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Abstract

Maximum distance separable (MDS) codes are widely used in storage systems to protect against disk (node) failures. A node
is said to have capacityl over some fieldF, if it can store that amount of symbols of the field. An(n, k, l) MDS code usesn nodes
of capacityl to storek information nodes. The MDS property guarantees the resiliency to anyn − k node failures. Anoptimal
bandwidth (resp.optimal access) MDS code communicates (resp. accesses) the minimum amountof data during the repair process
of a single failed node. It was shown that this amount equals afraction of 1/(n − k) of data stored in each node. In previous
optimal bandwidth constructions,l scaled polynomially withk in codes with asymptotic rate< 1. Moreover, in constructions
with a constant number of parities, i.e. rate approaches1, l is scaled exponentially w.r.t.k. In this paper, we focus on the later
case of constant number of paritiesn − k = r, and ask the following question: Given the capacity of a nodel what is the largest
number of information disksk in an optimal bandwidth (resp. access)(k + r, k, l) MDS code. We give an upper bound for the
general case, and two tight bounds in the special cases of twoimportant families of codes. Moreover, the bounds show thatin
some cases optimal-bandwidth code has largerk than optimal-access code, and therefore these two measuresare not equivalent.

I. I NTRODUCTION

Erasure-correcting codes are the basis for widely used storage systems, where disks (nodes) correspond to symbols in the
code. An important family of codes is the Maximum distance separable (MDS) codes, which provide an optimal resiliency to
erasures for a given amount of redundancy. Namely, an MDS code with r redundancy (parity) symbols can repair the information
from any r symbol erasures. Because of this storage efficiency, MDS codes are highly favorable, and a lot of research has
been done to construct them. Examples of MDS codes are the well known Reed Solomon codes, EVENODD [1], [2], B-code
[24], X-code [25], RDP [7], and STAR-code [9]. It is evident that in the case ofr erasures, one needs to communicate all the
surviving information during the repair process. However,although the MDS codes used in practice are resilient to morethan
a single erasure, i.e. number of parity nodesr > 1, the practical and more interesting question is; what is theminimum repair
bandwidth in a single node erasure. The repair bandwidth is defined as the amount of information communicated during the
repair process. This question has received much interest recently due to both its practical and theoretical importance. From a
practical viewpoint, decreasing the repair bandwidth shortens both the repair process and the inaccessibility time ofthe erased
information. Moreover, from a theoretical perspective, this question has deep connections to the widely used interference
alignment technique and network coding.

A. The Problem

The problem of efficient repair was defined by Dimakis et al. in[8]. It considers a file of sizeM symbols, divided into
k equally sized chunks stored using an(n, k, l) MDS code over the finite fieldF, wheren is the number of nodes, each of
capacityl = M

k log |F|
. Namely, each node can store up tol symbols and each symbol corresponds tolog |F| bits. The firstk

nodes, which are referred to as the systematic nodes, store the raw information. The laterr = n − k nodes are the parity nodes
which store a function of the raw information. Since the codeis MDS, it can tolerateany loss of up tor nodes. However, the
more common scenario is the failure (erasure) of only one node. [8] proved that

l ·
n − 1

n − k
(1)

is a lower bound on the repair bandwidth for an(n, k, l) MDS code. For example, in a code withr = 2 parities, each of the
n − 1 surviving nodes needs to communicate during the repair process, on the average at leastl/2 symbols, which is equal
to one half of the node’s capacity. Note that repair is possible since the code is resilient to more than one erasure, and a
repair strategy of communicating the entire remaining information suffices. An MDS code is termedoptimal bandwidth if it
achieves the lower bound in (1) during the repair process of any of its systematic nodes1. Figure 1 shows an optimal bandwidth
(6, 4, 2) MDS code. For repairing an erased node, one symbol of information is transmitted to the repair center from each
surviving node. In some applications such as data centers, reading (accessing) the information is more costly than transmitting

The material in this paper was presented in part at the IEEE International Symposium on Information Theory (ISIT 2012), Cambridge, MA, USA, July
2012.

