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Abstract

Construction of p-ary Sequence
Families of Period (p" — 1)/2 and
Cross-Correlation of p-ary
m-Sequences and Their Decimated
Sequences

Ji Youp Kim
Department of ECE

The Graduate School
Seoul National University

This dissertation includes three main contributions: a construction of
a new family of p-ary sequences of period pn% with low correlation, a
derivation of the cross-correlation values of decimated p-ary m-sequences
and their decimations, and an upper bound on the cross-correlation values
of ternary m-sequences and their decimations.

First, for an odd prime p = 3 mod 4 and an odd integer n, a new
family of p-ary sequences of period N = panl with low correlation is pro-
posed. The family is constructed by shifts and additions of two decimated
m-sequences with the decimation factors 2 and d = N — p®~!'. The up-
per bound on the maximum value of the magnitude of the correlation of

the family is shown to be 24/N + 1/2 = /2p™ by using the generalized

Kloosterman sums. The family size is four times the period of sequences,

2(p™ —1).



Second, based on the work by Helleseth [11], the cross-correlation values

n/2

between two decimated m-sequences by 2 and 4p™/“ —2 are derived, where

p is an odd prime and n = 2m is an integer. The cross-correlation is at

—14p™/2 —143p"/2 —145p/2
C CEa— 5—1}. As a

most 4-valued and their values are {

result, for p™ # 2 mod 3, a new sequence family with the maximum

correlation value %\/ﬁ and the family size 4N is obtained, where N =

pt—1
2

is the period of sequences in the family.

Lastly, the upper bound on the cross-correlation values of ternary m-
sequences and their decimations by d = w + 3%+ is inves-
tigated, where k£ is an integer and the period of m-sequences is N =
3%+2 _ 1. The magnitude of the cross-correlation is upper bounded by
% -3%k+3 11 = 4.5v/N + 1+ 1. To show this, the quadratic form technique
and Bluher’s results [33] are employed. While many previous results us-
ing quadratic form technique consider two quadratic forms, four quadratic

forms are involved in this case. It is proved that quadratic forms have only

even ranks and at most one of four quadratic forms has the lowest rank

4k — 2.

Keywords: Autocorrelation, cross-correlation, decimated sequence, ex-

ponential sum, Kloosterman sum, m-sequence, nonbinary sequence, quadratic

form, sequence, sequence family

Student ID: 2009-20782
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Chapter 1. Introduction

1.1. Background

Pseudorandom sequences are sequences which are generated in the de-
terministic way but have similar mathematical and statistical properties
of true random sequences. Since they are outputs of some deterministic
functions, they can be reproduced when they are needed. Thus, they are
extremely useful in the wide range of applications such as signal process-
ing, spread-spectrum communication systems, cryptography, radar sys-
tems, global positioning system (GPS), simulations, and more. Therefore,
designing good pseudorandom number generators has been important re-
search subject during several decades.

The criterion of “good” pseudorandom sequences depends on the appli-
cation. Generally in most applications, the cost of pseudorandom sequence
generator is an important aspect and thus linear recurrence sequences,
which can be efficiently generated by simple linear feedback shift regis-
ter (LFSR) circuits, are reasonable candidates for the implementation.
But in cryptographic applications, LFSR sequences are vulnerable to the
plaintext attack [68] and should not be used. Instead, cryptographically
secure pseudorandom sequences with the unpredictability property must
be employed [76]. A LFSR generator for a sequence of period 15 is shown

in Figure 1.1



Figure 1.1: LFSR generator of m-sequence with period 15 [74].

Nevertheless, especially for non-cryptographic applications, we can set
the general randomness criterion for pseudorandom sequences. For ex-
ample, in 1955, Golomb [69] proposed the following three randomness

postulates for binary sequences [74].

1) Balance property: In every period, the number of zeros is nearly equal

to the number of ones.

2) Run property: In every period, half the runs have length 1, one fourth
have length 2, one eighth have length 3, and so on, as long as the
number of runs so indicated exceeds 1. Moreover, for each of these

lengths, there are equally many runs of 0’s and 1’s.

3) Ideal autocorrelation: The autocorrelation function C(7) is two-valued,



given by

N ifr=0 modN
C(r) =
K ifr#0 modN,

where NV is the period of the sequence, K = —1 for odd N, and K =0

for even NN.

For more general cases including nonbinary sequences and cryptographic

applications, we can extend Golomb’s three randomness postulates [74].

1) Period requirement: Long period.

2) Statistical properties: The balance property, run property, and ideal

k-tuple distribution.
3) Correlation:

(a) Ideal autocorrelation.

(b) Low-valued cross-correlation: Let S be a set consisting of finite
sequences with period N. For any two sequences a,b in S, the

cross-correlation C, () satisfies
0 S Ca,b(T) S CVN

where 7 # 0 when a = b, and ¢ > 0 is a constant.

4) Linear span: Large ratio of linear span LS(a) to period N,

LS(a)
N

> 0,

3
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where & > 0 is a constant for large V.

In some cases, sets of pseudorandom sequences, called sequence fami-
lies, are considered. In this case, families with large set size or family size
are preferred. But there are fundamental tradeoffs between sequence pe-
riod, nontrivial autocorrelations, cross-correlations, and family size. These
tradeoffs are expressed in the form of lower bounds. Welch’s lower bound
[10] and Sidel’nikov’s lower bound [6] are lower bounds for the magnitude
of correlation values given the period and the family size. In Levenshtein
bound [26], lower bounds for aperiodic correlation magnitudes are given.
If these bounds are met with the equalities for some families, then these
families of sequences are called optimal.

In this dissertation, we focus on pseudorandom sequences for the spread-
spectrum communication systems. In Figure the system model for
the direct-sequence spread spectrum communication systems is illustrated
[75]. First, the message signal is shaped for the baseband transmission.
Then the shaped signal is directly multiplied by the spreading sequence,
which has the pseudorandom properties. The signal is modulated and
transmitted through the channel. After being demodulated in the re-
ceiver, the signal is again multiplied by the synchronized spreading se-
quence. This results in the small inter-user interferences due to the low
cross-correlations of spreading sequences. Then the baseband signal is de-
modulated and the bit decision is made. Thus in this application, the
correlation properties of sequences are most important.

There are many good binary pseudorandom sequences. M-sequences

4
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[69] are the most important one because they satisfy all randomness cri-
terion except the large linear span property. They have elegant mathe-
matical description based on the finite field arithmetic and are efficiently
generated by LFSR circuits. Also m-sequences are building blocks for other
good pseudorandom sequences. GMW sequences [I4] are the generaliza-
tion of m-sequences and have large linear span and ideal autocorrelation.
Legendre sequences [I] are constructed from power residues of the finite
field and have ideal autocorrelation. Gold sequences [4] are families of bi-
nary sequences constructed from preferred pairs of m-sequences. Kasami
sequence families [3] have smaller correlation values than Gold sequence
families but have smaller set size. No sequence families [I5] generalize
GMW sequences and Kasami sequences. Bent function sequences [13] are
sequence families based on the bent functions. Kasami, No, and Bent func-
tion sequence families are all known to be asymptotically optimal with
respect to Welch’ lower bound. Besides these, many studies on binary
sequences are given [16]-[20] [22].

For nonbinary sequences, m-sequences and GMW sequences can be
generalized to p-ary sequences. Liu and Komo [24] extended Kasami se-
quence families to p-ary alphabets. Kumar and Moreno [23] generalized
bent function sequence families to nonbinary case. Based on this, Kim,
Jang, No, and Helleseth [30] further generalized p-ary bent function se-
quences. Sidel’nikov sequences [5] are one of the most important nonbinary
sequences and any integer M can be used as the alphabet. Kim, Chung,

No, and Chung [31] constructed three families of M-ary sequences us-

;ﬁ'! 2 1_..” .__;J!_ W



ing the M-ary Sidel’'nikov sequences of period p™ — 1. Later, Chung, No,
and Chung [45] proposed a family of M-ary sequences with low corre-
lation by the addition of cyclic shifts of an M-ary Sidel’nikov sequence
and its reverse sequence. Yu and Gong [39] constructed M-ary sequence
families with low correlation using column sequences of the array struc-
ture of Sidel'nikov sequences. By combining the methods for generating
p-ary extended sequences and p-ary d-form sequences, No [2I] presented
a construction method of p-ary unified sequences with ideal autocorre-
lation property. Helleseth and Gong [12] proposed p-ary sequences with
ideal autocorrelation called HG sequences. Jang, Kim, No, and Helleseth
[32] constructed families of p-ary sequences of period p™ — 1 with optimal
correlation property. Yu and Gong [40] investigated the Weil bound to
construct polyphase sequence families with low correlation. Schmidt [44]
proposed nested sequence families using multiplicative and additive char-
acters. Xia [47| constructed families of p-ary sequences from decimated
sequences.

There are three main contributions in this dissertation. First, using

half-period (N = %) m-sequences decimated by 2 and 2d = p™ — 1 —

n—1 pn—1

2p"~*, we have constructed new families of p-ary sequences of period *5—
with low correlation and large family size. The alphabet size p must be
an odd prime p = 3 mod 4 and n is an odd integer. The upper bound
on the maximum nontrivial correlations between sequences are given as

24/ N +% = /2p™/2. The derivation of this bound involved character

sums and generalized Kloosterman sums. The maximum magnitude of

;ﬁ'! 2 1_..” .__;J!_ W



the correlation is twice of the Welch’s lower bound and 1.5 times of the
Sidel'nikov’s lower bound. The size of the sequence family is 2(p" — 1) =
4N, which is four times of the period of sequences. This work has been
published in [57] [58].

Second, based on the work bt Helleseth [II], the cross-correlation val-
ues between two decimated m-sequences by the decimation factors 2 and
4p™/2 — 2 are derived. Here p is an odd prime and n = 2m is given

as an even integer. The cross-correlation functions is shown to be at

. _ n/2  _ n/2  _ n/2 .
most 4-valued, that is, { 1i2p , 1+§p , 1+gp } From this result,

for p™ # 2 mod 3, new sequence families with family size 4N and the

n/2
maximum correlation magnitude upper bounded by % ~ %\/N

P°~1 is the period of sequences in the family.

2

This work will be published as in [60].

is constructed, where N =

Third, we consider the cross-correlation of ternary m-sequences and dec-

imated ternary m-sequences. The period of sequences is 3" —1 = 3*+2 1

. . . . . . 4k+2_ a2k+1 o
where k is an integer. The decimation is given as d = 2 g T +3-1 4

32k+1. For analysis of the correlation, the quadratic form theory is used,

and four quadratic forms are involved since we use the substitution x =
y3n71+1 and gcd(3" — 1, 3"~ 4+ 1) = 4 for transforming the correlation
into the quadratic forms. To derive the upper bound on the maximum
magnitude of the correlation, we have shown that quadratic forms have
only even ranks and among four quadratic forms, at most one of them has
the lowest rank. In the proof, Bluher’s result [33] is proven to be crucial.

Consequently, the cross-correlation is upper bounded by 4.5 - 3261 4 1.

;ﬁ'! 2 1_..” .__;J!_ W



This result was presented in [59).

1.2. Overview of Dissertation

This dissertation is organized as follows. In Chapter 2] we briefly overview
basic concepts of pseudorandom sequences. Some necessary definitions and
preliminaries for sequence analysis are given. Then we consider sequences
with low autocorrelation, and introduce some well-known sequences with
ideal autocorrelation. After that, sequence families with low correlation
are discussed shortly.

In Chapter|3| we propose a new family of p-ary sequences of period pn%
with low correlation and large family size. For this, we introduce defini-
tions and basic facts of characters, Gaussian sums, Kloosterman sums, and
generalized Kloosterman sums. Using these exponential sums, we show
that the sequence family has the maximum correlation bound 24/ N + %
where N is the period of sequences.

In Chapter {4 for an odd prime p and an even integer n = 2m, the
cross-correlation function between two p-ary m-sequences decimated by 2
and d’ = 4p™'? — 2 are considered. This decimation is based on the work

by Helleseth [11I], and we show that the number of the cross-correlation

. . . — n/2  _ n/2
is at most four and possible correlation values are 1:|:2p , 1+:2’,p , and

%’7”/2. From this, for p # 2 mod 3, a new family of p-ary sequences

of period ;9”27—1 with low correlation and large family size is constructed.

The maximum magnitude of correlation is upper bounded by %pn/z

and the family size is 4]V.

-__:I'H;! _'k.:.':l_ '|'. |



In Chapter[5] we study the cross-correlation between ternary m-sequences

34k+2_32k+1 +3—1
3+1

and their decimated sequences by d = +3%+1 where the

3%+2 _ 1. We derive the upper bound

period of sequences is given as
on the cross-correlation and the quadratic form technique is used as the
main tool of analysis. In this work, four quadratic forms are considered
and rank combinations of quadratic forms are investigated. Bluher’s work

[33] turns out to be essential in this approach.

Finally, in Chapter [6] the concluding remarks are given.

10



Chapter 2. Sequences with Low

Correlation

In this chapter, we introduce some necessary notations and definitions.
First, we define the trace function, sequences, and autocorrelation of se-
quences. Then we define the ideal autocorrelation property and discuss
several known sequences with ideal autocorrelation. Later, the definition
of sequence families is introduced, and the tradeoffs between the sequence
period, the family size, and the maximum correlation magnitude are dis-
cussed. Finally we explain the decimation of sequences and show that the
sequence family can be constructed by the shift-and-add method and the

decimation.

2.1. Trace Functions and Sequences

Sequences with low correlation can be constructed in various ways. But
many sequences with good correlation properties are defined in terms of
the trace function. The trace function is a mapping defined on the finite
field and the trace representation of sequences enables easy analysis of
pseudorandom sequences. The precise definition of the trace function is

given below.

Definition 2.1. Let p be a prime and n, m be integers such that m|n.
Let Fp» be the finite field with p" elements. Then the trace function

11



trp'(x) : Fpn — Fpm is defined as
n/m—1
try (x) = Z "
i=0

where x € Fpn. O

The trace function has many important properties. Some of them are

summarized as in the following [71].

Lemma 2.2. The trace function satisfies

(1) trp (ax+by) = atr}, (x)+btr], (y), for all a,b € Fpm and all z,y € Fpyn.
(2) tr7, (zP") = 17 (z) for all z € Fyn.

