f has at least three roots in F ;

2) f has exactly Q+ 1 roots in F ;

3) f has at least two roots in F and NF/FQ
(r− 1) = 1 for all root r in F .

2

By setting F = Fp4k+2 and q = p2k in Lemma 5.10, we have the following

result.

Corollary 5.11. Let k be an integer, n = 4k+2, and p be an odd prime.
Then Fpn ∩ Fp2k = Fp2 . Let f(x) = xp

2k+1 − cx + c, c ∈ F∗
pn . Then the

following are equivalent.

1) f has exactly p2 + 1 roots in Fpn ;
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2) f has at least two roots in Fpn and

(r − 1)
pn−1

p2−1 = 1

for all root r in Fpn . 2

5.4. Notations

First we collect notations here.

• k is an integer;

• n = 2m = 2 + 4k;

• d = 3n−3m+2
4 + 3m;

• F3n is the finite field with 3n elements;

• α is a primitive element of F3n ;

• N = 3n − 1;

• gcd(N, d) = 3m+1
4 ;

• 0 ≤ l < gcd(N, d).

In continuing sections, we derive the cross-correlation function C(τ) be-

tween trn1 (αt) and trn1 (αdt+l) with time shift τ . To do this, we follow steps

introduced below [54]:

(1) Transform the correlation function into the exponential sums of quadratic

form exponents.
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(2) Obtain the possible ranks and rank combinations of quadratic forms.

(3) Using Lemma 5.6, calculate the upper bound on the correlation.

First, we attempt to transform the cross-correlation into the quadratic

form.

5.5. Quadratic Form Expression of the Cross-Correlation
Function

In this section, we transform the cross-correlation function C(τ) be-

tween trn1 (αt) and trn1 (αdt+l) with time shift τ into the exponential sum

with a quadratic form exponent.

C(τ) is given as

C(τ) =
N−1∑
t=0

ωtrn1 (αt)−trn1 (αd(t+τ)+l)

=
N−1∑
t=0

ωtrn1 (αt−γαdt)

=
∑

x∈F∗
3n

ωtrn1 (x−γxd)

where γ = αdτ+l and ω is a primitive third root of unity.

Let x = y3
n−1+1. Then xd = yd(3

n−1+1). Here we have

d(3n−1 + 1) =
(3n − 3n/2 + 3− 1

3 + 1
+ 3n/2

)
(3n−1 + 1)

=
3n − 3n/2 + 3− 1

3 + 1
3n−1 + 3n/23n−1

+
3n − 3n/2 + 3− 1

3 + 1
+ 3n/2
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=
3(3n−1 + 1)− (3n/2 + 1)

3 + 1
3n−1 + 3n+n/2−1

+
3(3n−1 + 1)− (3n/2 + 1)

3 + 1
+ 3n/2

=
3n−1 + 1

3 + 1
− 3n/2 + 1

3 + 1
3n−1 + 3n+n/2−1

+
3(3n−1 + 1)

3 + 1
− 3n/2 + 1

3 + 1
+ 3n/2

=
(3 + 1)(3n−1 + 1)

3 + 1
− (3n/2 + 1)(3n−1 + 1)

3 + 1

+ 3n/2(3n−1 + 1)

=3n−1 + 1 +
(
3n/2 − 3n/2 + 1

3 + 1

)
(3n−1 + 1)

=3n−1 + 1 +
(3n/2+1 + 3n/2 − 3n/2 − 1

3 + 1

)
(3n−1 + 1)

=3n−1 + 1 +
(3n/2+1 − 1

3 + 1

)
(3n−1 + 1)

=(3n−1 + 1)
(3 + 1 + 3n/2+1 − 1

3 + 1

)
=(3n−1 + 1)

(3 + 3n/2+1

3 + 1

)
=(3n−1 + 1)

(3(3n/2+1 + 1)

3 + 1

)
=
3(3n−1 + 1)

3 + 1
(3n/2 + 1)

=
3n + 3

3 + 1
(3n/2 + 1)

=(3n + 3)
3n/2 + 1

3 + 1

=(1 + 3)
3n/2 + 1

3 + 1

=3n/2 + 1 mod N.
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Thus, we have

trn1 (x− γxd) = trn1 (y
3n−1+1 − γy3

m+1).