1The relaxed requirement of optimal repair only for the systematic nodes is reasonable, because the number of parity nodes in most storage systems is
negligible compared to systematic nodes. Moreover, in an erasure of a systematic node, the raw information is not accessible as opposed to a parity node
erasure.
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N1 N2 N3 N4 Parity 1 Parity 2
a b c d a+b+c+d a+5w+b+2c+5d
w x y z w+x+y+z 3w+2b+3x+4y+5z

Figure 1. An(6, 4, 2) MDS code with optimal bandwidth over the fieldF7. NodesN1, N2, N3, N4 are systematic and the last2 nodes are parity nodes. For
repairing nodeN1, (resp.N2) transmit the first (second) row from each surviving node. Forrepairing nodeN3 transmit from each surviving node the sum
of its two elements . For repairing nodeN4 transmit the sum of the first row and twice the second row from Parity 2, and the sum of the first row and four
times the second row from the rest. Notice that this code can be converted to be over the field of size4, i.e. an(6, 4, 2) MDS code with optimal bandwidth
over the fieldF22

Optimal Bandwidth Optimal Access
Optimal update k = logr l,X ∗2 [17] k = logr l,X [17]

Non-Optimal update (r + 1) logr l 6 k 6 l( l
l/r),∗ [20] k = r logr l,X ∗ [4]

Figure 2. Summary of known results on the maximum number of information nodesk in an (k + r, k, l) MDS code. The derived upper bounds apply for
codes with constant repairing subspaces. The upper bounds in the general case (not necessarily constant repairing subspaces) are at most greater by one than
the bounds presented in the table.Xindicates a tight bound,∗ indicates a new upper bound. The references refer to previously known lower bounds

it. Therefore during a repair process, the need to transmit data that is a function of a large portion of the information stored
within a node, can cause a bottleneck. For example, nodeN1 needs to access its entire stored information, for it to calculate
a + w, during the repair process of nodeN3. Therefore, in a large scale storage systems, one might needto minimize not
only the amount of information transmitted but also the number of accessed information elements. Anoptimal access MDS
code is an optimal bandwidth code that transmits only the elements it accesses. By definition, any optimal access code is also
an optimal bandwidth code. The shortened code restricted tonodes{N1, N2, Parity 1, Parity 2} in Figure 1 is an example of
an optimal access(4, 2, 2) MDS code. In [15] a similar scheme termedrepair by transfer was considered. In this scheme an
exact repair of a lost node is performed by mere transmissionof information, without any calculation in any of the surviving
nodesor at the repair center.

In a value’s update of a stored element, one needs to update each parity node at least once. To avoid an overload on the
system during a frequent operation such as updating, one needs to design anoptimal update code, that updates exactly once
in each parity node, when an element changes its value. For example in Figure 1 the shortened code restricted to nodes
{N3, N4, Parity 1, Parity 2} is an optimal update and optimal bandwidth(4, 2, 2) MDS code, because updating any of the
elementsc, d, y, z will require updating exactly one element in each of the parity nodes.

Various codes [5], [8], [12]–[14], [16], [21]–[23] were constructed with the goal of achieving optimal bandwidth, however
these constructions all have low rate, i.e.,k/n 6 1/2. In [14], [16], [22] the key idea was using vector coding. Namely, each
symbol in a codeword is a vector and not scalar as in “standard” codes. Specifically [14], [16] constructed optimal bandwidth
(2k, k, k) MDS codes. Using interference alignment, it was shown in [6]that the bound in (1) is asymptotically achievable
also for high rate codes (k/n > 1/2) . The question of existence of optimal bandwidth codes withhigh rate was resolved
in several constructions [3], [4], [10], [11], [17]–[19]. The constructions have an arbitrary number of parity nodesr, however
when r is constant, i.e. rate approaching1 in all of the constructionsk = O(logr l), i.e., the capacityl scales exponentially
with the number of systematic nodesk.