(3) Let k,m,n be integers such that k|m|n. Then we have

try (z) = try' (try, (x)), for all x € Fpyn.
(4) For any b € Fpm, it holds that
{o € Fynltxl,(2) = b} = 5™,
(5) Let a € Fyn. If t1]}, (az) = 0 for all z € Fpn, then a = 0. O

A sequence is a function s(¢) from the set of natural numbers N to A
where A is a set. In this case, A is called an alphabet of s(t). If A = Zyy,
then s(t) is an M-ary sequence.

The autocorrelation is one of the most important metric of the random-
ness of sequences. The autocorrelation of a sequence is the measure of
similarity between the sequence and its shifted version and is defined as

follows.

12



Definition 2.3. Let s(t) be an M-ary sequence of period N. Then we

define the autocorrelation Cy(7) of s(t) as

N—
Cu(r) = Z w]sét-i—r)—s(t)

t—=

—_

where wjy is the primitive M-th root of unity, i. e., e27/M and t + 7 is
computed mod N. a

When 7 # 0, then we call Cs(7) the nontrivial autocorrelation.

A sequence is balanced if the number of occurrences of each symbol
differs by at most one [74]. Also a sequence satisfies the ideal k-tuple
distribution if for 1 < j < k, each of the j-tuples occurs equally many
times except one choice of j-tuple in one period [14]. These properties are
the measure of the uniformity of sequence values.

A linear complexity is particularly important for the cryptographic ap-
plication since it is the measure of the unpredictability. Linear complexity
is defined to be the minimal number of LF'SRs for generating the sequence.
Generally, if the linear complexity of the sequence is comparable to the

period, then it is considered to be sufficiently large [74].

2.2. Sequences with Low Autocorrelation

Sequences with low autocorrelation can be easily distinguished from its
shifted version. Thus, sequences with small autocorrelation are employed
in radar systems, synchronization, ranging systems, and so forth. If the
nontrivial autocorrelation of a sequence is always zero, then the sequence

is called perfect sequence. It is the best autocorrelation property, but in

13



Cs(D)

-1
Figure 2.1: Ideal autocorrelation property.

many cases, perfect autocorrelation property is not possible. For example,
for an odd prime p and an integer n, a p-ary sequence of period p™ — 1

cannot be perfect. Instead, we define the ideal autocorrelation as follows.

Definition 2.4. For a prime p, a p-ary sequence s(t) has the ideal auto-

correlation if

N ifr7=0 modN
CS(T):

—1 otherwise

where N is period of s(t). O

The ideal autocorrelation is presented in Figure Note that the re-
semblance between the autocorrelation of the white noise and that of the
sequence with ideal autocorrelation.

There are many sequences with ideal autocorrelation. Among them, m-
sequences are the most important. The “m” refers the maximum length

because m-sequences are the longest sequences given the same number of

14
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LFSRs. The definition of m-sequences are given below.
Definition 2.5. Let p be an odd prime and let n be an integer. Then,
m-sequence m(t) of period p™ — 1 is defined as

m(t) = trf'(at)

where « is a primitive element of the finite field Fyn. a

M-sequences have many desirable properties. They have the largest
possible period p” — 1 and the ideal autocorrelation property. They also
satisfy the balance property, the n-tuple distribution property, and the run
property. Major drawback of m-sequences is small linear complexity. They
have linear complexity n, which is significantly small compared to the
period p™ — 1. Therefore, m-sequences are inappropriate for cryptographic
applications.

Another important sequence with ideal autocorrelation is the GMW

sequence. It has large linear complexity compared with the m-sequence.

Definition 2.6 (Scholtz and Welch [14]). Let p be an odd prime and let
n,m be an integer satisfying m|n. Let r be integers with 1 < r < p™ — 2
and ged(r, p" — 1) = 1. Then, GMW sequence ¢(t) of period p" — 1 is
defined as

g(t) = tr1" ({tr7,(a")}")
where « is a primitive element of the finite field Fyn. O
Helleseth and Gong [12] constructed the following p-ary sequences with

ideal autocorrelation. They are called HG sequences.

Theorem 2.7 (Helleseth and Gong [12]). Let a be a primitive element
of Fpn. Let n = (2m + 1)k and let 5,1 < s < 2m be an integer such that

15
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ged(s, 2m + 1) = 1. Define by = 1,b;s = (—1)!, and b; = bgy, 11 for
i=1,2,...m. Let ug = bp/2 = (p+1)/2 and u; = by; for i = 1,2,...,m.
Let ¢ = pF. Define

flo) =3 ua @D/
1=0
or
f(z) = Z_ wz (@ D/ (1)
=0

Then the sequences defined by

s(t) =t (f(a))

has the ideal autocorrelation, where all indices of the b;’s are taken modulo
2m + 1. O

No [21] introduced p-ary unified sequences, which are very general class
of p-ary sequences including the binary and nonbinary extended sequences

and the d-form sequences.

Theorem 2.8 (No [21I]). Let p be a prime number, m,n be positive
integers such that m|n. Define N =p" —1, M =p™ —1,and T = N/M =
(p"—1)/(p™—1). Let a be a primitive element of Fn and 8 = al. Assume
that for an index set I, the sequence b, (t1) of period M given by

bu(ti) = > batr7'(8"),ba € F;,
a€el

has the ideal autocorrelation property. Let s = d mod M for all s in
some index set J, where d is relatively prime to M. Assume that the

p-ary sequence c(t) of period N given by

co(t) =) etri(a™) e, € F;
sedJ

16



has the ideal autocorrelation property. For an integer r, 1 < r < M — 1,

relatively prime to M, the unified sequence ¢, (t) of period N defined by
cu(t) = Z batr’ln{ [Z cstr%(a‘gt)] }
acl seJ

also has the ideal autocorrelation property. O

In 1998, Lin [25] proposed a conjecture that a class of ternary sequences
has the ideal autocorrelation property. Arasu, Dillon, and Player [41] and
Hu, Shao, Gong, and Helleseth [2§], using different methods, proved that

the conjecture is true. We introduce the result here.

Theorem 2.9 (Lin [25], Arasu, Dillon, and Player [41], Hu, Shao, Gong,
and Helleseth [28]). Let n = 2m+1 and m be integers. Let a be a primitive

element of F3n. Then a sequence defined by
s(t) = tr(af + a(2'3m+1)t)

has the ideal autocorrelation. O

2.3. Sequence Families with Low Correlation

A set of sequences is called a family of sequences or a sequence family.
Usually we deal with the sequence family within which all sequences have
the same length and the same alphabet. The set size of the sequence
family is called the family size. Here we only count sequences which are
cyclically inequivalent, that is, only those sequences a(t),b(t) such that
a(t+7) # b(t) for all 0 <7 < N, where N is the period of sequences. The

cross-correlation between sequences a(t) and b(t) is defined as follows.

Definition 2.10. Let a(t), b(t) be M-ary sequences of period N. Then

17



the cross-correlation Cq(7) of a(t), b(t) at time shift 7 is defined as

N-1
t=0

where wys is the primitive M-th root of unity, i.e., /™M and ¢ + 7 is
computed mod N. O

The primary metric of the sequence family is the maximum magnitude

of correlation which is defined as in the following definition.

Definition 2.11. Let S be a sequence family. The maximum magnitude

of correlation Cpqz(S) is given as
Crnaz(S) = max{|Cq(7)||a,b € S,a # b or T # 0}.
O

If Cruaz(S) < ¢/N +d for a constant ¢,d and the period N, then
we say that S has low correlation. In general, smaller correlation and
larger family size are desirable. But for the given period, the maximum
correlation magnitude and the family size have the fundamental tradeoff.
This tradeoff is described by several lower bounds on the cross-correlation
magnitude. Here we introduce two of such bounds, Welch’s lower bound

[10] and Sidel’nikov’s lower bound [6].

Theorem 2.12 (Welch [10]). Let S be the sequence family with sequences
of period N and family size M. Then for any a,b € S and 0 < 7 < N, we

have

1 MN?
> — N2|.
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Theorem 2.13 (Sidel'nikov [6]). Let S be the sequence family of period
N and family size M. Let a,b € .S and 0 <7 < N. In the case of M = 2,

then we have

k(k+1)  2kN2k+l 2N
|Qwﬁﬂ2¢@h+nm—kﬂ— > —M@mwﬁmgk3<

In the case of M > 2, then we have

k N 2k+1
Con) = /5 on )= 22T s
| 2 V)

O

For a sequence s(t) of period N and an integer d, the decimated se-
quence of s(t) by the decimation d is defined as s(dt). Note that the
period of the decimated sequence is N/ged(d, V). Thus decimation yields
a short period sequence. Many sequence families can be constructed us-
ing m-sequences and decimated m-sequences. For example, Gold sequence
family [4] is constructed by the shift-and-add method and the decimation.

Definition 2.14 (Gold [4]). Let n, k be integers such that

1, for n odd
2,for n =2 mod 4.

ged(n, k) =
Let d =2F +1 or d = 22% — 2% 4+ 1. Let m(t) be a binary m-sequence of
period N = 2" — 1. Then Gold sequence family is defined as
S={s;()0<t<N-1,0<i<N-+1}

where si(t) = m(t) + m(dt +1i), 0 < i < N — 1, sy(t) = m(t), and
SN+1(t) = m(dt) O

The Gold sequence family is known to be optimal for odd n with respect
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to the Sidel’nikov’s lower bound. Its correlation values are

{_QTI -1, —1,2%rl — 1} for odd n

n+2 n+2

{-22 —1,-1,2° 2 — 1} for even n.

Many other sequence families are constructed by the shift-and-add
method. In this dissertation, we will propose new families of sequences

of period pn% with low correlation.
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Chapter 3. A New Family of p-ary
Sequences of Period (p" — 1)/2 with Low

Correlation

In this chapter, for an odd prime p congruent to 3 modulo 4 and an odd
integer n, a new family of p-ary sequences of period N = pnT_l with low
correlation is proposed. The family is constructed by shifts and additions
of two decimated m-sequences with the decimation factors 2 and 2d, d =
N — p™~1. The upper bound on the maximum magnitude of nontrivial
correlations of this family is derived using well known Kloosterman sums.
The upper bound is shown to be 24/ N + % = /2p", which is twice the
Welch’s lower bound and approximately 1.5 times the Sidel’nikov’s lower
bound. The size of the family is 2(p™ — 1), which is four times the period

of sequences|T]

The material of this chapter is primarily based on the following paper and pro-
ceeding: (©2010 IEEE. Reprinted, with permission, from Ji-Youp Kim, Sung-Tai Choi,
Jong-Seon No, and Habong Chung, “A new family of p-ary decimated sequences with
low correlation,” IEEE International Symposium on Information Theory, Austin, TX,
Jun. 2010 and (©2011 IEEE. Reprinted, with permission, from Ji-Youp Kim, Sung-Tai
Choi, Jong-Seon No, and Habong Chung, “A new family of p-ary sequences of period
(p™ — 1)/2 with low correlation,” IEEE Transactions on Information Theory, vol. 57,
no. 6, pp. 3825-3830, Jun. 2011.
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3.1. Introduction

Many families of pseudorandom sequences have been reported to have
good correlation properties. Gold sequence family has low cross-correlation
and large family size [4]. Kasami sequence family [2] [3] has lower cross-
correlation than that of Gold, but it has smaller family size. Gold and
Kasami sequence families are optimal with respect to the Sidel’'nikov’s
and the Welch’s lower bounds, respectively. Besides these binary sequence
families, there have been many researches on nonbinary sequence fami-
lies. Liu and Komo [24] generalized Kasami sequence family to nonbinary
case. Helleseth [II] investigated into various cross-correlations between
m-sequences and their decimations. From these results, p-ary sequence
families of period p™ — 1, the maximum correlation bound 1 4 2,/p™, and
family size p™ 4+ 1 has been constructed [23]. Based on the result of Tra-
chenberg [7], a nonbinary sequence family with the maximum correlation
bound 1 4+ /p"*+1 and family size p" + 1 is obtained [23]. Kumar and
Moreno [23] designed an asymptotically optimal family with the correla-
tion upper bound 1+ /p™.

More recently, Kim, Chung, No, and Chung [31] constructed M-ary se-
quence families from Sidel’'nikov sequences. Han and Yang [38] proposed
M-ary sequence families having the same upper bound on the maximum
correlation magnitudes, but larger family size. Yu and Gong [40] refined
the Weil bound to construct polyphase sequence families including some

known families in [38] as a special case. They also presented the array

22



structure of M-ary Sidel’nikov sequences and constructed M-ary sequence
families with low correlation from column sequences of the array struc-
ture in [40]. Schmidt [44] proposed nested families of polyphase sequences
which have prime period.

This chapter presents a new construction of a p-ary sequence family
with low correlation. For a prime p of 3 mod 4 and an odd integer n, a
new p-ary sequence family of period 1% having the maximum correla-
tion magnitude /2p™ is constructed. This maximum correlation magni-
tude is asymptotically twice the Welch’s lower bound and 1.5 times the
Sidel’nikov’s lower bound, but its family size is four times the period of
sequences. This family can be obtained from shifts and additions of two

decimated p-ary m-sequences by 2 and 2d, d = LQ_ L p

"=1 and the size

of the family is 2(p™ — 1).

This chapter is organized as follows. In Section [3.2] we introduce the
concept of characters and give definitions of additive characters and mul-
tiplicative characters. Next in Section [3.3] Gaussian sums, Kloosterman
sums, and generalized Kloosterman sums are defined, and related lem-
mas are reviewed. In Section notations used throughout this chapter
are collected. In Section the construction of the sequence family is
given. The upper bound on the maximum magnitude of correlation of
the sequence family is proved in Section [3.6] The family size is discussed
in Section [3.7 An example of the family is given in Section [3.8 Some
generalization of this work by Kim, Chae, and Song [61] is introduced in

Section [3.9] Finally, we conclude this chapter in Section
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3.2. Characters

In this chapter, character sums are used for computation of the corre-

lation. Generally, the character is defined as follows [72] [73].

Definition 3.1 (Characters [72] [73]). Let G be a finite group and GL,,(C)
be a general linear group of degree m over the complex field. Let ¢ : G —
GL,,(C) be a group homomorphism. Then the function f = tro¢ : G — C

f(x) =tr((x), g€ G

is called a character. O

In this section, we consider two different characters. The first one is an
additive character, in which G' = F};» is an additive group and m = 1, i.e.,
GL,,(C) = C* = C\{0}. The precise definition of the additive character

is given as follows.