Since (3n−1 + 1, 3n − 1) = 4, we must consider ai ∈ Ci, 0 ≤ i ≤ 3, so that

4(1 + C(τ)) = 4

 ∑
x∈F3n

ωtrn1 (x−γxd)


=

3∑
i=0

∑
y∈F3n

ωtrn1 (aiy3
n−1+1−γadi y

3m+1)

where Ci = {α4t+i|0 ≤ t < 3n−1
4 }.

Here gi(y) = trn1 (aiy3
n−1+1−γadi y3

m+1), 0 ≤ i ≤ 3, are quadratic forms.

Indeed, let {αk} be a basis of F3n over F3. Then we can set y =
∑n

k=1 ykαk,

yk ∈ F3. Thus,

gi(y) =trn1 (aiy
3n−1+1 − γadi y

3m+1)

=trn1 (aiy
3n−1+1)− trn1 (γa

d
i y

3m+1)

=trn1

(
ai

( n∑
k=1

ykαk

)3n−1+1)
− trn1

(
γadi

( n∑
k=1

ykαk

)3m+1)

=trn1

(
ai

( n∑
k=1

ykαk

)3n−1( n∑
l=1

ylαl

))

− trn1

(
γadi

( n∑
k=1

ykαk

)3m( n∑
l=1

ylαl

))

=trn1

(
ai

n∑
k=1

ykα
3n−1

k

n∑
l=1

ylαl

)
− trn1

(
γadi

n∑
k=1

ykα
3m

k

n∑
l=1

ylαl

)

=

n∑
k=1

n∑
l=1

trn1 (aiykylα
3n−1

k αl)−
n∑

k=1

n∑
l=1

trn1 (γa
d
i ykylα

3m

k αl)
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=
n∑

k=1

n∑
l=1

trn1 (aiα
3n−1

k αl − γadiα
3m

k αl)ykyl.

Therefore, we have the desired exponential sums with quadratic form ex-

ponents. In next section, we will restrict the possible rank of quadratic

forms.

5.6. Ranks of Quadratic Forms

To calculate possible ranks of quadratic forms, we use Lemma 5.9 and

count the number of z such that gi(y + z)− gi(y) = 0 for all y ∈ F3n .

Lemma 5.12. The number of z such that gi(y + z) − gi(y) = 0 for all
y ∈ F3n equals the number of roots of linearized polynomial fi(z), where

fi(z) = ai
3z3 + aiz

3n−1 − (γadi )
3mz3

m − γadi z
3m .

Proof. It is easy to verify that

gi(y + z)− gi(y) = 0

⇔ trn1 (ai(y + z)3
n−1+1 − γadi (y + z)3

m+1)− trn1 (aiy
3n−1+1 − γadi y

3m+1) = 0

⇔ trn1 (y(ai
3z3 + aiz

3n−1 − (γadi )
3mz3

m − γadi z
3m)

+ aiz
3n−1+1 − γadi z

3m+1) = 0.

To satisfy this equation for all y, we must have

ai
3z3 + aiz

3n−1 − (γadi )
3mz3

m − γaiz
3m = 0

trn1 (aiz
3n−1+1 − γadi z

3m+1) = 0.

Note that the first equation is fi(z) = 0. Here we claim that the first
equation is sufficient condition for the second one. Multiplying the first
equation by z, we have

ai
3z3+1 + aiz

3n−1+1 − (γadi )
3mz3

m+1 − γadi z
3m+1 = 0.
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Arranging the equation gives

ai
3z3+1 − γadi z

3m+1 = −aiz3
n−1+1 + (γadi )

3mz3
m+1.

Taking the trace function on both sides, we have

trn1 (ai
3z3+1 − γadi z

3m+1) = −trn1 (aiz
3n−1+1 − (γadi )

3mz3
m+1).

Using the property of the trace function, we can raise the first expression
of the right-hand side to the third power as

trn1 (ai
3z3+1 − γadi z

3m+1) = −trn1 (ai
3z3+1 − γadi z

3m+1).

Then we have

trn1 (ai
3z3+1 − γadi z

3m+1) = −trn1 (ai
3z3+1 − γadi z

3m+1)

⇔ 2trn1 (ai
3z3+1 − γadi z

3m+1) = 0

⇔ trn1 (ai
3z3+1 − γadi z

3m+1) = 0.