B. Our Contribution

Our main goal in this paper is to understand the relation betweenl the capacity of each node, and the number of systematic
nodesk. More precisely, given the capacity of the nodel, what is the largest number of systematic nodesk, such that there
exists anoptimal bandwidth or optimal access (k + r, k, l) MDS code, for some constantr. We will derive three upper bounds
on the number of nodesk as a function ofonly l, for different families of codes. We emphasize that we consider only linear
codes, and the bounds apply for this case only. To derive the bounds, we use three different combinatorial techniques. The first
bound considers the general problem, where no requirementson the MDS code are imposed except the optimal bandwidth
property. The bound is derived by defining an appropriate setof multivariate polynomials. We proceed by deriving atight bound
for optimal bandwidth MDS codes with diagonal encoding matrices. These codes are a part of an important family of codes
with an optimal update property. The last result provides atight bound onoptimal access MDS codes. Table 2 summarizes
the known results together with our new results.

For constantr, all the previous optimal-bandwidth constructions [3], [4], [10], [11], [17]–[19] are indeed either optimal-
access codes or equivalent to optimal-access codes. Therefore, it is not obvious whether there can be any difference between
these two kinds of optimality. From the second row of Table 2,we discovered that for fixedl and r, the maximum possible
number of systematic nodes are not the same for an optimal-bandwidth and an optimal-access code. That is to say, these two
criteria of optimality are not equivalent when a code is non-optimal update.

2The result we present considers a special case of optimal update code, where the encoding matrices are diagonal.
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An example of the size of a practical code can be as follows. Intoday’s current technology the size of an ordinary disk in
large storage systems is approximately1TB = 240 bits. Hence, each node stores at most240 symbols. Applying for example
the upper bound in the table for optimal access codes we get that there are at most2 · log 240 = 80 nodes in the system.

The remainder of the paper is organized as follows. Section II presents the settings of the problem and some notation. Section
III provides an upper bound for the most general case, i.e., an MDS code with optimal bandwidth property. We proceed in
Section IV where a bound is derived for codes with diagonal encoding matrices. In Section V a bound for codes with optimal
access property is derived. We conclude with a summary in Section VI .

II. SETTINGS AND NOTATION

Consider a file of sizeM = kl, divided into k nodes of capacityl over the fieldF, namely each node can store up tol
elements of that field. Each systematic node1 6 i 6 k is represented by anl × 1 vectorai ∈F

l. Interchangeably, we will refer
to a matrixS and the subspace spanned by its rows as the same mathematicalobject, therefore

rank(S) = dim(S).

Moreover, whenever we write an equality between two matrices we mean to an equality between the subspaces spanned by
their rows. For any integerr an (k + r, k, l) MDS code is constructed by adding parity nodesk + 1, ..., k + r, which will give
the resiliency to node erasures. Parity nodek + i for i ∈ {1, ..., r} stores the information vectorak+i of length l over F, and
is defined as

ak+i =
k

∑
j=1

Ci,jaj.

Here theCi,j’s are invertible matrices of orderl, which are called the encoding matrices. Note that the code has a systematic
structure, i.e., the firstk nodes store the information itself, and not a function of it.Therefore, the code is uniquely defined by
the matrix

C = (Ci,j)i ∈ [r],j∈ [k] =







C1,1 ... C1,k
...

. . .
...

Cr,1 ... Cr,k






. (2)

The code is called an MDS if it can repair anyr node erasures, which is equivalent to the statement that any1× 1, 2× 2, ..., r× r
block sub matrix in (2) is invertible. Consider a scenario ofa single erasure of a systematic nodem, 1 6 m 6 k. In order to
optimally repair the lost data, a linear combination of the information stored in the parity nodes is transmitted to the erased
node. Namely, parity nodesk + 1, ..., k + r, project their data on the repairing subspacesS1,m, S2,m, ..., Sr,m of dimensionl/r
each, respectively. During the repair process of systematic nodem ∈ [k], parity nodek + i transmits the information

Si,mak+i = Si,m

k

∑
j=1

Ci,jaj.

Theonly information about the lost systematic nodem received by parity nodek+ i is Si,mCi,mam. Note that the other surviving
systematic nodesdo not contain any information about the lost node. Therefore a necessary condition for repairing the lost
information of systematic nodem is

rank







S1,mC1,m
...