Definition 3.2 (Additive characters [70]). Let p be a prime number and

n be an integer. The additive character x is a group homomorphism
X : Fpn — C*.

In particular, the canonical character y; is given as

27w/ —1 41
ala) =5 O

where z € Fpn. O

It is known that any additive character can be expressed as xq(z) =
x1(ax) for some a € F,n. Trivial additive character xo is a character
which maps every element of F» into 1. The conjugate character of x is

the character such that x(z) = x(z), where () denotes complex conjugate.
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The second one is a multiplicative character, in which G = Fj, =
F,»\{0} is a multiplicative group and m = 1, i.e., GL,,(C) = C* = C\{0}.
The multiplicative character is defined as follows.

Definition 3.3 (Multiplicative characters [70]). Let p be a prime number
and n be an integer. The multiplicative character 1 is a group homomor-

phism
Y Fpn — C*

Every multiplicative character can be given as

2m/—1jk
(k) = e Pt

for some 0 < j, k < p™ — 1. O

Here v is called a trivial multiplicative character. Conjugate characters
of multiplicative characters are defined similarly as in the case of additive
characters.

The multiplicative character of the particular importance is the quadratic

character. It is defined as follows.

Definition 3.4 (Quadratic characters [70]). Let p be a prime number and

n be an integer. The quadratic character 7 is given as

1, if x is a nonzero square in Fj»
n(x) = o ,
—1, if z is a nonzero nonsquare in [Fn.
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3.3. Gaussian Sums and Kloosterman Sums

Gaussian sums and Kloosterman sums are two important classes of the
exponential sums. They are useful to represent the correlation function

by the exponential sum. First we give the definition of Gaussian sums.

Definition 3.5 (Gaussian sums [70]). Let ¢ be a multiplicative character
and x be an additive character. Then the Gaussian sum G (v, x) is defined

as

G, x) = > plo)x(o).

CGF;n

|

The following lemmas for the Gaussian sum are needed for proof of the

main theorem of this chapter.

Lemma 3.6 (Theorem 5.11 [70]). Let ¢ be a multiplicative character and
x an additive character of Fyn. Then the Gaussian sum G(v, x) satisfies

p" —1 for ¢ =1y and x = xo
G, x) =4 -1 for ¢ = 1o and x # xo
0 for ¢ # 1o and x = xo

and

|G, x)| = vp" for ¢ # o and x # Xo.

Now we define the Kloosterman sum as follows.

Definition 3.7 (Kloosterman sums [70]). Let a and b be elements of

F,» and x be an additive character of F,». Then the Kloosterman sum
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K (x;a,b) is defined as

K(x;a,b)= > x(ay+by™).

O

In the proof of the main theorem, we need the upper bound on the

Kloosterman sum. We can use the following well-known upper bound.

Lemma 3.8 (Theorem 5.45 [70]). If x is a nontrivial additive character
of Fyn and a,b € Fpn are not both 0, then the Kloosterman sum K (x; a, b)

satisfies

|K(x;a,b)| <2vp™.

d

Note that contrary to Gaussian sums, Kloosterman sums only involve
additive characters. The Kloosterman sum can be generalized to include

a multiplicative character.

Definition 3.9 (Generalized Kloosterman sums [70]). Let ¢ be a multi-
plicative character and x an additive character of F,n». For a,b € Fpn, a

generalized Kloosterman sum is defined as

K(,x;a,0) = Y ¢(y)x(ay+by ™).

yE]F*

O

Many results are reported for the Gaussian and the Kloosterman sums.

Here we list some of them which are used in this chapter.

Lemma 3.10 (Exercise 5.83 [70]). Let ¢ be a multiplicative character

and x an additive character of F,». The generalized Kloosterman sum
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reduces to a Gaussian sum if ab = 0, in the sense that

YOG, x) ifa=0b#0

K(,x;0,b) = { (a)G(sh,x) ifa+0,b=0
G (¥, xo0) if a=0,b=0.

d

Lemma 3.11 (Exercise 5.84 [70]). Let n be the quadratic character of
F,n, p an odd prime, and a,b € Fy» with n(ab) = —1. Then we have

K(n,x;a,b) =0

for any additive character y of Fyn. a

Lemma 3.12 (Exercise 5.85 [70]). Let n be the quadratic character of
Fpn, p an odd prime, and a,b € Fp» with ab = e? for some e € Fpn. Then

we have

K(n, x;a,0) =n(b)G(n, x)(x(2e) + x(—2¢))

for any additive character x of Fyn. a

3.4. Notations

Here we collect notations used in this chapter.

p is an odd prime (3 mod 4);

n is an odd positive integer;

e « is a primitive element of Fpn;
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e w is a primitive p-th root of unity;
e QR={ac F;n|a:2 = @ has a solution in Fpn };

e QNR = {a € F}n|2? = a has no solution in Fyn}.
3.5. Definition of Sequence Family

In this section we present the construction method of the sequence
family. Let m(t) be an m-sequence of period p™ — 1. Since p™ — 1 is even,
the decimated sequence s(2t) has the period N = (p™ — 1)/2. In order
to construct the sequence family, the sequence m(2t) and its decimated
sequence m(2dt) are considered. Since gcd(N, d) = 1, the period of m(2dt)
is also N.

The family S of our interest is defined as

4
s=Js
7=1

where

Soo = {m(2t) +m(2d(t + ))|0 < j < N}
Se ={m(2t+1) +m(2d(t+j))|0 < j < N}
S5 = {m(2t) + m(2d(t + ) +1)|0 < j < N}

Sp={m@2t+1)+m2d(t+j)+1)[0<j< N}

In the following section, we will show that the magnitude of cross-

correlation and nontrivial autocorrelation values of the p-ary sequences in
S are upper bounded by 24/ N + % = /2p".
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3.6. Correlation Bound

The upper bound on the correlation magnitude of the sequence family
S is derived in the main theorem. For the proof of the main theorem, we
need the following lemma.
Lemma 3.13. For a and b € Fyn, let L(x1;a,b) be defined as
Lixi;a,0) = Y ny)w™itts™)
yeFrn

where 7 is the quadratic character. Then we have

|L(x1;a,b)| < 2v/p".

Proof. We consider the following three cases:
i) ab = 0;
In this case, we can use Lemma Since |n(z)| < 1 for any z € Fpn, we

have
Llasab)l =] 32 i)
yeFin
= |K(n, x1;a,b)|
G, x1)| ifa=0,b#0
1G(n,x1)| ifas0,b=0
|G(n,x0)| ifa=0,b=0.

IN

Since 7 is not trivial, Lemma [3.6] indicates that

|L(x1;a,b)] < V/p™

ii) ab € QR;
Here ab = e? for some e € Fpn. Then by applying Lemma we have

|L(X1;6L, b)| = |K(na Xl;avb)‘
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= n(b)G(n, x1)(x1(2e) + x1(—2¢))|
< 2’G(777X1)|
< 2/p™.

iii) ab € QNR,;

Using n(ab) = —1 and Lemma we have

’L(Xl; a, b)’ = ‘K<na X1 a, b)‘
=0.

Therefore, for any a,b € Fp», we have

|L(x1; 0, b)| < 2V/p™.

Now we are ready to prove the main theorem of this chapter.

Theorem 3.14. The magnitudes of cross-correlation and nontrivial au-
tocorrelation values of sequences in S are upper bounded by 24/ N + %

Proof. First we consider the cross-correlation of sequences in S,.. All the
other cases can be similarly proved. The cross-correlation function be-
tween two sequences in S, m(2t)+m(2d(t+7)) and m(2t)+m(2d(t+k)),

is given as

C(T) = wtrrll(QQ(t+T))+t1'111(a2d(t+‘r+j))7tr?(a2t)7tr7ll(a2d(t+k))

_ N7 b (02 (@2 1) (a2 (o240 ) —a2dk)) (3.1)

Let a = o™ — 1 and ¥ = o247+ — 2@ Then (3.1) can be written as

N-1
C(T) _ Z wtr?(aa2t+bla2dt)‘
t=0



Here, note that

2dt = 2(N — p" 1)t

p"—1 _
=2(— "
= (p" —1—2p" )t
= —2p" 1t

= —2p !t (mod p" —1).

Since 2dt = —2p~1t (mod p"™ — 1), we have

Let b = b'P. Then we have
N-1
0(7_) _ Z wtr?(aam—i-ba*?t)
t=0
N-1
— Z T (a(ah)?+b(a")=2)
t=0
- Z T (ay+by =1 (3.2)
yeEQR

In order to compute C(7) in (3.2), we can use the Kloosterman sum and

the generalized Kloosterman sum given as

Kaaby= Y wlifertn ™

yeF;n
P (2 IR S AT
YEQR YEQNR

Llxisa,b) = > ny)wivv)

yE]F;n
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_ Z wtr?(ay-i—by*l) _ Z wtr?(ay-i—by*l)_
YEQR YEQNR

From Lemma3.13]| we have an upper bound on L(x1; a, b), namely |L(x1; a, b)|
2\/p™.

Since p is an odd prime which is 3 mod 4 and n is an odd integer, —1
is nonsquare. Therefore, as y runs through QR, —y does through QNR

and we have

Z WY (ay+by=1) — Z T (ay+by™1)
YEQR YyEQNR

Now we are ready to show that the absolute value of cross-correlation

C(7) is upper bounded by 24/N + 1 = /2p".

From the previous argument, we can set

Z wtr?(ay—&-by_l) —utv /1

yeEQR

and

Z W) — gy vy —1

YyEQNR

where u, v are real numbers.
From the definitions of the Kloosterman and the generalized Klooster-

man sums, we obtain

K(x1;a,b) =2u (3.3)
L(x1;a,b) = 2vv/—1. (3.4)

For cross-correlation and nontrivial autocorrelation, it can be easily shown
that @ # 0 or b # 0. If a = 0, then by definition of a, a?” = 1, which
implies 7 = N = 0 (mod N). Also note that

pt—1 _
5 _pn 1p

dp=1p
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e
2
_ =" +p"—p
2
p—1, p'—p
= ~1
g Pt
_p—1+p"-p
N 2
n
-1
_b -1
2

Therefore we have

b= a2d(7’+j)p o a2dkp
— a72(7-+]) — a72k
_9i
_a v a2k
a+1

It is easy to check that a = b = 0 corresponds to the in-phase autocorre-
lation. Therefore, from Lemma [3.8] we have |K(x1;a,b)| < 24/p™.

Thus from Lemmas and and (3.3]) and (3.4)), we have

lu| < /p"
lv] < V/p™.

Finally, we obtain

O DI
YyEQR

= |u + vi

< V2p"

/ 1
=24/N + —.
+2

The proof for cross-correlation bound in each of the other cases is quite

similar, because the cross-correlation expression eventually becomes the
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Table 3.1: Values of a and b for each case.

Sequence set 1 | Sequence set 2 a ‘ b ‘
S1 S a2 — 1 (a2d(r+j) _ a2dk)p
S Ss a2 — o (a2d(‘r+j) _ a2dk>p
S S; a2 —1 (a2d(7+j) _ a2dk+l)p
Sy S, 2 — o (@2dr+3) _ q2dk+1yp
Ss Ss 2™ _ ( 2d(T+j7) _ a2dk)p
Sy Ss Q2™ 1 (a2d(r+3) _ q2dk+1yp
S, Sy 2™t _ ( 2d(T+7) 2dk:+1)p
Ss S3 a?m —1 (a d(t+5)+1 _ a2d/€+l)p
Ss Sy ¥ — o (azd(r+j)+1 — q2dk+1yp
Sy Sy a2 o | (a2UTHEDHT a2dk+1)p

(©2011 IEEE.

Kloosterman sum over the quadratic residue as in (3.2) using the same
technique. The only differences are values of constants a and b in (3.1).
We summarize values of a and b for each case in Table 311

Thus the proof is complete. ]

3.7. Size of Sequence Family

The family size of S is 2(p™ — 1), which is four times larger than the
period. In the following theorem, we can show that any two sequences in

S are cyclically inequivalent.

Theorem 3.15. The family size of S is 2(p"™ — 1). More precisely, there

are no cyclically equivalent sequences in S.

Proof. Suppose that there are two sequences v(t) and w(t) in S which are
cyclically equivalent each other. Let C'(7) be a cross-correlation between
v(t) and w(t). Then there exists 7y such that 0 < 79 < N and C(79) = N.

Recall that any cross-correlation values of sequences in S can be written
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as a Kloosterman sum over the quadratic residue. Let

= 3 Wt
yeEQR
Z W@y — gy i
YyEQNR

Since C(19) = N, we have v = 0. Therefore u = N. Thus
K(x;a,b) = 2u=2N = K(x;a,b) =p" — L.

It is known that if K(y;a,b) = p™ — 1, then a,b = 0. Therefore it suffices
to show that a,b = 0 implies v(t) = w(t). It is already discussed that
a,b = 0 implies v(t) = w(t) when v(t), w(t) € Soo. The proofs for the case
of Se, 85,8 are similar. It is also easily verified that if v(t) € S and
w(t) € Sy for k # 1, then a # 0 or b # 0. For example, let [ =1, k = 2.
Then

wtr? (a2(t+7—0))+t1‘? (a2d(t+7—0 +1) )_tr? (a2t+l ) —tlﬂf (a2d(t+j) )

wtr;z (O¢2t (a2T0 _a))_,'_tr? (a2dt (a2d‘ro+2di_a2dj ))

il
Dy

wtr’f (a2t (QQTO 7&))+tr? (a2dpt (a2dp7'0 +2dpi7a2dpj))

if
o

=

Z LT (@ (@270 —a)) 11T (a=2 (@™ 270~ 2 —a=27))

t=0
Z wtr’f (ay+by—1)
YEQR

210 _ a and b = Oé727'072z

where a = « — o~ %. Since a®™ € QR and
a € QN R, we can conclude that a # 0. The proofs for the other cases are
O

similar.
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The new family is not optimal with respect to the Welch bound, which
is rather insensitive to the family size. In fact, the upper bound on the
correlation magnitudes of the proposed sequence family is approximately
twice the Welch’s lower bound, but its family size is four times the period
of the sequences. On the other hand, the Sidel'nikov lower bound [23]
on the maximum correlation magnitude depends not only on the period
but also on the family size. Here, we are going to measure how close
the proposed sequence family is to the optimality with respect to the

Sidel’'nikov’s bound given below.