By the discussion above, it is sufficient to count the number of roots of

linearized polynomial fi(z). Now we prove that the number of roots of the

linearized polynomial fi(z) is one of 1, 9, and 81. Note that the linearized

polynomial fi(z) has the degree 3n−1, which is not constant, but depends

on n.

Lemma 5.13. The number of roots of the linearized polynomial fi(z),
i = 0, 1, 2 or 3, is one of 1, 9, and 81.

Proof. We can arrange the equation

ai
3z3 + aiz

3n−1 − (γadi )
3mz3

m − γadi z
3m = 0
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as

ai
3z3 + aiz

3n−1
= ((γadi )

3m + γadi )z
3m .

Here we assume z ̸= 0. By dividing the both sides by z3m , we obtain

ai
3

z3m−3
+ aiz

3n−1−3m = ((γadi )
3m + γadi ).

Let X = z3
m−1−1. Since (3m−1 − 1, 3n − 1) = 32 − 1 = 8, this transform

is an 8-1 map.
Define

Bi = (γadi )
3m + γadi

Y = aiX.

Then the equality becomes

ai
3

X3
+ aiX

3m = Bi.

Hence, we have

1

Y 3
+ ai

3m+1Y 3m = Bi.

Set Ai = ai
3m+1. Note Ai ∈ F3m . Let Y 3 = x. It is a one-to-one mapping

since (3n − 1, 3) = 1. Thus,

1

Y 3
+AiY

3m = Bi. (5.1)

From (5.1), we have

1

x
+Aix

3m−1
= Bi. (5.2)

Now (5.2) can be rewritten as

1 +Aix
3m−1+1 = Bix. (5.3)
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Here we let x = 1
Bi
y. Then (5.3) implies that

1 +Ai

(
1

Bi
y

)3m−1+1

= Bi
1

Bi
y. (5.4)

(5.4) can be rewritten as

1 +
Ai

B3m−1+1
i

y3
m−1+1 = y. (5.5)

Let Ai

B3m−1+1
i

= 1
ci

. Then (5.5) becomes

1 +
1

ci
y3

m−1+1 = y

⇔ y3
m−1+1 − ciy + ci = 0.

Then by Lemma 5.9, the number of solutions of y3m−1+1 − ciy + ci = 0

is one of 0, 1, 2, and 3(m−1,n) + 1 = 32 + 1 = 10. Since the mapping is
8-1 map, the number of solutions is one among 0, 8, 16, and 80. Adding a
zero root (z = 0), we have 1, 9, 17, and 81. Since the original equation is a
linearized polynomial, 17 cannot be a number of root. Thus the linearized
polynomial can have only 1, 9, or 81 roots.

Next we show that among the four linearized polynomials fi(z), 0 ≤

i ≤ 3, at most one polynomial can have 81 roots.

Lemma 5.14. Among the four linearized polynomials fi(z), 0 ≤ i ≤ 3, at
most one polynomial can have 81 solutions. Or equivalently, among four
polynomials hi(y) = y3

m−1+1−ciy+ci, 0 ≤ i ≤ 3, at most one polynomial
can have 10 solutions.

Proof. Without loss of generality, we may assume that ai = αi. By the
previous lemma, we have the following relation

ci =
(trnm(γadi ))

3m−1+1

a3
m+1

i

, y =
trnm(γadi )

a3i
z3

m−3. (5.6)
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Suppose β = α
3n−1
3m−1 = α3m+1 is a primitive element of the subfield F3m .

Since

a3
m+1

i = (αi)3
m+1 = βi,

for i = 0, 2, a3
m+1

i is a square in the subfield and for i = 1, 3, a3
m+1

i is a
nonsquare element of the subfield. Note that the numerator (trnm(γadi ))

3m−1+1

is always a square in the subfield F3m . Consequently,

ci =

square in F3m if i = 0, 2

nonsquare in F3m if i = 1, 3.

Now we claim that only f0(z) can have 81 roots. Suppose fi(z) has 81
roots. We consider the following two cases.

Case 1) i = 0 or i = 2:
By Corollary 5.11, we have

(
y3

m−1+1

ci

) 3n−1

32−1

= (y − 1)
3n−1

32−1 = 1. (5.7)

Since ci is a square in F3m , ci = β2k for some k. Also note that β = α4l

for some l. Therefore we have

c
3n−1

32−1

i = (α8kl)
3n−1

32−1 = 1.

