4,414 research outputs found

    Uplift Modeling from Separate Labels

    Get PDF
    Uplift modeling is aimed at estimating the incremental impact of an action on an individual's behavior, which is useful in various application domains such as targeted marketing (advertisement campaigns) and personalized medicine (medical treatments). Conventional methods of uplift modeling require every instance to be jointly equipped with two types of labels: the taken action and its outcome. However, obtaining two labels for each instance at the same time is difficult or expensive in many real-world problems. In this paper, we propose a novel method of uplift modeling that is applicable to a more practical setting where only one type of labels is available for each instance. We show a mean squared error bound for the proposed estimator and demonstrate its effectiveness through experiments

    A Practically Competitive and Provably Consistent Algorithm for Uplift Modeling

    Full text link
    Randomized experiments have been critical tools of decision making for decades. However, subjects can show significant heterogeneity in response to treatments in many important applications. Therefore it is not enough to simply know which treatment is optimal for the entire population. What we need is a model that correctly customize treatment assignment base on subject characteristics. The problem of constructing such models from randomized experiments data is known as Uplift Modeling in the literature. Many algorithms have been proposed for uplift modeling and some have generated promising results on various data sets. Yet little is known about the theoretical properties of these algorithms. In this paper, we propose a new tree-based ensemble algorithm for uplift modeling. Experiments show that our algorithm can achieve competitive results on both synthetic and industry-provided data. In addition, by properly tuning the "node size" parameter, our algorithm is proved to be consistent under mild regularity conditions. This is the first consistent algorithm for uplift modeling that we are aware of.Comment: Accepted by 2017 IEEE International Conference on Data Minin

    Predictive User Modeling with Actionable Attributes

    Get PDF
    Different machine learning techniques have been proposed and used for modeling individual and group user needs, interests and preferences. In the traditional predictive modeling instances are described by observable variables, called attributes. The goal is to learn a model for predicting the target variable for unseen instances. For example, for marketing purposes a company consider profiling a new user based on her observed web browsing behavior, referral keywords or other relevant information. In many real world applications the values of some attributes are not only observable, but can be actively decided by a decision maker. Furthermore, in some of such applications the decision maker is interested not only to generate accurate predictions, but to maximize the probability of the desired outcome. For example, a direct marketing manager can choose which type of a special offer to send to a client (actionable attribute), hoping that the right choice will result in a positive response with a higher probability. We study how to learn to choose the value of an actionable attribute in order to maximize the probability of a desired outcome in predictive modeling. We emphasize that not all instances are equally sensitive to changes in actions. Accurate choice of an action is critical for those instances, which are on the borderline (e.g. users who do not have a strong opinion one way or the other). We formulate three supervised learning approaches for learning to select the value of an actionable attribute at an instance level. We also introduce a focused training procedure which puts more emphasis on the situations where varying the action is the most likely to take the effect. The proof of concept experimental validation on two real-world case studies in web analytics and e-learning domains highlights the potential of the proposed approaches

    Uplift Modeling with High Class Imbalance

    Get PDF
    Uplift modeling refers to estimating the causal effect of a treatment on an individual ob- servation, used for instance to identify customers worth targeting with a discount in e- commerce. We introduce a simple yet effective undersampling strategy for dealing with the prevalent problem of high class imbalance (low conversion rate) in such applications. Our strategy is agnostic to the base learners and produces a 6.5% improvement over the best published benchmark for the largest public uplift data which incidentally exhibits high class imbalance. We also introduce a new metric on calibration for uplift modeling and present a strategy to improve the calibration of the proposed method.Peer reviewe

    Sample Complexity of Sample Average Approximation for Conditional Stochastic Optimization

    Full text link
    In this paper, we study a class of stochastic optimization problems, referred to as the \emph{Conditional Stochastic Optimization} (CSO), in the form of \min_{x \in \mathcal{X}} \EE_{\xi}f_\xi\Big({\EE_{\eta|\xi}[g_\eta(x,\xi)]}\Big), which finds a wide spectrum of applications including portfolio selection, reinforcement learning, robust learning, causal inference and so on. Assuming availability of samples from the distribution \PP(\xi) and samples from the conditional distribution \PP(\eta|\xi), we establish the sample complexity of the sample average approximation (SAA) for CSO, under a variety of structural assumptions, such as Lipschitz continuity, smoothness, and error bound conditions. We show that the total sample complexity improves from \cO(d/\eps^4) to \cO(d/\eps^3) when assuming smoothness of the outer function, and further to \cO(1/\eps^2) when the empirical function satisfies the quadratic growth condition. We also establish the sample complexity of a modified SAA, when ξ\xi and η\eta are independent. Several numerical experiments further support our theoretical findings. Keywords: stochastic optimization, sample average approximation, large deviations theoryComment: Typo corrected. Reference added. Revision comments handle

    Joint inversion estimate of regional glacial isostatic adjustment in Antarctica considering a lateral varying Earth structure (ESA STSE Project REGINA)

    Get PDF
    A major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry, and to a lesser extent satellite altimetry, is the poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA). Although much progress has been made in consistently modelling the ice-sheet evolution throughout the last glacial cycle, as well as the induced bedrock deformation caused by these load changes, forward models of GIA remain ambiguous due to the lack of observational constraints on the ice sheet's past extent and thickness and mantle rheology beneath the continent. As an alternative to forward modelling GIA, we estimate GIA from multiple space-geodetic observations: GRACE, Envisat/ICESat and GPS. Making use of the different sensitivities of the respective satellite observations to current and past surface mass (ice mass) change and solid Earth processes, we estimate GIA based on viscoelastic response functions to disc load forcing. We calculate and distribute the viscoelastic response functions according to estimates of the variability of lithosphere thickness and mantle viscosity in Antarctica. We compare our GIA estimate with published GIA corrections and evaluate its impact in determining the ice mass balance in Antarctica from GRACE and satellite altimetry. Particular focus is applied to the Amundsen Sea Sector in West Antarctica, where uplift rates of several cm/yr have been measured by GPS. We show that most of this uplift is caused by the rapid viscoelastic response to recent ice-load changes, enabled by the presence of a low-viscosity upper mantle in West Antarctica. This paper presents the second and final contribution summarizing the work carried out within a European Space Agency funded study, REGINA, (www.regina-science.eu)
    corecore