Lemma 3.16 (Sidel’'nikov [6]). Let S be a family of M p-ary sequences of
period N, where p is an odd prime. Let Cy,q, be the maximum magnitude

of correlation values. Then

k nr2k+1
Cra > TN )= 2T
M (kD2 (%))

for all £ > 0. O
Here, let K =1 and M = 4N. Then we have

2N3 1 7
C’gwx>2N—1—4N2N:2N—1—ZN:ZN—1.

Thus

7
Crnaz > ,/ZN — 1~ 1.3228VN.

Therefore we can see that the maximum magnitude of the nontrivial corre-
lation values of the proposed family is approximately 0.7v/ N larger than

the Sidel’'nikov’s bound. Table [3.2] shows the parameters of some well
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known sequence families and the new family derived in this chapter.

3.8. An Example

For p = 3, n = 3, we have N = 13 and d = 4. Let a be a primitive
element of F3s with a minimal polynomial 3 +2x + 1. Then the sequence

family is given as:

Seo = {(0020022220020), (1201121211021), (0012111121002,
(1122010221111), (2221001222202), (0211211200110),
(0110011012221), (2101012100001), (2011020011100),
(1111102122120), (2112220202022), (2120101001010),
(2202212021220)}

Se = {(0110220002100), (1021022020101), (0102012200112),
(1212211000221), (2011202001012), (0001112012220),
(0200212121001), (2221210212111), (2101221120210),
(1201000201200), (2202121011102), (2210002110120),
(2022110100000) }

S5 = {(0200000101122), (0001200022011), (1010202201201),
(1100221020102), (2000112212112), (1002021102210),
(1021110000222), (1212002010012), (0121222111212),
(2210120120211), (0102100210200), (2022201110121),

(1220210112000)}
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Sa = {(0020201210202), (0121101101121), (1100100010011),

(1220122102212), (2120010021222), (1122222211020),

(1111011112002), (1002200122122), (0211120220022),

(2000021202021), (0222001022010), (2112102222201),

(1010111221110)}

In general, the number of correlation values or the correlation distribution

is irregular. For instance, the cross-correlation distribution between a(t) =

(1201121211021) and b(¢) = (0102012200112) is given as:

—3.5 + 2.59808y/—1
—3.5 — 2.59808y/—1
—0.5 — 2.59808y/—1
1

4

-5

44 5.19615y/—1
—245.19615y/—1

—2 —5.19615v/—-1

-2

\
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once

once

3 times

2 times

once

once

once

once

once.



But for ¢(t) = (0001200022011) and d(t) = (1100100010011), the cross-
correlation is

2.5 —2.59808y/—1 2 times

—0.5 4 2.59808y/—1 3 times

—0.5 —2.59808v/—1 2 times

CealT) =
4+ 5.19615v/—1 2 times

—2 2 times

1 2 times.

Note that the number of cross-correlation values and the correlation dis-

tribution are different.

3.9. Related Work

After [57] and [58] are published, a generalization of the sequence family
is given. Kim, Chae, and Song [6I] proposed the generalization method
by extending the alphabet and the decimation parameters. Specifically,
for an integer e satisfying e|p” — 1, they proposed a family of e?N p-
ary sequences, each sequence in S has period N, and the magnitudes of
correlations of sequences in S are upper bounded by 2,/p" = 2v/eN + 1
[61].

Definition 3.17 (Kim, Chae, and Song [61]). Let p be a prime and n
be a positive integer. Let m(t) be a p-ary m-sequence of period p™ — 1.
n—1

Let N = %, where e is a positive divisor of p" —1andd=N —p
Since ged(d, N) = 1, the decimated sequences m(et) and m(edt) have the
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period N = (p™ — 1)/e. Define the family S of sequences of period N to
be

S ={sk,iu(t)|0 <t < N} (3.5)
where £k =0,1,...,e—1,u=0,1,..,e—1,i=0,1,...., N — 1, and
Skiu(t) =m(et + k) + m(ed(t + i) + u).
O

The following theorem shows that the family consists of sequences which

are cyclically inequivalent.

Theorem 3.18 (Kim, Chae, and Song [61]). Let S be the family of se-
quences defined in . Then, the magnitude of nontrivial autocorrelation
and cross-correlation of sequences in S is upper bounded by 2,/p" and no
two sequences in S are cyclically equivalent and thus, |S| = €2 N, provided
that

Rt VOV
A

d

Note that by appropriately choosing e, we can utilize the tradeoff be-

tween the family size 2N and the period I%.

3.10. Conclusion

In this chapter, a new family of p-ary sequences with low correlation is
constructed. The sequence family can be constructed in Fy», with a prime
p of 3 mod 4 and an odd integer n. The period of sequences is PPl Qe

2

quences in the family are obtained using shifts and additions of decimated
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m-sequences m(2t) and m(2dt) with the decimation factor d = N — p"~L.

The upper bound on the magnitude of nontrivial correlation values of
the sequence family can be deduced by the Kloosterman sums, which
is asymptotically two times the Welch’s lower bound and approximately
1.5 times the Sidel’nikov’s lower bound. The size of the sequence family is
2(p™—1), 4 times the period of the sequences. Some example of the family

is given and the generalization of Kim, Chae, and Song [61] is discussed.
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Table 3.2: Comparison of well-known families of sequences.

Family | Alphabet | Period N | Romax \ Family size
Gold, odd n [ 2 2n —1 1+ /2N + 1) N +2
Gold, even n [4] 2 2n —1 14+2V/N+1 N+2
Kasami [2] [3] 2 2" — 1 1+vVN+1 VN
ﬂaehﬁnberg odd p -1 | 1+ N+ 1Dp N +2
Helleseth [1IT] odd p p"—1 1+2vN+1 N +2
KM [23] odd p pn—1 1+VN+1 N+1
LK [24] odd p p" —1 1+VN VN
M n_1
Ve [y > 2 P 2N +1+2 N+M-1
even (odd p)
z p"—1 N
M VNFI+1 Nynywm-1
V [39] (odd p) 3VN+1+ (5 +1)( )
~ n 1
U 39 M even P 2N F1+6 (N+1)M 1
(odd p) 2
n_1
U [39] M P 3VN+1+5 MM-DWN=1) 4 pr g
(odd p) 2
Q, [
DVN +2 N —2)NT
O<r<p—2) p P (r+1)VN + ( )
£ (p=2) 3] M 2n —1 3VN+1+5 (M —1)2(8=1y ym—1
r N (M —1)? (% 1)
(odd p) [31] M pt—1 3VN+1+5 J\(l 1
7 B33 M p 2VN +5 ¥+M
Fr 38 M p 3vVN +4 %H\/[_l
7 [38] M P -1 2VN+1+6 QT Ny | M1
(5:2) s (M —1)
o = 1 M P AN +7 (5L (- 1)2
(6#0) +(N71g(N73) (M2 —3M+3)
(M —1)
+ (N71)8(N73) (M _ 1)3
(6:2) (M —1)
Gs"™ 139 M pr—1 AVNFT+8 (N2 (M - 1)2
(6 #0) (N=2)(N=4) (52
 W=2UN=A) (02 30 +3)
(M —1)
H® B M -1 5VNFI1+7 HEF2)(M —1)?
i (N72)8(N74) (M —1)3
New p (3 mod 4) pn;l 2\/N + % AN
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Chapter 4. On the Cross-Correlation
between Two Decimated p-ary
m-Sequences by 2 and 4p™/? — 2

Based on the work by Helleseth [71], for an odd prime p and an even

integer n = 2m, the cross-correlation values between two decimated m-

n/2

sequences by the decimation factors 2 and 4p™/“ — 2 are derived. Their

—14p™/2 —143pn/?
2 2

cross-correlation function is at most 4-valued, that is,

) )

n/2
and %. From this result, for p™ ## 2 mod 3, a new sequence fam-

ily with family size 4N and the maximum correlation magnitude upper

_ n/ . n_1 .
bounded by %”2 ~ \%\/N is constructed, where N = 2= L is the

period of sequences in the family. D

4.1. Introduction

Pseudonoise sequences have wide applications in various areas, includ-
ing signal processing, channel estimation, radar, cryptography, and com-
munications. In particular, for code-division multiple access communica-
tion systems, each user in the cell is assigned a user signature sequence

and correlation values between sequences should be low for multiplexing

'The material of this chapter is primarily based on the following paper: Copyright
(©2015 IEICE from Ji-Youp Kim, Chang-Min Cho, Wi-Jik Lee and Jong-Seon No, “On
the Cross-Correlation between Two Decimated p-Ary m-Sequences by 2 and 4p™/? — 2.7
to apper in IEICE Transactions on Communications, vol. E98-B, no. 3, Mar. 2015.
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message signals. Low autocorrelation of each sequence is important for
synchronization and low cross-correlation between sequences are crucial
for intra-cell interference mitigation. Therefore, many studies have con-
structed sequence families with low auto- and cross-correlations. Also,
since large family size implies that a large number of users can commu-
nicate with each other in one cell, sequence families with low correlation
and large family size are preferred.

One of the popular methods to construct sequence families is to inves-
tigate the correlation property of decimated m-sequences. If m-sequence
m(t) and decimated sequence m(dt) by the decimation factor d have low
cross-correlation, then by using shift-and-add method, a sequence fam-
ily with good correlation property can be constructed easily. Thus, many
researchers have attempted to find “good” decimation values and to in-
vestigate the correlation values of the decimated sequences. Helleseth [71]
studied various decimation values for binary and nonbinary m-sequences.
For an odd prime p, n = 4k, Seo, Kim, No, and Shin [37] derived the exact
correlation distribution between m-sequences and their Z# decimated
sequences by d = (1921;7“)2. Luo [42] extended the result of [37] to the case
n = 2m and p"™ = 1 mod 4. Muller [27] employed the quadratic form
technique to derive an upper bound on the cross-correlation between the
ternary m-sequence and its decimated sequence by d = 33n—++11 + L;l Hu,
Li, Mills, Muller, Sun, Willems, Yang, and Zhang [28] generalized this re-
sult to the case p =3 mod 4. Xia, Zeng, and Hu [46] calculated the exact

distribution of correlation values. Later, Choi, Kim, and No [55] extended
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pn+1 pnil
Pl T2

Xia’s result to the more general decimation factor d = . Seo,
Kim, No, and Shin [36] derived the cross-correlation distribution between
p-ary m-sequences and decimated sequences by d = p* + 1 with even n

and ged(n, k) = 1. Choi, Lim, No, and Chung [52] investigated an up-

(p™+1)?
2(p+1)

per bound on the correlation magnitude for d = and n = 2m,

where m is an odd integer. Luo, Helleseth, and Kholosha [43] extended

(m+1)? .
SR 11) with

the result for p = 3 mod 4 case to the decimation d =
odd m and k|m, and derived the correlation distribution. Sun, Wang, Li,

and Yan [56] derived the exact distribution of the cross-correlation for

p=1 mod4 and d = (273(7;;3)2 when m is odd and k|m. Xia and Chen

[48] determined the distribution of the cross-correlation values for more

(p"+1)2
2(pk41)°

general case d = where p is any odd prime and m is any integer
with odd m/k. Kim, Choi, Lim, No, and Chung [59] studied the cross-
correlation between ternary m-sequences and their decimated sequences
by d = w + 32k+1 where n = 4k + 2 and obtained the up-
per bound. Later, Xia, Chen, Helleseth, and Li [49] generalized the result
to the arbitrary odd prime p and d = % and derived the
correlation values. Some recent results on the cross-correlation between

m-sequences and their decimated sequences are summarized in Table

For more detail, the reader is referred to [54].

Recently, there have been some results for “half-period” (N = an_ L

. . . . . n__ —_ .
sequence family construction. Using decimation d = 732—1 — p" 1, Kim,

' ; . - . n—1
Choi, and No [58] constructed a p-ary sequence family of period Z——,

where p = 3 mod 4 and n is an odd integer. Kim, Chae, and Song [61]
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generalized this result to the arbitrary odd prime p and any integer n,
where the period is pn% with elp” — 1 and e < M. For d =
p™ + 1, Xia and Chen [47] constructed a half-period sequence family and
derived its correlation distribution. Lee, Kim, and No [62] constructed p-
ary sequence families of period panl with low correlation for d = 4 and
pnTH. Lately, Cho, Kim, and No [64], based on the previous works by Seo,
Kim, No, and Shin [37] and Luo [42], studied the cross-correlation between
two decimated m-sequences by 2 and w. In Table we list these
works for comparison.

In this chapter, based on the Helleseth’s work [71], for an odd prime
p and an even integer n = 2m, the cross-correlation values between two

n/2 _ 9 are derived. The cross-

decimated m-sequences by 2 and d’ = 4p
—14p™/2 —143pn/?

correlation is at most 4-valued and takes the values of —5—, 5,

—145pn/2
2

and . Using this result, for p™ # 2 mod 3, a new sequence fam-

ily with family size 4N and the maximum correlation magnitude upper

bounded by %pn/? ~ %\/N is constructed, where N = pn2—1 is the

period of sequences in the family.

This chapter is organized as follows. In Section we introduce half-
period sequence families, previous works, and preliminaries. Next, in Sec-
tion [£.3] we derive the values of the cross-correlation between p-ary m-
sequences and decimated sequences by 2 and 4p™2 — 2. In Section
we give examples of actual correlation values. Then we propose the con-
struction of the half-period sequence families and derive the correlation

values in Section [4.5] In Section [£.6] we discuss about the distribution of
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the correlation. Lastly, we conclude this chapter in Section

4.2. Decimated Sequences of Period pn%

Let m(t) be a p-ary m-sequence of period p" —1 and d be a decimation
factor. Consider two decimated sequences m(2t+1) and m(2dt+ j), where
0 <i,j7 < 1. Note that we decimate m(dt) further by 2 as m(2dt). The
period of m(2t+i) is N = p . Then the cross-correlation C; ;(7) between

m(2t + i) and m(2dt + j) is given as

N-1 ‘ ‘
Cij(T ): wm(Q(t+7')+Z)—m(2dt+])

N-1

Z tr"(aQ(t+T)+i_a2dt+j) (4 1)

t=0
Since ged(2d, p™ — 1) is a multiple of 2, we have

N-1 pr—2
2(t+‘r)+17 2dt+j n(~2(t+7)+i__ 2dt+j5
w % ) — § : wtrl (a o )

t=0 t=N

Therefore, (4.1) can be rewritten as

1 2(t+7)+z_a2dt+J)
=3 Z

1 Z (ax?—bz2?)
F

where z = of, a = a®" 1, and b = o7.
In Chapter [3] for an odd prime p =3 mod 4 and an integer n, families
of p-ary sequences of period Z% with low correlation and family size

2(p" — 1) were introduced. Later, Xia and Chen [47] proposed families
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Table 4.2: Some known sequence families of period

Family : Alphabet 7 n Period N | Family size 7 Cnax

Kim et al. [57] | p=3 mod 4 odd s AN 2y/N + 4

Kim et al. [61] odd p even or odd ﬁ:mlH 2N 2v/eN + 1
Xia and Chen [47] | p=1 (mod 4) even or odd @:ML AN wz\z +1+1
p=3 (mod 4) even w:mlH AN $/\>\<+w+w

Lee et al. [62] p=3 mod 4 odd s:MIH AN ~ w/\z

Cho et al. [64] odd p even @:ML ON + 1 ~ wz\a

New odd p n = 2m with p™ # 2 mod 3 @:ML AN ~ wz\a

©2015 IEICE.
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of p-ary half-period sequences for more general p. We introduce these as

previous works for half-period sequence constructions.

