61 research outputs found

    Early Assessment of VIIRS On-Orbit Calibration and Support Activities

    Get PDF
    The Suomi National Polar-orbiting Partnership (S-NPP) satellite, formally the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), provides a bridge between current and future low-Earth orbiting weather and environmental observation satellite systems. The NASA s NPP VIIRS Characterization Support Team (VCST) is designed to assess the long term geometric and radiometric performance of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the S-NPP spacecraft and to support NPP Science Team Principal Investigators (PI) for their independent evaluation of VIIRS Environmental Data Records (EDRs). This paper provides an overview of Suomi NPP VIIRS on-orbit calibration activities and examples of sensor initial on-orbit performance. It focuses on the radiometric calibration support activities and capabilities provided by the NASA VCST

    Initial Calibration Activities and Performance Assessments of NOAA-20 VIIRS

    Get PDF
    The second VIIRS instrument was launched on-board the NOAA-20 (formerly JPSS-1) satellite onNovember 18, 2017. It was designed and built with the same performance requirements as the first VIIRSon-board the S-NPP launched on October 28, 2011. Currently, the NOAA-20 is orbiting the Earth in thesame plane as the S-NPP but separated in time and space by 50 minutes. The VIIRS observations are made in22 spectral bands, including a day-night band (DNB) that cover wavelengths from visible to long-waveinfrared. The sensor's on-orbit calibration is provided by a set of on-board calibrators (OBCs), which includea solar diffuser (SD), a solar diffuser stability monitor (SDSM), and a blackbody (BB). After turn-on, theVIIRS instrument conducted a series of post-launch testing (PLT) and intensive calibration and validation(ICV) activities, including those performed via spacecraft maneuvers, designed to verify and establishinstrument on-orbit calibration performance baseline. This paper provides an overview of NOAA-20 VIIRSICV activities and an assessment of its initial on-orbit performance with a focus on several key calibrationparameters, such as the detector response (or gain), dynamic range, and signal-to-noise ratio (SNR). Variousissues identified and lessons learned from initial instrument operation and calibration are also discussed insupport of long-term monitoring (LTM) of NOAA-20 VIIRS calibration and data quality

    MODIS and VIIRS On-Orbit Calibration and Characterization Using Observations from Spacecraft Pitch Maneuvers

    Get PDF
    Two MODIS instruments (Terra and Aqua) and two VIIRS instruments (S-NPP and JPSS-1) are currently operated inspace, continuously making global earth observations in the spectral range from visible (VIS) to long-wave infrared(LWIR). These observations have enabled a broad range of environmental data records to be generated and distributed insupport of both operational and scientific community. Despite extensive pre-launch calibration and characterizationperformed for both MODIS and VIIRS instruments and routine on-orbit calibration activities carried out using their onboardcalibrators (OBC), various spacecraft maneuvers have also been designed and implemented to further enhance thesensor on-orbit calibration and data quality. This paper focuses on the use of observations made during spacecraft pitchmaneuvers of MODIS and VIIRS in support of their on-orbit characterization of thermal emissive bands (TEB) responseversus scan-angle (RVS). In the case of Terra MODIS, lunar observations made from instrument nadir view duringspacecraft pitch maneuvers are used to compare with that made regularly through instrument space view (SV) port toevaluate on-orbit changes in RVS and band-to-band registration (BBR) for the reflective solar bands (RSB). In additionto results derived from spacecraft pitch maneuvers performed for MODIS and VIIRS, discussion is provided on theadvantages, challenges, and lessons for future considerations and improvements

    VIIRS On-Orbit Calibration and Performance Update

    Get PDF
    The S-NPP VIIRS was launched on October 28, 2011 and activated on November 8, and then went through a series of intensive functional tests in order to establish the sensor's baseline characteristics and initial on-orbit performance. With the exception of large optical degradation in the NIR and SWIR spectral regions that is due to pre-launch mirror coating contamination, both the VIIRS instrument and its on-board calibrators continue to operate and function normally. With continuous dedicated effort, it is expected that most of the sensor calibration parameters will continue to meet their design requirements and that high quality data products will be continuously generated and used by the operational as well as research community