Thus (y3m−1+1)
3n−1

32−1 = 1. Since 3m−1 +1 = 2 mod 4, we can substitute as
y3

m−1+1 = x4k+2. Then we have

(x4k+2)
3n−1

8 = (x2k+1)
3n−1

4 = 1.

Therefore,

y
3m−1+1

2 = x2k+1 = α4l′ for some l′.
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But since (3
m−1+1

2 , 4) = 1, we have y = α4l′ . Thus, from (5.6),

ya3i = trnm(γadi )z
3m−3.

Here all terms in the right hand side are in C0. We already observed that
y ∈ C0. Therefore we must have ai ∈ C0. This implies that i = 0.

Case 2) i = 1 or i = 3:
Now assume that i = 1 or i = 3. This means that ci is a nonsquare in

F3n . Thus, we can write

ci = β2k+1 = (α4l)2k+1 = α8lk+4l.

Note that l is odd since m is odd. Applying Corollary 5.11 again, we have
(5.7), but for this case, it follows that

c
3n−1

32−1

i = (α2lk+l)
3n−1

2 = (−1)(2k+1)l = −1.

Therefore

(y3
m−1+1)

3n−1

32−1 = −1.

Since 3m−1 + 1 = 2 mod 4, we can substitute as 3m−1 + 1 = 4k + 2 for
some k. Then we have

(y2k+1)
3n−1

4 = −1 ⇔
(
y

3n−1
2

)k
y

3n−1
4 = α

3n−1
2

k′ (5.8)

where k′ is some odd integer. Thus y must be a square in F3n . Let y = α2l′

for some integer l′. From (5.8), it follows that

α
3n−1

2
l′ = α

3n−1
2

k′ .

Therefore, l′ is odd. Thus y ∈ C2. From (5.6), we have ai ∈ C2. This
implies that ci is in C2, which contradicts i = 1 or i = 3. Therefore if
fi(z) has 81 roots, then i = 0.

It is well known that the number of roots of the linearized polynomial
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fi(z) is equal to 3n−rank(gi(y)). Therefore by what we have discussed so

far, each gi(y) has a rank of n, n − 2, or n − 4, and only one of gi(y),

i = 0, 1, 2, 3, can have the rank n− 4. Thus we can enumerate 9 possible

rank combinations of gi(y), i = 0, 1, 2, 3, ignoring order as

(n, n, n, n), (n, n, n, n− 2), (n, n, n, n− 4),

(n, n, n− 2, n− 2), (n, n, n− 2, n− 4), (5.9)

(n, n− 2, n− 2, n− 2), (n, n− 2, n− 2, n− 4),

(n− 2, n− 2, n− 2, n− 2), (n− 2, n− 2, n− 2, n− 4).

5.7. Upper Bound on the Cross-Correlation Func-
tion

Now we are ready to derive the upper bound on the magnitude of the

cross-correlation function. This can be done by applying Lemma 5.6 and

Lemma 5.7 to each of rank combinations of gi(y), i = 0, 1, 2, 3.

Theorem 5.15. For an integer k ≥ 0, n = 4k + 2 = 2m, d = 3n−3m+2
4 +

3m, and 0 ≤ l < 4(3m+1), the magnitude of the cross-correlation function
C(τ) between trn1 (αt) and trn1 (αdt+l) is upper bounded by

|C(τ)| ≤ 4.5 · 3m + 1.

Proof. As discussed before, there are nine rank combinations for gi(y),
i = 0, 1, 2, 3, ignoring ordering. We bound the magnitude of the cross-
correlation for each case.