Theorem 4.1 (in Chapter . Let p =3 mod 4 be an odd prime and n

be an odd integer. Let N = %

element of Fyn. Then the sequence family is defined as

and d = N —p" L. Let o be a primitive

S = {tr?(a®) + (a2 HRH) 0 < 4,5 < 1,0 < k < N}.

Then the maximum magnitude of the correlation between sequences in S
is upper bounded by 24/ N + % and the family size is 4N =2(p" —1). O

Theorem 4.2 (Xia and Chen [47]). Let p be an odd prime and m,n

.. . . _ _ pn_l
be positive integers. Suppose e = ged(m,n) and 2 > 3. Let N = P,

d = p™+1, and a be a primitive element of F». Then the sequence family

is defined as
S = {7 (&®) + ()0 < i, 5 < 1,0 < k < N}.

Then the maximum magnitude of the correlation between sequences in S
is
PVp*+1), ifn(-1)=1

(p°/P" + ), i n(=1) = —1

and the family size is 4N = 2(p"™ — 1), where 7 is a quadratic character
defined on Fyn. a

[T

Recently, Cho, Kim, and No [64] derived the distribution of cross-

m
%)2, n = 2m, and

correlation values of the above form for 2d = 2(

m
P 2+1 )2 was

p™ = 1 mod 4, where the original decimation factor d = (

first studied by Seo, Kim, No and Shin [37] and later by Luo [42].

Theorem 4.3 (Cho, Kim, and No [63] [64]). Let p be an odd prime
and n = 2m with p” = 1 mod 4. Let d = (#}2. Then the cross-

correlation distribution between tr7(a?+%) and tr7(a?¥), i € {0,1}, is

51



given as follows.

(i) For i = 0
_1;pm, %(3]9” —4p™ — 7) times
C(r) = —’1§pm, pm2+1 times
#, 2(p" — 1) times.
(ii) Fori =1
o) —1;pm7 1(p" — 1) times
#, 1(p" — 1) times.

d

Lee, Kim, and No [62], using Weil bound, constructed two families of
p-ary sequences of period pnT_l with low correlation. The decimations are
d=4and d = 2F
Theorem 4.4 (Lee, Kim, and No [62]). Let p be an odd prime and n be

anoddinteger.Leth%anddzélord:pg—H:NJrl.Letabe

a primitive element of F,». Then the sequence family is defined as
S = {tr7 () + tr] (o240 < 4, < 1,0 < k < N}.

Then the maximum magnitude of the correlation between sequences in S
is upper bounded by %\/N + % + % The family size is given as 4N =
2(p" = 1). O

In this chapter, we derive cross-correlation values for d’' = 2d = 4p™/2 —

2, where the original decimation d = 2p"/?

— 1 was investigated by Helle-
seth [11]. The original result by Helleseth is given below.

Theorem 4.5 (Helleseth [I1]). Let p be an odd prime and n be an even
integer. Let p/2 # 2 mod 3 and d = 2p"/? — 1. Then ged(d, p" — 1) = 1
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and the cross-correlation between trf(a!) and tr}(a) takes the following

values
(i) —1 — p™/? occurs %(p” — p"/?) times
(ii) —1 occurs 3(p™ — p™/? — 2) times

n/2

(iif) —1 + p™? occurs p™? times

(iv) —1 4 2p"™? occurs " — p™?) times. O

The following lemmas are used for derivation of cross-correlation values.

These are due to Baumert and McEliece [9] and Helleseth [IT].

Lemma 4.6 (Helleseth [I1]). Let p be an odd prime and n be an even

integer. Then we have

. n/2
n/2 i p =
Z Wit (ay? / 1y _ P, ifa+a 0

y€F,n —p?, ifata? £0.
O

Lemma 4.7 (Helleseth [I1]). Let p be an odd prime and n be an integer.

Then we have

3wt

ye]Fpn
", ifa=0

= (—1)”*1((—1)%]))”/2, if a is a square in I},
(—1)”((—1)%1?)”/2, if a is a nonsquare in Fy,.

4.3. Correlation Bound

Throughout this section, we use the following notations.
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p is an odd prime.
e n = 2m, where m is an integer.

d=2p"? —1and d = 2d = 4p™/? - 2.

_p'-1
o N = 5

e « is a primitive element of Fyn.

Now we determine the correlation values between m(2t+14) and m(d't +

j) as in the following theorem.

Theorem 4.8. Let p be an odd prime and n = 2m be an even integer.
Let d’ = 2d = 4p"™/? — 2 and m(t) be a p-ary m-sequence of period p™ — 1.

Then the cross-correlation function between m(2t + i) and m(d't + j),

i : — n/2  _ n/2 n/2
0 <1i,j <1, takes values in { 1+p 1+3p 1+gp

2 ’ 2 ’

Proof. The proof can be done using the similar method as in [II] but
with some modifications. The correlation function C;;(7) of m(2t + 9)

and m(d't + j) can be written as

1 n
Ciglr) =5 3 whilest=ba®)
CCEF;n

. . M m
where a = a?™ ™ and b = of. Let z = ozkyp 7 ,0<k<? 2+1, and

define the set C, = {z € Fpn : z = a!,t =k mod pm2+1}. Then as y runs

through all field elements of Fp», x runs through Cj me—H times and 0
m_1
v z

x runs through Fpn 2 2+1 times. Since %d’ =p™+1 mod p"” — 1 and

m

once. Thus if £ takes values from 0 to and y runs through F», then

Pt
r=oafy 2 | we have

m 41 1 m411 -
£ 5 (Cij(T) + 5) =2 5 3 't (az? bz
:EE]Fpn
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= } Z tr’f(aa%ypm“'l7ba2dkypm+1)
2
k=0 yEFpn
pM—1
2
_ ! Z WP (aa?h—ba2dk))
2
k=0 yeF,n

Now suppose that K (a,b) is the number of solutions k of
(aa®® — bV 4 4ok — ba2dk = 0. (4.2)

Then by Lemma [£.6] we obtain

Cij(T) + % =p"(K(a,b) — 1)

and thus
Cig(r) = (2K (a,b) ~ 1)p" ~ 1)

Therefore it suffices to show that K (a,b) can take only 0, 1, 2, and 3. We
consider the following two cases.
1) p™ =3 mod 4

In this case, we use the following notations:

o 3=a?P"*+D and thus ﬁpry;;l =1.

m

o v = o7 and thus A2+ = 1,
Then the followings hold as

o ged(5(p™ —1),2(p™ +1)) = 1

o a=fy
o« B =4
ofypm:—’y L
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By substituting 2k by [, we have 2dk = dl. Then (4.2) can be expressed

as

(aa! — ba®™P" 4 aal — ba®
= (a(B9) = b8P + a(By)" = b(B7)"
= " B () = BT aplt bl (43)

Note that

1, mod $(p™ — 1)
-3, mod 2(p™ + 1).

Thus, (4.3) can be rewritten as

" By — " Bl 4 Bt — b8y = 0
= apmy_l — bpmvgl + cwl — b7_3l =0
= a2 - pan — =0
= a2 " (Y a2 —b=0. (4.4)

This is the cubic equation of 42!, Since | = 2k, we have 0 < [ < p™. But

we have

72l1 — ,.Yng
<=2l =2l mod 2(p™ +1)

<1 =1 modpm—i-l.

Therefore, the number of solutions is less than or equal to three. Thus the
proof for the case p™ =3 mod 4 is done.

2) p™ =1 mod 4:

In this case, the definition for 5 and v is modified as follows:

pM+1

e B=a" 2 and thus g2¢?"-1 =1,

41

o v=a??""1 and thus vz = 1.

Then the following properties hold in this case as
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o ged(2(p™ —1), 5(p™ +1)) = 1

o a=fy
.« 9" =8
o P =yt
Using
d— 21— 1, mod 2(p™ — 1)
-3, mod %(pm +1),
we have

(aa! — ba®™P" 4 aal —ba® =0

& a”" (=) =" (=) + aply! — by =0

& a" By — " Bl 4 aplyt — by =0

s a v " pay — by =0

<:>apm721 —bpmvﬁl +a'y4l —-b=0

& a0 () +a(y*)? —b=0. (4.5)

This is the cubic equation as in the case of p™ =3 mod 4. Furthermore,
we have
A2l 2
1
<= 2l; =2l mod g(pm +1)

1
<=1 =19y mod i(pm +1)

since %(pm + 1) is odd. Therefore, the number of solutions is less than or

equal to three. Thus the proof is done. O

Remark 4.9. In [I1], Helleseth used Theorem 3.8 [I1] to derive the equa-
tion similar to (4.2)). Since we deal with the cross-correlation of two half-

period sequences, we cannot directly apply Theorem 3.8 [11] to this case.
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Instead, we follow steps similar to the proof of Theorem 3.8 [1I] with
some modification to accomodate decimations. This technique was also
employed in [37] [64]. The idea of considering the cases of p™ =3 mod 4
and p™ =1 mod 4 separately is due to Helleseth [IT].

Remark 4.10. In [11], the correlation is exactly 4-valued and the value
distribution of the cross-correlation is derived. But in this case, the number
of the correlation values can be three or four, as proved in Corollary
Also the technique in [IT] cannot be applied to derive the distribution since

the correlation considered in this chapter is that of half-period sequences.

In addition, we can obtain the following result for the cross-correlation.

Corollary 4.11. The cross-correlation function between m(2t 4 i) and
m(d't+5),0 <i,j < 1,in Theoremtakes values in {1i2pn/2’ *HSP”/Q }
if

1) p™ =3 mod 4 and j =1, or

2) p™ =1 mod 4 and j = 0.

Proof. 1) p™ =3 mod 4 and j = 1:
In this case, b = o/ = «. Thus (4.4) can be expressed as

aan/_le o bp"L (72l)3 + a(,-YQl)Q — b = 0
S 1" () — a(y®)? — a4 b= 0,

20
)

Suppose that three distinct solutions 421, v22, and 7?3 exist. Then we

have

S2hn 2225 o 2atlatls) L™ Pt
Therefore

m_ 1 "1

2" 2 (h+1lp+13) =T = ("™ —1) modp" -1
pm
e (h+l+l1) = 5 mod p"" + 1.
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But the left-hand side is even and the right-hand side is odd. Thus the
number of solutions of is at most 2.

2) pP =1 mod 4 and j = 0:

Since p™ = 1 mod 4 and j = 0, we have b = 1. Then can be

written as

" = ()4 alr )~ 1= 0
& () —a(y”)? —a”" ¥ +1=0.

Now suppose that three distinct solutions v21, 422 and 7% exist. Then
we have
PRl 2l 2(ltats) g o
Therefore
4(p" = 1)l + 12 +13) = "~ 1)2(pm +1) mod p" — 1
SAli+1l+13) = pm2+ ! mod p™ + 1.

As in the case of 1), the left-hand side is even and the right-hand side
is odd. Thus the number of solutions of (4.5)) is at most 2. Therefore the

proof is complete. O

4.4. Examples

Here are two examples of the theorem and corollary in the previous

section.

Example 4.12. First, consider the case p = 3, n = 8,1 =1, j = 0,
2d = 322, that is, p™ =1 mod 4. Then by numerical computations, the
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cross-correlation function between m (2t + 1) and m(2dt) can be given as

—41, 2040 times
Cro(r) = {40, 840 times
121, 400 times.

Example 4.13. Now let p=7,n=6,7 =0, j =0, 2d = 1370, that is,

p"™ =3 mod 4. By computer experiment, the cross-correlation is given as

—172, 34188 times
171, 22120 times
514, 85 times

857, 2431 times.

00,1 (7‘) =

One can easily verify that the above examples coincide with the results

of Theorem [4.8 and Corollary

4.5. A New Sequence Family of Period 1%

Based on Theorem E a new sequence family of period pnT_l can be

constructed using shift-and-add method.

Theorem 4.14. Let p be an odd prime and n = 2m be an even integer
with p™ # 2 mod 3. Suppose d’ = 2d = 4p"™/? — 2 and m(t) is a p-ary

m-sequence of period p™ — 1. Define the sequence family

S = {sign(t) = m(2t +i) +m(d'(t+ k) + )}

where 0 <4, <1,0< k<N = w%. The correlation function of the se-

pt—1 —1£p™/2 —143p™/2 —145pn/2
2 2 ’ 2 ’ 2 ’

quences in S is at most five-valued in

that is, the maximum magnitude of the correlation is upper bounded by
M and the family size is 4N = 2(p" — 1).
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Proof. Suppose s;, j, k1 (t), Sig,jo.ko (t) € S. Then the cross-correlation C(7)

between these two sequences is given as

(2T 401 _pn (o2t +io N (o d (t+7+E1) 451 )ty (od (t+kg)+io
C(T) _ § :wtr1 (x )—tr] (o )+ttt (« )—tr (« )
t=0
- Z wtr¥(a2(t+7)+i1 _a2t+i2)+tr?(ad/(t+r+k1)+j1 _ad'(t+k2)+j2)
t=0

tr’il((a2‘l'+il —_at2 )a2t)+tr?((a(d/<7+k1)+j1 _ad/k2+j2 )ad/t)

Il
&

Il
&

where a = o2™t1 — o2 and b = o¥ (THkU+ _ o @k2 472 But this is the
same form as the cross-correlation between m(2t + i) and m(d't + j) in
Theorem 3 if a # 0 and b # 0. If a = b = 0, then 7 = 0,41 = 49, j1 = Jo,
and ki = ko, which implies the in-phase autocorrelation. If a = 0,b #£ 0
or a # 0,b = 0, then by Lemma the correlation value is #.
Therefore, the maximum magnitude of the correlation is upper bounded
by %W. Also it is easily checked that the family size of § is 4N
since p" # 2 mod 3 implies ged(p™ — 1, d) = 1. Therefore the proof is
complete. O

Note that the condition p™ # 2 mod 3 is not too restrictive because
p™ =2 mod 3 is equivalent to p =2 mod 3 and m is odd. Thus we can
construct the proposed family if p =1 mod 3 or m is even. For compari-

son, some known half-period sequence families are listed in Table

4.6. Discussions

To derive the distribution of the cross-correlation, generally we need to

compute SN L0y (), SN Ci(r)?, SN € ()3 because the corre-
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lation is at most 4-valued. In the case of Corollary where the number

of the correlation values is three, only S "' C; i (m)and SN-' C; ;(1)? are

needed. The summation YN "1 C; ;(7) is easily obtained, but Y"1 C; ;(7)?

is not. This problem will be discussed below.