Sr,mCr,m






= l, (3)

i.e., the matrix is invertible. This condition is equivalent to that the subspacesS1,m A1,m, ..., Sr,mAr,m form a direct sum ofFl,
namely

⊕i ∈ [r] Si,mCi,m = F
l . (4)

However the transmitted information from the parities contains interference (information) from the other surviving nodes. The
interference of nodem′ 6= m received from parity nodek + i is Si,mCi,m′am′ . Systematic nodem′ transmits to the repair center
enough information in order to cancel out the this interference. In total, the information that needs to be transmitted from node
m′ is







S1,mC1,m′

...
Sr,mCr,m′






am′ . (5)
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Hence the amount of information transmitted is equivalent to the rank of the matrix in (5). The rank of the matrixS1,mC1,m′ is
l/r, therefore the rank of the whole matrix is at leastl/r. Thus the code is optimal bandwidth only if we transmit the smallest
amount of information, i.e. for anym′ 6= m

rank







S1,mC1,m′

...
Sr,mCr,m′






=

l

r
. (6)

Which is equivalent to the equality between the subspaces

S1,mC1,m′ = S2,mC2,m′ = ... = Sr,mCr,m′ . (7)

We conclude that an optimal bandwidth algorithm for the systematic nodes is defined by the set of repairing subspaces
(S1,m, ..., Sr,m) that satisfy (3) and (6) for1 6 m 6 k.3 However, it will be more convenient to assume that the repairing
subspaces are constant, namely to repair systematic nodem we use the same repairing subspaceSm for each of ther parities.
In other words, the information transmitted from parity node k + i is Smak+i. From Combining equations (3), (6) we get the
following corollary.

Corollary 1 The code defined in(2) is optimal bandwidth withconstant repairing subspacesif there exist subspacesS1, ..., Sk

each of dimensionl/r, such that for anym ∈ [k]

rank







SmC1,m′

...
SmCr,m′






=

{

l m = m′

l/r else,
. (8)

The following remarks apply for codes with constant repairing subspaces.
Remarks:
1) Without loss of generality we will always assume that the last row in the encoding matrixC in (2) is composed of

only identity matrices, i.e.,Cr,m = I for any m ∈ [k]. Because ifC = (Ci,j), i ∈ [r], j∈ [k] defines an optimal bandwidth
code, letC′

i,j = Ci,jC
−1
r,j . ThenC ′ = (C′

i,j), i∈ [r], j∈ [k] with the same sets of repairing subspaces, defines an optimal
bandwidth code, andC′

r,m is the identity matrix for anym ∈ [k].
2) Since the dimension of each subspaceSm is l/r, and any encoding matrixC ∈ {Ci,j} is invertible, thendim(SmC) = l/r.

Hence the rank of the matrix in (8), which is composed ofr block matrices, has two extreme cases for its possible value.
For m = m′ the rank is maximal, i.e. the matrix is invertible. Form 6= m′ the rank has the minimum possible value of
l/r. Note also that in this case, for anyi ∈ [r]

SmCi,m′ = Sm. (9)

Namely Sm is an invariant subspace for any matrixCi,m′ when m′ 6= m. This follows sinceCr,m′ is assumed to be the
identity matrix according to the previous remark.

3) For m′ = m (8) is equivalent to
⊕i ∈ [r] SmCi,m = F

l . (10)

The next theorem shows that from any optimal bandwidth MDS code we can construct another optimal bandwidth MDS
code with constant repairing subspaces, and almost the sameparameters.

Theorem 2 If there exists an optimal bandwidth(k + r, k, l) MDS code, then there exists an optimal bandwidth(k + r − 1, k −
1, l) MDS code with constant repairing subspaces.

The proof is shown in Appendix A.
From the last theorem we get the following corollary.

Corollary 3 Let k be the largest number of systematic nodes in an optimal bandwidth (k + r, k, l) MDS code. Lets be the largest
number of systematic nodes in an optimal bandwidth(s+ r, s, l)MDS code with constant repairing subspaces, thens 6 k 6 s+ 1.

Proof: It is clear thats 6 k. From Theorem 2 we conclude thatk − 1 6 s.
Theorem 2 shows that the difference between the maximum number of nodesk in an optimal bandwidth MDS codes with

or without constant repairing subspaces is negligible (at most 1). Therefore in the sequel we will always assume that the codes
have constant repairing subspaces, and the bounds will apply for this case.

For any two integersi < j denote by[i] = {1, ..., i} and [i, j] = {i, i + 1, ..., j}. For simplicity, we will assume that the
capacity of each nodel, is a power ofr. In the next section we present our first bound which applies for the most general
case.