Case 1) The rank combination is given as (n, n, n, n);
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We have

4(1 + C(τ)) =

3∑
i=0

∑
y∈F3n

ωgi(y)

= ϵ13
n
2 + ϵ23

n
2 + ϵ33

n
2 + ϵ43

n
2

= (ϵ1 + ϵ2 + ϵ3 + ϵ4)3
m

≤ 4 · 3m

where ϵ1, ϵ2, ϵ3, ϵ4 = ±1. Thus, we obtain |C(τ)| ≤ 3m + 1.
Case 2) The rank combination is given as (n, n, n, n− 2);
We have

4(1 + C(τ)) =
3∑

i=0

∑
y∈F3n

ωgi(y)

= ϵ13
n
2 + ϵ23

n
2 + ϵ33

n
2 + ϵ43

23
n−2
2

= (ϵ1 + ϵ2 + ϵ3)3
m + 3ϵ43

m

≤ 6 · 3m

where ϵ1, ϵ2, ϵ3, ϵ4 = ±1. Thus, we obtain |C(τ)| ≤ 3
23

m + 1.
Case 3) The rank combination is given as (n, n, n, n− 4);
We have

4(1 + C(τ)) =

3∑
i=0

∑
y∈F3n

ωgi(y)

= ϵ13
n
2 + ϵ23

n
2 + ϵ33

n
2 + ϵ43

43
n−4
2

= (ϵ1 + ϵ2 + ϵ3)3
m + 32ϵ43

m

≤ 12 · 3m

where ϵ1, ϵ2, ϵ3, ϵ4 = ±1. Thus, we obtain |C(τ)| ≤ 3 · 3m + 1.
Case 4) The rank combination is given as (n, n, n− 2, n− 2);
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We have

4(1 + C(τ)) =

3∑
i=0

∑
y∈F3n

ωgi(y)

= ϵ13
n
2 + ϵ23

n
2 + ϵ33

23
n−2
2 + ϵ43

23
n−2
2

= (ϵ1 + ϵ2)3
m + 3ϵ43

m + 3ϵ43
m

≤ 8 · 3m

where ϵ1, ϵ2, ϵ3, ϵ4 = ±1. Thus, we obtain |C(τ)| ≤ 2 · 3m + 1.
Case 5) The rank combination is given as (n, n, n− 2, n− 4);
We have

4(1 + C(τ)) =
3∑

i=0

∑
y∈F3n

ωgi(y)

= ϵ13
n
2 + ϵ23

n
2 + ϵ33

23
n−2
2 + ϵ43

43
n−4
2

= (ϵ1 + ϵ2)3
m + 3ϵ33

m + 32ϵ43
m

≤ 14 · 3m

where ϵ1, ϵ2, ϵ3, ϵ4 = ±1. Thus, we obtain |C(τ)| ≤ 7
2 · 3m + 1.

Case 6) The rank combination is given as (n, n− 2, n− 2, n− 2);
We have

4(1 + C(τ)) =

3∑
i=0

∑
y∈F3n

ωgi(y)

= ϵ13
n
2 + ϵ23

23
n−2
2 + ϵ33

23
n−2
2 + ϵ43

23
n−2
2

= ϵ13
m + 3ϵ23

m + 3ϵ43
m + 3ϵ43

m

≤ 13 · 3m

where ϵ1, ϵ2, ϵ3, ϵ4 = ±1. Thus, we obtain |C(τ)| ≤ 13
4 · 3m + 1.

Case 7) The rank combination is given as (n, n− 2, n− 2, n− 4);
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We have

4(1 + C(τ)) =

3∑
i=0

∑
y∈F3n

ωgi(y)

= ϵ13
n
2 + ϵ23

23
n−2
2 + ϵ33

23
n−2
2 + ϵ43

43
n−4
2

= ϵ13
m + 3ϵ23

m + 3ϵ33
m + 32ϵ43

m

≤ 16 · 3m

where ϵ1, ϵ2, ϵ3, ϵ4 = ±1. Thus, we obtain |C(τ)| ≤ 4 · 3m + 1.
Case 8) The rank combination is given as (n− 2, n− 2, n− 2, n− 2);
We have

4(1 + C(τ)) =
3∑

i=0

∑
y∈F3n

ωgi(y)

= ϵ13
23

n−2
2 + ϵ23

23
n−2
2 + ϵ33

23
n−2
2 + ϵ43

23
n−2
2

= 3ϵ13
m + 3ϵ23

m + 3ϵ43
m + 3ϵ43

m

≤ 12 · 3m

where ϵ1, ϵ2, ϵ3, ϵ4 = ±1. Thus, we obtain |C(τ)| ≤ 3 · 3m + 1.
Case 9) The rank combination is given as (n− 2, n− 2, n− 2, n− 4);
We have