Lemma 4.15. For p™ =1 mod 4 and p™ # 2 mod 3, the cross-correlation
function C;o(7) between m(2t + i) and m(d't + ), 0 <i < 1,7 =0, in

Theorem [.8] satisfies

(—p™ —1)% 1=0
" -=DEm+1), i=1.

)

—~

<

~—

Il
N N[

Proof. We have

N-1
7=0 7=0 zEF;n zEF;n
Letting y = o™ and a = y?a, it follows that

N-1 1
tri(az?) _ * try (y2aiz?)
T=

NI NI
=
b
3
|
—_
SN—

by Lemma [£.7] Also, note that

Z CZ(T) — ;Nz:l Z wtr?(amszxm) _ é Z w—tr’f(bx“

N-—1
) Z wtr?(axz).
7=0

Z ot () Z ot (=ba?) Z Lt (=2?) _ —p™—1

€%, €%, z€F?,

since ged(2d,p™ — 1) = 2 and —1 is a square. Thus,

N-1 l(_m_12 _
P ) i=0

Y CGilny=q2

—0 s =™ +1), i=1

O]

Now we deal with the second moment of the correlation, ZiV:}]l C;. ()2
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For this, we need the following result [66] [64]. Here QR and QNR are

sets of squares and nonsquares of Fpn, respectively.

Lemma 4.16 (Dickson [66]). Let z € Fy.. Then if —1 is a square, we

have
{0}, 2 times
1+22 € { QR, pn2_5 times
QNR, pn;1 times.

When —1 is a nonsquare, we have

{0}, 0 times
1+ 2% € QR, pnT_g times

QNR, p"2+1 times.

Now we define Ny, No, N3, N4 as

Ni=|{z€F} :1+2* € QR,1+ 2> € QR}|
Ny =|{z€F}n: 142> € QR, 1+ 2* € QNR}|
N3 = |{z €F}u: 142> € QNR, 1+ 2*! € QR}|

Nyi=|{z€Fm:14+2* € QNR,1+2* € QNR}|.

Then we have the following result.

Lemma 4.17. For p™ =1 mod 4 and p™ # 2 mod 3, the cross-correlation
function Cp o(7) between m(2t+14) and m(d’'t + j) for i = 0, j = 0 in The-
orem [4.8] satisfies

N—-1
> Coo(r)?
7=0
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1
= g[Q(pn —1)* —4p™ + p" — 3+ p"(N1 + Ny — Ny — N3)].

Proof. We have

N-1 1N—1

2 _ - try (aw? —a2 try a:cQ—:v)
> Clr = 13 3 WA 5 e
T=

=0 x1€]F;n IQG]F

Let a = o®™ and y = o”. Thus o®” = y? = a. Then,

N-1
1 no 24, 2dy 1
2 _ - —try (z24+422%) try (y? (22 +23))
Y Gl =] 3wt 3 i
T=!

x1€F n 22€F n yelfn

Z Z o T (@10 +23?) Z ST (P (@3 +a3))
©1€F n x2€F n yEF n

§ : § : w—trl a(14224)) § : wtrl (y222(1422))
:1:1 E]F*n ZEIF yeIF*

where we take z = x9/x1. Define

X (a1, 2) = w TG 042) ™ it

Then we have

ZCOO =3 Z [ Z X(z1,2) + Z X(z1,2)

xleF* z GIF* z GIF;n
1+z2:0 14+22€ QR
+ E X(:cl,z)]
zE]F;n
1+22 € QNR

Since (d,p" — 1) = 1, we have 1 + 22 = 0 < 1 + 2%¢ = 0. Therefore,

2. 2, Xz

xle]Fn zEIF*
1+22:0
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E E ' wftr’f
xleF;n z € ]F;;n
1+22=0

ST %

v1€Fn z €

(1+22%) Z LT (Pt (142)
EF*
AN G~ 1) = 20" — 12,

1+22=0
Thus, we have
Z Z X(z1,2)
96161171’;n z € ]F;;n
1+22€ QR
Z Z Wt (@ (1+22) Z T (@221 (1+27))
r1€F . zeF, yeFs,
1+22€QR
—tr’ (224 2d
Z Z w try (x7%(1+=2 ))(_pm - 1)
a:lelF;n z € ]F;n
1+22€QR
=(p"-1) YL Y w e
z1€F;n 2 €Fpn
1+22€QR
> > T (@ (1+27%)
x1€]F;n z € ]F;n
1+22€QR
14224 € QR
SRR SRIRLIETER)
x1€IE‘;n = ]F;n
1+22€QR
1422 € QNR
m
> > (= -1)
x1EIF‘;n z € lF;n
1+22 € QR
1+ 224 c QR
2 > -1
z1€IF;n z € F;;n
1+22€QR
1+2%2¢ € QNR
2
=(=p" = 1)"Ni + (=p" = 1)(p™ = 1)No.
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Likewise,

Z Z X(z1,2)

w1€Fn  z€eFp,
1422 € QNR

=2 2

z1€F, z € Fpn
1+22 € QNR

— Z Z w T @) (ym )

z1€IF;n S F;n
1+22 € QNR

-1 Y Y W)

z1€F z€Fpn
1+22 € QNR

=(p™ —1) Z Z w7 (234 (14229))

r1€Fpn 2z € R
1+22 € QNR

1+ 224 € QR

+ (pm o 1) Z Z w—tr?(x%d(l-i—zm))

T1€Fpn 2 E€F,
1+ 22 € QNR

14224 ¢ QNR

=" -1) Y, > (-1

$1€F;n zEIF;n
1+22 € QNR

14224 € QR

+m-1) ) > -1

r1€Fn  zeFp,
1422 € QNR

14224 ¢ QNR

=(p™ —1)(=p™ — 1)N3 + (p™ — 1)*Ny.

W) § TRt )

yeF;n

Therefore, combining these results, we have

N—-1
Z 0070(7-)2 = % Z I: Z X(ml,z) + Z X(xl,z)
7=0

xle]F;n z €Fyn z €Frn
14+22=0 1+22€QR
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+ > X(a:l,z)]

Ze]F;;n
1+22 € QNR

1
= g[2(p" — 1) —4p™ 4 p" — 34 p"(Ny + Ny — Ny — N3)).

O]

Therefore, we compute Ny, No, N3, Ny and then Z]TV:_Ol Coo(7)? is ob-
tained, and thus we can derive the distribution for the case p™ = 1
mod 4,7 = 0,5 = 0. From Lemma [4.16), we can show that Ny = Nj
and N1 4+ 2 = Ny4. Thus, we need one more equation over Ny, No, N3, Ny
to do this. But evaluation of these numbers does not seem to be easy.
Thus we remain it as a further work.

In Table[4.3] values of Ny, Na, N3, Ny are tabulated for some parameters
p, n, and m. Note that relations No = N3 and Ny + 2 = Ny are valid for
p™ # 2 mod 3 cases. But for p = 5 and n = 6, we have p™ = 125 = 2

mod 3. One can check that No #% N3 and N1 + 2 # Ny in this case.

4.7. Conclusion

In this chapter, for any odd prime p and an even integer n = 2m, the
cross-correlation values between two decimated m-sequences by 2 and d’ =

4p™/? — 2 are determined. The cross-correlation is at most 4-valued and

takes values in {&21””/2, 71+gpn/2, 71+§’pn/2 } Based on this, for p™ # 2
mod 3, a new half-period sequence family is constructed by the shift-and-
add method. The maximum magnitude of the correlation values of the

—145pn/2
2

sequences in the family is upper bounded by and the family size
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Table 4.3: Values of Ny, No, N3, Ny.

plnfm[ o [ N[ N [ N | N
31 4]12]|1 mod4 22 16 16 24
6 | 3|3 mod4 | 194 168 168 196

8 | 4|1 mod4 | 1678 | 1600 | 1600 | 1680

10| 5 | 3 mod 4 | 14882 | 14640 | 14640 | 14884
514|121 mod4 | 182 128 128 184
6 | 3 |1 mod4 | 4018 | 3792 | 4040 | 3768

8 | 4|1 mod4 | 98286 | 97024 | 97024 | 98288
71412 |1 modd| 606 592 992 608
6 | 3|3 mod4 | 29510 | 29312 | 29312 | 29512
1114 ] 2|1 mod4 | 3782 | 3536 | 3536 | 3784
131412 |1 mod4| 7270 | 7008 | 7008 | 7272

is 4 times of the period of sequences, 4.
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Chapter 5. On the Cross-Correlation of

Ternary m-Sequences of Period 3*%2 — 1

34/€+2_32/€+1+2 _|_ 32k3+1

with Decimation T

In this chapter, for an integer k, we evaluate an upper bound on the
cross-correlation of a ternary m-sequence of period N = 3*+2 — 1 and

4k+2_ 92k+1 .
3 i +2 + 32k+1. It is

its decimated sequence with decimation d =
found that the cross-correlation is upper bounded by 4.5 - 3261 4 1. To
prove this, we use the quadratic form theory. Unlike the previous works,
we have four quadratic forms involved, and using Bluher’s result [33], we
restrict the number of zeros of linearized polynomials by 1, 9, and 81. Also

we prove that among four linearized polynomials, at most one polynomial

can have 81 zeros. [

5.1. Introduction

The cross-correlation between p-ary m-sequences and their decimated

sequences by d has been extensively studied by many researchers. Tracht-

pr+2

enberg [7] investigated the cross-correlation for the decimation d = 25

!The material of this chapter is primarily based on the following proceeding: ©2012
IEEE. Reprinted, with permission, from Ji-Youp Kim, Sung-Tai Choi, Tachyung Lim,
Jong-Seon No, and Habong Chung, “On the cross-correlation of ternary m-sequences
of period 3***2 — 1 with decimation (3**+2 —32¢+1 £ 9) /44 3%%*+1 » [EEE International
Symposium on Information Theory, Cambridge, MA, Jul. 2012
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and d = p?* — p¥ 4+ 1 when p is an odd prime. Helleseth [IT] summa-
rized many known results and evaluated cross-correlation distributions
for various values of decimations. Muller [27] proved that for odd n, the

cross-correlation between a ternary m-sequence and its decimation by

d= 3;:“11 + 3n2_1 is upper bounded by 2./p™. Hu, Li, Mills, Muller, Sun,

Willems, Yang, and Zhang [28] generalized Muller’s result to p = 3 mod 4,
and Xia, Zeng, and Hu [46] have evaluated the correlation distribution.

More recently, Ness, Helleseth, and Kholosha [34] derived the distribution

3F41
2

of the cross-correlation values for p = 3, d = , where k is an odd in-

teger with ged(k,n) = 1. For an odd prime p, even n, and d = p* + 1 with
ged(n, k) = 1, Seo, Kim, No, and Shin [30] estimated the upper bound

1 4 py/p". Choi, Lim, No, and Chung [52] investigated cross-correlation

(pm+1)?

1) where m is odd.

values for an odd prime p and decimation d =
For a more detailed overview on this subject, we refer the reader to [54].

In this chapter, for an integer k, we derived an upper bound on the cross-
correlation of a ternary m-sequence of period 3*+2 —1 and its decimation

w + 3%k+1 Tt is shown that the upper bound is given

with d =
as 4.5 - 32**1 1 1. For the derivation, we use the quadratic form theory
as in [27] 28] [34] [36] [46] [52], but in this case four quadratic forms
are involved. To obtain possible rank combinations of quadratic forms,
Bluher’s result [33] [35] is employed. It is shown that quadratic forms
have only even ranks and among four quadratic forms, at most one of

them has the lowest rank.

The remainder of this chapter is organized as follows. In Section [5.2]
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we introduce the basic facts for the quadratic forms and linearized poly-
nomials. In Section we present the Bluher’s result [33]. In Section
we collect notations and explain the step of the proof. In Section [5.5] we
discuss how to transform the cross-correlation into the quadratic form.
Next, we investigate the possible rank combination of quadratic forms
in Section [5.6] In Section we derive the upper bound on the cross-
correlation magnitude. Some examples are given in Section and the
related result by Xia, Chen, Hellseth, and Li [49] is introduced in Section

m Finally, concluding remarks are given in Section [5.10]

5.2. Quadratic Forms and Linearized Polynomials

In this section, we introduce the quadratic form, which is the main
tool for analyzing the cross-correlation in this chapter. Also, linearized
polynomials, whose zero sets are the kernels of corresponding quadratic
forms, are defined. The following discussion can be found in [72] [73].

Let V be an n-dimensional vector space over the field F'. We can define

a bilinear form B as follows.

Definition 5.1 (Bilinear forms [73]). A bilinear form B is a function
B :V xV — F such that

(1) B(ax +by,z) =aB(x,z) +bB(y,z) for all z,y,z € V and a,b € F

(2) B(z,ay+bz) =aB(z,y) +bB(z,z) for all z,y,z € V and a,b € F. O

That is, the bilinear form is linear for each argument. Let B = {v1, ..., v,}

be an ordered basis of V. Then we can map the bilinear form B to its
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associated matrix [B]g as
[Blp = (B(’Ui,?./j)).

Thus each (i, j) component of [B]g is B(v;,vj). Conversely, for each n xn

matrix J over F', we can define the bilinear form B]‘é " x F™" — F as
Bi(x,y) = 2" Jy

where z,y € F™ and F is a standard basis of F. It is immediate that Bé
is indeed a bilinear form on F™.

