56,233 research outputs found

    Access vs. Bandwidth in Codes for Storage

    Get PDF
    Maximum distance separable (MDS) codes are widely used in storage systems to protect against disk (node) failures. A node is said to have capacity ll over some field F\mathbb{F}, if it can store that amount of symbols of the field. An (n,k,l)(n,k,l) MDS code uses nn nodes of capacity ll to store kk information nodes. The MDS property guarantees the resiliency to any nβˆ’kn-k node failures. An \emph{optimal bandwidth} (resp. \emph{optimal access}) MDS code communicates (resp. accesses) the minimum amount of data during the repair process of a single failed node. It was shown that this amount equals a fraction of 1/(nβˆ’k)1/(n-k) of data stored in each node. In previous optimal bandwidth constructions, ll scaled polynomially with kk in codes with asymptotic rate <1<1. Moreover, in constructions with a constant number of parities, i.e. rate approaches 1, ll is scaled exponentially w.r.t. kk. In this paper, we focus on the later case of constant number of parities nβˆ’k=rn-k=r, and ask the following question: Given the capacity of a node ll what is the largest number of information disks kk in an optimal bandwidth (resp. access) (k+r,k,l)(k+r,k,l) MDS code. We give an upper bound for the general case, and two tight bounds in the special cases of two important families of codes. Moreover, the bounds show that in some cases optimal-bandwidth code has larger kk than optimal-access code, and therefore these two measures are not equivalent.Comment: This paper was presented in part at the IEEE International Symposium on Information Theory (ISIT 2012). submitted to IEEE transactions on information theor

    Update-Efficient Regenerating Codes with Minimum Per-Node Storage

    Full text link
    Regenerating codes provide an efficient way to recover data at failed nodes in distributed storage systems. It has been shown that regenerating codes can be designed to minimize the per-node storage (called MSR) or minimize the communication overhead for regeneration (called MBR). In this work, we propose a new encoding scheme for [n,d] error- correcting MSR codes that generalizes our earlier work on error-correcting regenerating codes. We show that by choosing a suitable diagonal matrix, any generator matrix of the [n,{\alpha}] Reed-Solomon (RS) code can be integrated into the encoding matrix. Hence, MSR codes with the least update complexity can be found. An efficient decoding scheme is also proposed that utilizes the [n,{\alpha}] RS code to perform data reconstruction. The proposed decoding scheme has better error correction capability and incurs the least number of node accesses when errors are present.Comment: Submitted to IEEE ISIT 201

    Explicit MDS Codes for Optimal Repair Bandwidth

    Get PDF
    MDS codes are erasure-correcting codes that can correct the maximum number of erasures for a given number of redundancy or parity symbols. If an MDS code has rr parities and no more than rr erasures occur, then by transmitting all the remaining data in the code, the original information can be recovered. However, it was shown that in order to recover a single symbol erasure, only a fraction of 1/r1/r of the information needs to be transmitted. This fraction is called the repair bandwidth (fraction). Explicit code constructions were given in previous works. If we view each symbol in the code as a vector or a column over some field, then the code forms a 2D array and such codes are especially widely used in storage systems. In this paper, we address the following question: given the length of the column ll, number of parities rr, can we construct high-rate MDS array codes with optimal repair bandwidth of 1/r1/r, whose code length is as long as possible? In this paper, we give code constructions such that the code length is (r+1)log⁑rl(r+1)\log_r l.Comment: 17 page
    • …
    corecore