4(1 + C(τ)) =

3∑
i=0

∑
y∈F3n

ωgi(y)

= ϵ13
23

n−2
2 + ϵ23

23
n−2
2 + ϵ33

23
n−2
2 + ϵ43

43
n−4
2

= 3ϵ13
m + 3ϵ23

m + 3ϵ33
m + 32ϵ43

m

≤ 18 · 3m

where ϵ1, ϵ2, ϵ3, ϵ4 = ±1. Thus, we obtain |C(τ)| ≤ 4.5 · 3m + 1.
Hence the magnitude of the cross-correlation function C(τ) is upper

bounded by |C(τ)| ≤ 4.5 · 3m + 1.
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5.8. Examples

In this section, we consider examples of cross-correlations studied in

the previous sections.

Example 5.16. Suppose n = 4k+2 = 2m = 6 and d = 203. For all l going
through 0 to 3m+1

4 − 1 = 103, by computer search, the cross-correlation
distribution between trn1 (αt) and trn1 (αdt+l) is given as

C(τ) =



−1, 34328 times

−28, 18095 times

26, 14973 times

−82, 833 times

80, 938 times

−55, 4676 times

53 1869 times.

Note that the cross-correlation is 7-valued. The maximum magnitude of
correlation is 82 ≈ 3.039

√
36 − 1.

Example 5.17. Let m = 5, n = 10. Then d = 14945. By the computer
experiments, the cross-correlation is given as

C(τ) =



728, 21411 times

−487, 64050 times

−1, 1473577 times

485, 206180 times

−244, 963190 times

242, 812520 times

−730 61000 times.

The cross-correlation is again 7-valued. The maximum magnitude of cor-
relation is 730 ≈ 3.004

√
310 − 1.
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5.9. Related Works

After [59] was presented, Xia, Chen, Helleseth, and Li [49] generalized

the result to the odd prime p case. To be specific, for an odd positive inte-

ger m ≥ 3, n = 2m, and an odd prime p, they derived the cross-correlation

between the p-ary m-sequence trn1 (αt) and its all decimated sequences

trn1 (αdt+l) for the decimation factor d = (pm+1)(pm+p−1)
p+1 , where 0 ≤ l <

gcd(d, pn − 1) and α is a primitive element of Fpn . They showed that the

cross-correlation function takes values in {−1,−1± ipm|i = 1, 2, ..., p}.

Theorem 5.18 (Xia, Chen, Helleseth, and Li [49]). Let p be an odd
prime, m ≥ 3 be an odd integer, and n = 2m. Let d = (pm+1)(pm+p−1)

p+1 be
the decimation factor. Then the cross-correlation function between trn1 (αt)

and its all decimated sequences trn1 (αdt+l), where 0 ≤ l < gcd(d, pn − 1),
takes the values belonging to the following set

{−1,−1± ipm|i = 1, 2, ..., p}.

Therefore, the magnitude of the cross-correlation is upper bounded by
pm+1 + 1. 2

Note that our result is the special case for p = 3.

5.10. Conclusion

In this chapter, we investigate the upper bound on the cross-correlation

function between a ternary m-sequence of period 3n − 1, n = 4k + 2 and

its decimated sequence with the decimation d = 34k+2−32k+1+2
4 + 32k+1.

It is shown that the cross-correlation is upper bounded by 4.5 · 3n/2 + 1.

For the derivation, it is proved that 1, 9, 81 are only possible number
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of solutions of linearized polynomials and only one among four linearized

polynomials can have 81 roots. This result is further improved by Xia,

Chen, Helleseth, and Li [49].
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Chapter 6. Conclusions

In this dissertation, we construct half-period sequence families with low

correlation using the shift-and-add method and the decimation. We con-

sider p-ary sequences for sequence family constructions and give an upper

bound on the correlation within the sequence families.

In the second part of this dissertation, we consider the Helleseth’s work

[11] and derive the cross-correlation values of decimated m-sequences.

The last topic of this dissertation is the derivation of the upper bound

on the cross-correlation between ternary m-sequences and its decimations

with the particular decimation factor. Proving the upper bound requires

the quadratic form technique and Bluher’s result [33].

In Chapter 2, pseudorandom sequences have been introduced. Some

well known sequences and sequence families are reviewed, and necessary

definitions and mathematical preliminaries are explained.