One can show that the set of all bilinear form over V' and the set of all
n X n matrices over F' are vector spaces over F'. Furthermore, it is easily

shown that these are isomorphic each other by the mapping
Br— [B] B-

Symmetric bilinear forms are of particular interest to us.

Definition 5.2 (Symmetric bilinear forms [73]). A bilinear form B is

called symmetric if
B(z,y) = B(y,x) for all x,y € V.

d

For example, the inner product defined on the Euclidean space R" is a
special case of symmetric bilinear forms.

Now we define the quadratic form.

Definition 5.3 (Quadratic forms [73]). Let V' be a finite dimensional
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vector space over the field F'. Then the function @ : V — F is quadratic

form over V if

(1) Let Bg : V x V — F be the function defined by

Bo(v,w) = Qv+ w) — Qv) — Qw)
where v,w € V. Then Bg is a bilinear form over V.

(2) For all v € V,c € F, we have
Q(ev) = *Q(v).
(]

Therefore, if we are given the quadratic form, then we have the associ-

ated bilinear form. The converse is also true.

Lemma 5.4 (Exercise 14.2.3 [73]). Let B be a symmetric bilinear form
over the finite dimensional vector space V over the field F'. Let Q : V — F
be the function defined by

2Q(v) = B(v,v)

where v € V. Then @ is a quadratic form over V. Furthermore, we have
B = Bg. O

Thus we can say that quadratic forms and symmetric bilinear forms are
equivalent. Furthermore, quadratic forms can be expressed as quadratic
equations over F. Suppose @ is a quadratic form over V and let B =
{v1,...,un} be an ordered basis of V. Then we can find the symmetric

matrix J = (a;;) such that Bg = Bj. For each v = > I zv; € V, let
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[v]g = (21, ...,2,)". Then we have
2Q(v) = Bo(v,v) = [l J[v]s =Y _ aja;.
2%

Therefore, Q(v) is a quadratic equation of xy, ..., z,,. Conversely, consider

a quadratic equation
2@(.%‘1, ceny .%'n) = Z Qi Tl 5
i,J

where a;; = aj;. Let v,w € V such that [v]g = (z1,...,2n

(yb "'7yn)T and Q(U) = Q($17 axn) Thenv

2Bq (v, w) = 2Q(v + w) — Q(v) — Q(w)

= aij(wi + i) (@) + y5)
i’j

- Z QijTiTj — Z aijYilYj
1,J 0,
=2 Z aijmiyj .
0,
Therefore, by letting J = (a;;), J is symmetric and

BQ(v,w) = inaijyj = [U]gj[w]B'
,J

Thus By is a bilinear form over V. Therefore, () is a quadratic form over V.
This implies that quadratic forms are equivalent to quadratic equations.
In this case, (V, B) or simply V, is called a quadratic space.

In this chapter, we deal with the problem of finding the dimension of

kernels of bilinear forms.

74



Definition 5.5 (Kernels of bilinear forms [72]). Let B be a bilinear form
of a vector space V. Then the left kernel of B is defined as

{veV|B(v,z) =0 for all z € z}
and the right kernel of B is similarly defined as
{veV|B(z,v) =0 for all x € x}.
O

The computation of dimensions of these kernels is important to cal-
culate the correlation bound. Note that if a bilinear form is symmetric,
then its left kernel and right kernel are equal. In this case, the left ker-
nel and the right kernel are simply called the kernel and denoted by V.
If V+ is a zero vector space, then we call V' a nondegenerate quadratic
space and its bilinear form nondegenerate. The rank of a bilinear form is
dim(V') — dim(V+). Therefore, the rank of a nondegenerate bilinear form
is always the full dimension.

In this chapter, we deal with the quadratic forms defined over the finite
field. For a prime p and an integer n, let Fy» be the finite field of p™ ele-
ments. Since [F,» is a n-dimensional vector space over [, we identify F),»
as ). Then a quadratic form f over Fyn is expressed by a homogeneous
polynomial of degree 2 in Fp[z1, ..., xy]. That is,

n
fz1, 29, ...y xy) = Z AT %
ij=1
where a;; € Fp,. The matrix A = (a;;) is called a coeflicient matrix of f

and det(f) = A is defined to be det(A). If the rank of A is k for some
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0 < k < n, then it follows that the rank of f is also k. If rank(f) = n,
then f is nondegenerate [70].

A quadratic character n(x) of Fp» is defined as

.
1, if x is a nonzero square in [F»

n(z) = —1, if z is a nonzero nonsquare in [Fy»
0, if x =0.

For a nondegenerate quadratic form f over IF,, one can calculate the
number of solutions of f(z1,x2,...,z,) = b for b € F,, by the following

lemma.

Lemma 5.6 (Theorem 6.26, 6.27 [70]). Let n be the quadratic character
of F,. The number of solutions N(b) of f(z1,x2,...,7n) = b in F), when
f is a nondegenerate quadratic form of rank n with determinant A and
b € IF,, is given as follows:

Case 1) n even;

where € = n((—1)"2A).
Case 2) n odd;

where € = n((—1)*=D/2A). O

From Lemma [5.6] the following lemma is easily derived.

Lemma 5.7 (Ness, Helleseth, and Kholosha [34]). Let n be the quadratic

character of F3. Let f be a nondegenerate quadratic form in n variables
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with determinant A and w be the 3rd root of unity. Then

S = Z wl @

z€F3n

is given by

€3/, if n is even

ev/—13"2,  if nis odd

where € = n((—1)"2A) for even n and € = n((—1)*~1V/2A) for odd n. O

For the case of rank(f) = k < n, we can obtain the number of solutions
by multiplying the result of Lemma or Lemma by p"~k. Since the
rank of quadratic form can be computed from the dimension of the kernel,

we have:

Lemma 5.8 (Muller [27]). Let f € Fplz1, z2, ..., zy] be a quadratic form.
Define

Z={z2€F,: f(x+2)— f(x) =0forall x € F}.
Then Z is a subspace of I and rank(f) = n — dim(Z2). O

Note that Z is the kernel of f.

Let ¢ be a prime power and m be an integer. A polynomial of the form

L(z) = Z az?

with coefficients in Fgm is called a linearized polynomial over Fym. For an

extension field F' of Fym, we have
L(z+vy) = L(zx) + L(y), for all z,y € F
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L(cz) = cL(x), for all z € F and c € F,.

Thus the set of roots of a linearized polynomial is a vector space over I,

and the number of roots is a power of q.

5.3. Number of Solutions of zP"t! — cx + ¢

The following lemmas will be used to determine the number of solutions

of some linearized polynomials.

Lemma 5.9 (Bluher [33], Zeng, Li, and Hu [35]). Let h.(z) = zP" 1 —
cx + ¢, ¢ € Fyn. Then he(z) = 0 has either 0, 1, 2, or ngd(s’") + 1 roots
in Fpn. a

Lemma 5.10 (Bluher [33]). Let F' be a finite field of characteristic p
and ¢ € F™*. Suppose ¢ is a power of p and FNF, = Fg. Define f(z) =

29T — cx + ¢. Then the following are equivalent:

1) f has at least three roots in F;

2) f has exactly @ + 1 roots in F;

3) [ has at least two roots in F' and Np/p,(r —1) = 1 for all root r in F.

d

By setting F' = F ux12 and ¢ = p?* in Lemma we have the following

result.

Corollary 5.11. Let k be an integer, n = 4k + 2, and p be an odd prime.
Then Fyr NFpo = Fpe. Let f(2) = 2 ! — ez + ¢, ¢ € Fyo. Then the

following are equivalent.

1) f has exactly p? + 1 roots in Fpn;
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2) f has at least two roots in Fy» and

pl—1

(r—1)»-1 =1

for all root 7 in Fyn. O

5.4. Notations

First we collect notations here.
e k is an integer;
e n=2m =2+ 4k,
o d= V= gm,
e [F3n is the finite field with 3™ elements;
e (v is a primitive element of Fsn;
e N=3"—-1;
e gcd(N,d) = %jl;

e 0 <!<ged(N,d).

In continuing sections, we derive the cross-correlation function C(7) be-
tween tr7 (o) and tr}(a®*!) with time shift 7. To do this, we follow steps

introduced below [54]:

(1) Transform the correlation function into the exponential sums of quadratic

form exponents.
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(2) Obtain the possible ranks and rank combinations of quadratic forms.
(3) Using Lemma calculate the upper bound on the correlation.

First, we attempt to transform the cross-correlation into the quadratic

form.

5.5. Quadratic Form Expression of the Cross-Correlation

Function

In this section, we transform the cross-correlation function C(7) be-
tween tr(af) and tr7(a®*!) with time shift 7 into the exponential sum
with a quadratic form exponent.

C(7) is given as

i

Clr) = 3 Wt @)t (@it

il
D

wtr’f (at—~adt)

I
]

wtr?(:c—wa:d)

=
*

relsn

where v = a®*! and w is a primitive third root of unity.

Let z = y3" ' +1. Then 2 = 443" 7'+1) Here we have

3 —3n/2 431

a@" ! +1) = 32 (3 + 1
T+ ) = 3BT+
n n/2
:3 _3/ +3_13n71+3n/23n71
3+1
n n/2
3n — gn/ +3-1 a2
3+1
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33714 1) — (32 +1)

3n—1 + 3n+n/2—1

3+1
33" +1) -
L 3 ) —(

n/2
3n/ +1)+3n/2

3+1

C3i4r 324

3n—1 + 3n+n/2—1

3+1 3+1

3371 +1) 3241

+37/2

3+1
(34+1)(3" 1 +1)

3+1
(372 4+ 1)(3" 1 +1)

3+1
+3M2(3n71 4+ 1)

:377,—1 + 1 + (377,/2 _

3n/2+1 + 3n/2 _ 3n/2 -1

3+1

3n/2 +1

e

=3""1 1+ (

=3""1+ 1+ (

3n/2+1_1
3+
34+ 143241 1

e

i )3+ 1)

=31+ 1)(

="+ (5 "

=3""1 4+ 1)(
3371 +1)

3+1

34 3n/2+1

1

3(3n/2+1 + 1)
3+1

S R Y

3+1

- n/2 1
3+1(3 )

3n/2 41
=(3"+3)— "~
(3" +3) 3+1

3n/2 41

=(1+3
(1+ )3+1

=32 11 mod N.
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Thus, we have

n—1 m
trf(z — ya?) =t (y¥ T — 4y,

Since (377! 41,3" — 1) = 4, we must consider a; € C;, 0 < i < 3, so that

41+ C) =4 D wirileme)

z€F3n

3
n—1 m
= E E wtrT(aiy3 +1_,Ya’fiiy3 +1)
%

=0 yE]F:;n
where C; = {a**i|0 <t < 37147_1}
Here g;(y) = tr} (aiy3n71+1 —7ady?"+1), 0 < i < 3, are quadratic forms.

Indeed, let {ay} be a basis of Fgn over F3. Then we canset y = Y 1 yra,

yr € F3. Thus,
n—1 m
gi(y) =t (aiy® T —yafy®" )
n—1 m
=tr}(ay® ') — o] (yady? )

=try <ai ( Z ykak> 3n1+1> — try <7a§l < Z ykﬂk) 3m+1>
=tr} <ai ( kz: k%) (mlz:; ylal> )
— try (’Yaz <Zykak> <lz;ylaz>>

n n n
n—1 m
fﬂ"?( izykaz Z?/l%) — trf <'ya§l2ykaz Zyzoéz>
k=1 =1 k=1 I=1
n n

n n
n—1 m
:E E tr (aiyryiay  og) — E E tr? (yadyryiap o)
k=1 =1

k=11=1
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n

n
E tr} (a0l oy — vadod" o)k,
=1 I=1

Therefore, we have the desired exponential sums with quadratic form ex-
ponents. In next section, we will restrict the possible rank of quadratic

forms.

5.6. Ranks of Quadratic Forms

To calculate possible ranks of quadratic forms, we use Lemma and

count the number of z such that g;(y + z) — ¢g;(y) = 0 for all y € F3n.

Lemma 5.12. The number of z such that ¢;(y + 2) — gi(y) = 0 for all

y € F3n equals the number of roots of linearized polynomial f;(z), where
ilz) =a;"2" + a;z i a®)?" 23" — yad",
52 2 Va; va;
Proof. 1t is easy to verify that

gi(y+2)—gi(y) =0
n—1 m n—1 m
& tf(ai(y+2)* T —yal(y+2)*" ) -t (ay® T = ey ) =0

-1 ) 7 7
e ' (y(alz® + ;2% — (ya;i)?’” 2" — 'yafz?’ "
+a = yad 2"t = 0.

To satisfy this equation for all y, we must have

3.3 gn—l1 d\3m 3™ 3m
a;°z2° + a;z — (vai)? 2z —~vaiz® =0
n—1 m
tr(a;2%" T — yadA T = 0.

Note that the first equation is f;(z) = 0. Here we claim that the first
equation is sufficient condition for the second one. Multiplying the first

equation by z, we have

n—1 m m m
a¢3z3+1+aiz3 +1 d)3 Z3 +1 d 3"+1 —=0.

- (Vai ya; z
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Arranging the equation gives
a323+1 7aglz?,””ud _ 7ai23"—1+1 + (,ya;‘i)?;mziim—i-l‘
Taking the trace function on both sides, we have
tr (a3 23 — yad2?" ) = —tr?(aiz3n71+1 — (yad)?" 3",

Using the property of the trace function, we can raise the first expression
of the right-hand side to the third power as

m m
(032 — 4ad23" ) = e (32371 — yad ).

Then we have

m m
tr’f(ai?’z?""l - 7a§l23 'H) = ftrqf’(ai3z3+1 - vagZS 'H)
& 2t (a2 23 — yad22 T =0
&t (a2 — yad2 ) = 0.

O

By the discussion above, it is sufficient to count the number of roots of
linearized polynomial f;(z). Now we prove that the number of roots of the
linearized polynomial f;(z) is one of 1, 9, and 81. Note that the linearized
polynomial f;(z) has the degree 3", which is not constant, but depends

on n.

Lemma 5.13. The number of roots of the linearized polynomial f;(z),
1=0,1,2 or 3, is one of 1, 9, and 81.

Proof. We can arrange the equation

3.3 gn—1

m m m
a;°z° + a;z 3 43"~

(vah)?" 22" — ~alz
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as
n—1 m m
a2+ i = ()" +yad).