    MODIS and VIIRS Lunar Observations and Applications

    Get PDF
    Terra and Aqua MODIS have successfully operated for more than 13 and 11 years since their launch in 1999 and 2002, respectively. The VIIRS instrument on-board the S-NPP launched in 2011 has also operated for nearly 2 years. Both MODIS and VIIRS make observations in the reflective solar and thermal emissive regions and their on-orbit calibration and characterization are provided by a set of on-board calibrators (OBC). In addition, lunar observations have been made on a regular basis to support sensor on-orbit calibration. This paper provides a brief overview of MODIS and VIIRS instrument on-orbit calibration and characterization activities. It describes the approaches and strategies developed to schedule and perform on-orbit lunar observations. Specific applications of MODIS and VIIRS lunar observations discussed in this paper include radiometric calibration stability monitoring and performance assessment of sensor spatial characterization. Results derived from lunar observations, such as sensor response (or gain) trending and band-to-band registration, are compared with that derived from sensor OBC. The methodologies and applications presented in this paper can also be applied to other earth observing sensors

    Early Results from NOAA-20 (JPSS-1) Viirs On-Orbit Calibration and Characterization

    Get PDF
    Since launch in November 2018, the VIIRS on-board the NOAA-20 (or JPSS-1) satellite has completed its initial intensive on-orbit check-outs and several key calibration and validation activities scheduled to help evaluate sensor at launch performance. This paper provides a brief overview of NOAA-20 VIIRS on-orbit operation and calibration activities, presents early results derived from its on-board calibrators and lunar observations, and discusses potential improvements and future effort to assure sensor data product quality

    An Overview of Suomi NPP VIIRS Calibration Maneuvers

    Get PDF
    The first Visible Infrared Imager Radiometer Suite (VIIRS) instrument was successfully launched on-board the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on October 28, 2011. Suomi NPP VIIRS observations are made in 22 spectral bands, from the visible (VIS) to the long-wave infrared (LWIR), and are used to produce 22 Environmental Data Records (EDRs) with a broad range of scientific applications. The quality of these VIIRS EDRs strongly depends on the quality of its calibrated and geo-located Sensor Date Records (SDRs). Built with a strong heritage to the NASA's EOS MODerate resolution Imaging Spectroradiometer (MODIS) instrument, the VIIRS is calibrated on-orbit using a similar set of on-board calibrators (OBC), including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the reflective solar bands (RSB) and a blackbody (BB) for the thermal emissive bands (TEB). On-orbit maneuvers of the SNPP spacecraft provide additional calibration and characterization data from the VIIRS instrument which cannot be obtained pre-launch and are required to produce the highest quality SDRs. These include multi-orbit yaw maneuvers for the characterization of SD and SDSM screen transmission, quasi-monthly roll maneuvers to acquire lunar observations to track sensor degradation in the visible through shortwave infrared, and a driven pitch-over maneuver to acquire multiple scans of deep space to determine TEB response versus scan angle (RVS). This paper pro-vides an overview of these three SNPP calibration maneuvers. Discussions are focused on their potential calibration and science benefits, pre-launch planning activities, and on-orbit scheduling and implementation strategies. Results from calibration maneuvers performed during the Intensive Calibration and Validation (ICV) period for the VIIRS sensor are illustrated. Also presented in this paper are lessons learned regarding the implementation of calibration spacecraft maneuvers on follow-on missions

    Suomi NPP VIIRS Prelaunch and On-orbit Geometric Calibration and Characterization