In Chapter 3, new families of half-period p-ary sequences with low cor-

relation are proposed. For an odd prime p = 3 mod 4 and an odd positive

integer n, families of sequences of period N = pn−1
2 are constructed from

m-sequences and their decimated sequences by d = N − pn−1. Using the

generalized Kloosterman sums, we show that the upper bound on the

correlation of the family is 2
√
N + 1

2 , which is about 1.5 times of the

Sidel’nikov’s lower bound. The family size is given as 4N .
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In Chapter 4, we study the values of the cross-correlation of two deci-

mated m-sequences. We consider two p-ary m-sequences with the period

of pn − 1 for an odd prime p and an even integer n, decimated each

by 2 and 4pn/2 − 2, respectively. Our study is based on the Helleseth’s

work [11] and consequently the correlation function takes only values

in
{

−1±pn/2

2 , −1+3pn/2

2 , −1+5pn/2

2

}
. Furthermore, for pn/2 ̸= 2 mod 3, we

propose half-period sequence families which have the maximum correla-

tion magnitude −1+5pn/2

2 . The size of the family is given as 2(pn − 1).

In Chapter 5, for n = 4k + 2, the cross-correlation between ternary

m-sequences and decimated m-sequences by the decimation factor d =

34k+2−32k+1+3−1
3+1 + 32k+1 is investigated. We employ the quadratic form

technique and Bluher’s result [33] for the derivation of the upper bound on

the correlation. It is proved that the upper bound is given by 4.5 ·3n/2+1.
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초 록

본 논문은 세 가지의 연구 결과를 포함하고 있다. 주기 pn−1
2 를 가지는

새로운 p진수열군의생성,데시메이션된 p진 m-수열과그데시메이션사

이의 상호상관도에 대한 연구, 마지막으로 3진 m-수열과 그 데시메이션

수열 사이의 상호상관도에 관한 연구이다.

먼저, p = 3 mod 4를 만족하는 홀수인 소수 p와 홀수 n에 대해서, 낮

은상관도를가지는주기 N = pn−1
2 의새로운 p진수열군을제안하였다.

본 수열군은 두 개의 데시메이션된 m-수열을 이용하였으며, 이 때 데시

메이션의값은각각 2와 d = N −pn−1으로주어진다.상호상관도의절대

값의 상한은 2
√
N + 1/2 =

√
2pn으로 주어지며 이는 일반화된 클루스

터만 합에 의해 유도된다. 수열군의 크기는 주기의 네 배로서, 2(pn − 1)

으로 주어진다.

두 번째 결과로, Helleseth [11]의 결과로부터, 홀수 소수인 p와 정수

n = 2m에 대해 각각 2와 4pn/2 − 2로 데시메이션된 두 개의 p진 m-수열

간의 상호상관도가 분석되었다. 상호상관도는 최대 4개의 값을 가질 수

있으며, 이는 −1±pn/2

2 , −1+3pn/2

2 , −1+5pn/2

2 중의 하나이다. 본 결과를 이용

하여 pm ̸= 2 mod 3인 경우에 대해서, 상호상관도의 크기가 5√
2

√
N이고

주기가 N = pn−1
2 , 수열군의 크기 4N를 가지는 새로운 p진 수열군의

생성을 제안하였다.

본 논문의 마지막 결과는, 3진 m-수열과 이를 d = 34k+2−32k+1+3−1
3+1 +

32k+1으로 데시메이션한 수열간의 상호상관도에 대한 연구이다. 고려된

m-수열의 주기는 34+2 − 1이며, 상호상관도의 상한 값은 4.5 · 32k+1 + 1

으로 증명되었다. 증명 과정에는 이차형식에 대한 이론이 사용되었으며,
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또한 Bluher [33]의 결과가 중요하게 이용되었다. 본 연구에서는 총 네

가지의 이차형식이 다루어졌으며 이는 일반적으로 이차형식을 이용한

상호상관도 연구에서 두 가지의 이차형식만 고려되는 것과 차별화된다.

주요어: 자기상관도, 상호상관도, 데시메이션 수열, 지수함수합, 클루스

터만합, m-수열, 비이진수열, 의사난수수열, 이차형식, 수열군

학번: 2009-20782
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