Here we assume z # 0. By dividing the both sides by 23", we obtain

04'3 3n—1_3m

g R = ((va)*" +~af).

Let X = 23" =1 Since (3™~ —1,3" — 1) = 32 — 1 = 8, this transform
is an 8-1 map.
Define

B; = (ya{)*" +~af
Y = CLZ'X.

Then the equality becomes

ai3

X3 T a;X*" = B;.

Hence, we have

1 m m
W_}_alﬁ +ly3 _ B’L

Set A; = a;*" 1. Note A; € Fgm. Let Y2 = z. It is a one-to-one mapping
since (3" —1,3) = 1. Thus,

1

vs TAYY =B (5.1)
From , we have
1 gm—1
- + Az = B;. (5.2)
Now can be rewritten as
1+ A" '+ = Bz, (5.3)
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Here we let x = B%y. Then 1' implies that

1\ 1
1+ A (By> — Bi—y. (5.4)

(5.4) can be rewritten as

Ai 3m—lyl
3m—l41
B;

A; _ 1
Let ST T g Then 1’ becomes
3

1+ =y. (5.5)

Then by Lemma the number of solutions of y3m71+1 —cy+c =0
is one of 0, 1, 2, and 3(™~1m) 4+ 1 = 32 4 1 = 10. Since the mapping is
8-1 map, the number of solutions is one among 0, 8, 16, and 80. Adding a
zero root (z = 0), we have 1,9, 17, and 81. Since the original equation is a
linearized polynomial, 17 cannot be a number of root. Thus the linearized

polynomial can have only 1, 9, or 81 roots. [

Next we show that among the four linearized polynomials f;(z), 0 <

1 < 3, at most one polynomial can have 81 roots.

Lemma 5.14. Among the four linearized polynomials f;(z), 0 <i < 3, at
most one polynomial can have 81 solutions. Or equivalently, among four

,1_"_1

polynomials h;(y) = 2" —cy—+c;, 0 <i <3, at most one polynomial

can have 10 solutions.

Proof. Without loss of generality, we may assume that a; = o’. By the

previous lemma, we have the following relation

tr7 (yad))3" 1 tr”

(try, (vai

7 — 3m 1 y Y=
a; ;
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3" 1

Suppose § = a3™-1 = 3" *1

is a primitive element of the subfield Fgm.
Since

a3 = (af)3"H = B

for i = 0,2, aferl is a square in the subfield and for ¢ = 1, 3, a?erl is a
nonsquare element of the subfield. Note that the numerator (tr’,}l(vaf))?’”HUrl

is always a square in the subfield Fsm. Consequently,
square in Fzm if1=0,2

C; =
nonsquare in Fgm if i =1, 3.

Now we claim that only fy(z) can have 81 roots. Suppose f;(z) has 81
roots. We consider the following two cases.

Casel)i=0o0ri=2:

By Corollary we have

y3m71+1 % 3n_1
Ja— = (y — 1)32_1 == ]. (57)

G

Since ¢; is a square in Fzm, ¢; = 42 for some k. Also note that f = o*

for some [. Therefore we have

3"

S_—2 3" 1
C1.3271 _ (a8kl) 32-1 — 1.

_ 3" 1
Thus (33" ' T1)31 = 1. Since 3™ L + 1 = 2 mod 4, we can substitute as

-1
Y3 = 4% +2 Then we have

3" 1 3"—1
(x4k+2)T _ (x2k+1)T - 1.
Therefore,
am—lyy 2%k+1
2 =X =

/
Y o for some I'.
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But since (%, 4) =1, we have y = o*’. Thus, from 1)

ya? = taf, (yaf) 22" 2.
Here all terms in the right hand side are in Cy. We already observed that
y € Cp. Therefore we must have a; € Cy. This implies that ¢ = 0.
Case2)i=1ori=3:
Now assume that ¢ = 1 or ¢ = 3. This means that ¢; is a nonsquare in

F3n. Thus, we can write

¢ = 2R = (@)L — o SIRHAL

Note that [ is odd since m is odd. Applying Corollary again, we have
(5.7), but for this case, it follows that
3"—1

o1 _ (a21k+z)3"T—1 = (—1)@+DE = _q,

¢

Therefore

3" —
321 — —1

(y*>"

Since 3! + 1 = 2 mod 4, we can substitute as 3! + 1 = 4k + 2 for

some k. Then we have

2'&""1)34_1 :fl<:>(y 2 y 4 =a 2 (5.8)

3n_1\k 37_1 3"_1,,
k
(y >

where &’ is some odd integer. Thus y must be a square in Fgn. Let y = o

for some integer I’. From ([5.8)), it follows that

3"711/
a 2 =«

3" 14,
2 k,

Therefore, I’ is odd. Thus y € Cy. From (5.6), we have a; € Cy. This
implies that ¢; is in C2, which contradicts ¢ = 1 or ¢ = 3. Therefore if
fi(2) has 81 roots, then i = 0. O

It is well known that the number of roots of the linearized polynomial
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fi(2) is equal to 3n-1ank(s:() . Therefore by what we have discussed so
far, each g¢;(y) has a rank of n, n — 2, or n — 4, and only one of g¢;(y),
1 =20,1,2,3, can have the rank n — 4. Thus we can enumerate 9 possible

rank combinations of g;(y), i = 0, 1,2, 3, ignoring order as

(n,n,n,n), (n,n,n,n—2), (n,n,n,n—4),
(n,n,m—2,n—2), (n,n,n—2,n—4), (5.9)
(n,n—2n—-2n-2), (n,n—2,n—2,n—4),

mn=2n—-2n-2n-2), (n—2,n—2n—2n—4).

5.7. Upper Bound on the Cross-Correlation Func-

tion

Now we are ready to derive the upper bound on the magnitude of the
cross-correlation function. This can be done by applying Lemma [5.6] and

Lemma to each of rank combinations of g;(y), i =0, 1,2, 3.

Theorem 5.15. For an integer k> 0, n =4k +2=2m, d = % +
3™, and 0 <[ < 4(3™+1), the magnitude of the cross-correlation function
C(1) between tr}(at) and tr} (a®*!) is upper bounded by

IC(7)| <4.5-3™ 4+ 1.

Proof. As discussed before, there are nine rank combinations for g;(y),
1 = 0,1,2,3, ignoring ordering. We bound the magnitude of the cross-
correlation for each case.

Case 1) The rank combination is given as (n,n,n,n);
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We have

3
A14C() =) Y wi®

i=0 y€Fan
= 613% + 623% + 633% + 643%
= (e1+ €2+ e3+¢€)3™
<4.-3™

where €1, €2, €3, €4 = £1. Thus, we obtain |C(7)| < 3™ + 1.
Case 2) The rank combination is given as (n,n,n,n — 2);
We have

0 =3 Wi

i=0 y€Fsn
= 132 + €237 + €335 + 323"
= (€1 + €2+ €3)3™ + 3€e43™
<6-3m

where €1, €2, €3, &4 = 1. Thus, we obtain [C(7)| < 33™ + 1.
Case 3) The rank combination is given as (n,n,n,n — 4);
We have

10 =3 T Wi

i=0 y€Fsn
= 132 + €237 + €335 + 43137
= (€1 + € + €3)3™ 4 3%4,3™
<12.3m

where €1, €2, €3, €4 = £1. Thus, we obtain |C(7)| < 3-3™ + 1.

Case 4) The rank combination is given as (n,n,n — 2,n — 2);
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We have

3
AA+C(M) =) > ws®

1=0 yeF3n

— €13% 4+ €35 + 33235 + €,323" %

(61 + 62)3m + 3643m + 3643m
<8-3™

where €1, €2, €3, €4 = £1. Thus, we obtain |C(7)] <2-3™ + 1.
Case 5) The rank combination is given as (n,n,n —2,n — 4);
We have

A1+ C(r Z > wr)

i=0 y€Fan
= 6135 + 3% + 6332377 + 313"
= (€1 +€2)3™ + 3e33™ + 32¢,3™
<14.3™

where €1, €2, €3, €4 = £1. Thus, we obtain |C(7)| < % -3m 4+ 1.
Case 6) The rank combination is given as (n,n —2,n — 2,n — 2);
We have

41+ C (7 Zng‘

1= OyE]F:;n
n 250=2 2,0=2 250=2
=€132 + €373 2 4+ €333 2 464373 2
= €13™ + 3623™ 4 3€43™ + 3€43™
<13-3™

where €1, €2, €3, €4 = 1. Thus, we obtain |C(7)] < 12 .3™ 4 1.

Case 7) The rank combination is given as (n,n —2,n — 2,n — 4);
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We have

3

AA+C() =) Y wi®

=0 yE]F3n
n 250n=2 25n=2 4on=4
=€132 + €373 2 46333 2 464373 2
€13™ + 3623™ + 3€33™ + 3%2e,3™
<16-3™

where €1, €2, €3, €4 = £1. Thus, we obtain |C'(7)| <4-3™ + 1.
Case 8) The rank combination is given as (n —2,n —2,n — 2,n — 2);
We have

3

AA+C() =) Y wi®

1=0 y€F3n
= 13237 + 3737 +633%3"7 + 3237
= 3613m + 3623m + 3643m + 3643m
<12.3™

where €1, €2, €3, €4 = £1. Thus, we obtain |C(7)] < 3-3™ + 1.
Case 9) The rank combination is given as (n —2,n —2,n — 2,n — 4);
We have

3
AA+C() =) Y wi®

i=0 yeF3n

— 63237 £ 323" + 332377 L 343"
= 3€13™ + 3623™ + 3€33™ + 3%4,3™

<18.3™

where €1, €2, €3, €4 = £1. Thus, we obtain |C'(7)| < 4.5-3™ + 1.
Hence the magnitude of the cross-correlation function C(7) is upper
bounded by |C(7)| < 4.5-3™ + 1. O
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5.8. Examples

In this section, we consider examples of cross-correlations studied in

the previous sections.

Example 5.16. Suppose n = 4k+2 = 2m = 6 and d = 203. For all [ going

through 0 to &j‘l — 1 = 103, by computer search, the cross-correlation

distribution between tr}(a!) and tr}(a¥*!) is given as

_1’
928,
26,
—82,
80,
—55,
53

\

34328 times
18095 times
14973 times
833 times
938 times
4676 times
1869 times.

Note that the cross-correlation is 7-valued. The maximum magnitude of

correlation is 82 ~ 3.039v/36 — 1.

Example 5.17. Let m = 5, n = 10. Then d = 14945. By the computer

experiments, the cross-correlation is given as

728,
—487,
-1,
485,
—244,
242,
—1730

21411 times
64050 times
1473577 times
206180 times
963190 times
812520 times
61000 times.

The cross-correlation is again 7-valued. The maximum magnitude of cor-

relation is 730 ~ 3.004+/310 — 1.
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5.9. Related Works

After [59] was presented, Xia, Chen, Helleseth, and Li [49] generalized
the result to the odd prime p case. To be specific, for an odd positive inte-
ger m > 3, n = 2m, and an odd prime p, they derived the cross-correlation
between the p-ary m-sequence tr(a!) and its all decimated sequences
tr7 (a*!) for the decimation factor d = W#, where 0 < [ <

ged(d, p™ — 1) and « is a primitive element of Fp». They showed that the

cross-correlation function takes values in {—1, -1 £ p™|i = 1,2, ..., p}.

Theorem 5.18 (Xia, Chen, Helleseth, and Li [49]). Let p be an odd

"+ (™ +p=1)
p+1 be
the decimation factor. Then the cross-correlation function between trf(a!)

prime, m > 3 be an odd integer, and n = 2m. Let d =

and its all decimated sequences tr7 (a?*!), where 0 < 1 < ged(d,p™ — 1),

takes the values belonging to the following set
{-1,-1+£op"i=1,2,...,p}.

Therefore, the magnitude of the cross-correlation is upper bounded by

Note that our result is the special case for p = 3.

5.10. Conclusion

In this chapter, we investigate the upper bound on the cross-correlation
function between a ternary m-sequence of period 3" — 1, n = 4k + 2 and
its decimated sequence with the decimation d = w + 32+,

It is shown that the cross-correlation is upper bounded by 4.5 - 3n/2 4 1.

For the derivation, it is proved that 1, 9, 81 are only possible number
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of solutions of linearized polynomials and only one among four linearized
polynomials can have 81 roots. This result is further improved by Xia,

Chen, Helleseth, and Li [49].
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Chapter 6. Conclusions

In this dissertation, we construct half-period sequence families with low
correlation using the shift-and-add method and the decimation. We con-
sider p-ary sequences for sequence family constructions and give an upper
bound on the correlation within the sequence families.

In the second part of this dissertation, we consider the Helleseth’s work
[11] and derive the cross-correlation values of decimated m-sequences.

The last topic of this dissertation is the derivation of the upper bound
on the cross-correlation between ternary m-sequences and its decimations
with the particular decimation factor. Proving the upper bound requires
the quadratic form technique and Bluher’s result [33].

In Chapter 2, pseudorandom sequences have been introduced. Some
well known sequences and sequence families are reviewed, and necessary
definitions and mathematical preliminaries are explained.

In Chapter 3, new families of half-period p-ary sequences with low cor-
relation are proposed. For an odd prime p = 3 mod 4 and an odd positive
integer n, families of sequences of period N = panl are constructed from
m-sequences and their decimated sequences by d = N — p"~!. Using the
generalized Kloosterman sums, we show that the upper bound on the
correlation of the family is 24/ N + %, which is about 1.5 times of the

Sidel’'nikov’s lower bound. The family size is given as 4N.
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In Chapter 4, we study the values of the cross-correlation of two deci-
mated m-sequences. We consider two p-ary m-sequences with the period
of p" — 1 for an odd prime p and an even integer n, decimated each
by 2 and 4p™2 — 2, respectively. Our study is based on the Helleseth’s

work [II] and consequently the correlation function takes only values

. _ n/2 _ n/2  _ n/2
m{ Liph? Lt Lty }~Fu“hermore, for p/2 # 2 mod 3, we

propose half-period sequence families which have the maximum correla-

tion magnitude %W. The size of the family is given as 2(p" — 1).

In Chapter 5, for n = 4k + 2, the cross-correlation between ternary

m-sequences and decimated m-sequences by the decimation factor d =

34k+2_32k+1+3_1

3T + 326+1 is investigated. We employ the quadratic form

technique and Bluher’s result [33] for the derivation of the upper bound on

the correlation. It is proved that the upper bound is given by 4.5-3%/241.
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