    Get PDF
    The Visible Infrared Imager Radiometer Suite (VIIRS) sensor was launched 28 October 2011 on the Suomi National Polarorbiting Partnership (SNPP) satellite. VIIRS has 22 spectral bands covering the spectrum between 0.412 m and 12.01 m, including 16 moderate resolution bands (M-bands) with a spatial resolution of 750 m at nadir, 5 imaging resolution bands (I-bands) with a spatial resolution of 375 m at nadir, and 1 day-night band (DNB) with a near-constant 750 m spatial resolution throughout the scan. These bands are located in a visible and near infrared (VisNIR) focal plane assembly (FPA), a short- and mid-wave infrared (SWMWIR) FPA and a long-wave infrared (LWIR) FPA. All bands, except the DNB, are co-registered for proper environmental data records (EDRs) retrievals. Observations from VIIRS instrument provide long-term measurements of biogeophysical variables for climate research and polar satellite data stream for the operational communitys use in weather forecasting and disaster relief and other applications. Well Earth-located (geolocated) instrument data is important to retrieving accurate biogeophysical variables. This paper describes prelaunch pointing and alignment measurements, and the two sets of on-orbit correction of geolocation errors, the first of which corrected error from 1,300 m to within 75 m (20 I-band pixel size), and the second of which fine tuned scan angle dependent errors, bringing VIIRS geolocation products to high maturity in one and a half years of the SNPP VIIRS on-orbit operations. Prelaunch calibration and the on-orbit characterization of sensor spatial impulse responses and band-to-band co-registration (BBR) are also described

    Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite

    Get PDF
    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key environmental remote-sensing instruments onboard the Suomi National Polar-Orbiting Partnership spacecraft, which was successfully launched on October 28, 2011 from the Vandenberg Air Force Base, California. Following a series of spacecraft and sensor activation operations, the VIIRS nadir door was opened on November 21, 2011. The first VIIRS image acquired signifies a new generation of operational moderate resolution-imaging capabilities following the legacy of the advanced very high-resolution radiometer series on NOAA satellites and Terra and Aqua Moderate-Resolution Imaging Spectroradiometer for NASA's Earth Observing system. VIIRS provides significant enhancements to the operational environmental monitoring and numerical weather forecasting, with 22 imaging and radiometric bands covering wavelengths from 0.41 to 12.5 microns, providing the sensor data records for 23 environmental data records including aerosol, cloud properties, fire, albedo, snow and ice, vegetation, sea surface temperature, ocean color, and nigh-time visible-light-related applications. Preliminary results from the on-orbit verification in the postlaunch check-out and intensive calibration and validation have shown that VIIRS is performing well and producing high-quality images. This paper provides an overview of the onorbit performance of VIIRS, the calibration/validation (cal/val) activities and methodologies used. It presents an assessment of the sensor initial on-orbit calibration and performance based on the efforts from the VIIRS-SDR team. Known anomalies, issues, and future calibration efforts, including the long-term monitoring, and intercalibration are also discussed

    Characterization of NPP Visible/Infrared Imager Radiometer Suite (VIIRS) Reflective Solar Bands Dual Gain Anomaly

    Get PDF
    The Visible/Infrared Imager Radiometer Suite (VIIRS) contains six dual gain bands in the reflective solar spectrum. The dual gain bands are designed to switch gain mode at pre-defined thresholds to achieve high resolution at low radiances while maintaining the required dynamic range for science. During pre-launch testing, an anomaly in the electronic response before transitioning from high to low gain was discovered and characterized. On-orbit, the anomaly was confirmed using MODIS data collected during Simultaneous Nadir Overpasses (SNOs). The analysis of the Earth scene data shows that dual gain anomaly can be determined at the orbital basis. To characterize the dual gain anomaly, the anomaly region and electronic offsets were tracked per week during the first 8 month of VIIRS operation. The temporal analysis shows the anomaly region can drift ~20 DN and is impacted by detectors DC Restore. The estimated anomaly flagging regions cover ~2.5 % of the high gain dynamic range and are consistent with prelaunch and on-orbit LUT. The prelaunch results had a smaller anomaly range (30-50 DN) and are likely the results of more stable electronics from the shorter data collection time. Finally, this study suggests future calibration efforts to focus on the anomaly's impact on science products and possible correction method to reduce uncertainties
    • …
    corecore