3We point out that similar conditions were derived also in [14].
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III. U PPER BOUND ON THE NUMBER OF NODES IN AN OPTIMAL BANDWIDTHMDS CODE

We start with the most general problem, which seems to be the most difficult. No constraints on the encoding matrices and
the repairing subspaces are imposed. We derive an upper bound on the number of information nodesk in an optimal bandwidth
(k + r, k, l) MDS code for arbitrary number of paritiesr. The bound is a function ofonly the capacityl of the node, regardless
of the field size being used.

Before we prove the upper bound, for a set of indicesI, J defineBI,J to be the sub matrix ofB restricted to rowsI and
columnsJ.

Theorem 4 Let C = (Ci,j) be an(k + r, k, l) optimal bandwidth MDS code with constant repairing subspacesS1, ..., Sk then

k 6 l

(

l

l/r

)

.

Proof: By the optimal bandwidth property, for anym ∈ [k] the matrix






SmC1,m
...

SmCr,m






, (11)

is of full rank. HereSm is a matrix of dimensionl
r × l. Hence there exists a set of indicesI ⊂ [l] of size l

r + 1 such that the
( l

r + 1)× ( l
r + 1) sub matrix restricted to rows[l(r − 1)/r, l] and columnsI, is invertible. Namely,

det







SmC1,m
...

SmCr,m







[l r−1
r ,l],I

6= 0.

Moreover, since for anym′ 6= m,

rank







SmC1,m′

...
SmCr,m′






=

l

r
,

the sub matrix restricted to the same set of rows and columns is not of full rank, (note that for distinctm’s the set of indices
I might be different). Hence, for eachm ∈ [k] the polynomialfm : F

l
r×l → F, defined by,

fm(S) = det







SC1,m
...

SCr,m







[l r−1
r ,l],I

, (12)

satisfies,

fm(Sm′) =

{

6= 0 m = m′

0 otherwise.
(13)

We claim that thefm’s are linearly independent multivariate polynomials. Assume that for someαm’s ∈F

∑
m

αm fm =~0,

where~0 is the zero polynomial. Assume by contradiction thatαj 6= 0 for somej, but

0 =~0(Sj)

= ∑
m

αm fm(Sj)

= αj f j(Sj) 6= 0,

and we get a contradiction. Therefore the polynomials are linearly independent. Define two sets of polynomials

T1 = {det







x1,1 · · · x1,l
...

. . .
...

x l
r ,1

· · · x l
r ,l







[ l
r ],J

: J ∈

(

[l]
l
r

)

},
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and T2 = {xl/r,i : 1 6 i 6 l}, where( [l]
l/r

) is the set ofl/r-subsets of[l]. Note that each element in thel(r − 1)/r-th row
of (11) is a linear combination of the indeterminatesxl/r,1, ..., xl/r,l in the last row. In addition, recall thatCr,m is the identity
matrix andSmCr,m = Sm. Hence, by expanding the determinant in (12) by thel(r − 1)/r-th row, we conclude that it is a
linear combination of the polynomials from

T1 · T2 = {h · g : h ∈ T1, g∈ T2}.

Namely,{ fm} ⊆ span(T1 · T2). However, since thefm’s are linearly independent, the number of polynomials is atmost the
dimension, i.e.,

k = |{ fm}|

6 dim(span(T1 · T2))

6 |T1| · |T2|

= l

(

l

l/r

)

.

Corollary 5 Let k be the largest number of systematic nodes in an optimal bandwidth (k + r, k, l) MDS code, then

(r + 1) logr l 6 k 6 l

(

l
l
r

)

.

Proof: The lower bound is given by the code constructed in [20].
As one can notice, there exists a big gap between the upper andthe lower bound. We conjecture that the lower bound is

more accurate, and in factk = θ(log l).
We proceed by giving a tight bound for the number of systematic nodesk in the case where all the encoding matrices are

diagonal.

IV. U PPER BOUND FORDIAGONAL ENCODING MATRICES

One of the most common operation in the maintenance of a storage system is updating. Namely, a certain element has
changed its value, and that needs to be updated in the system.Since the code is an MDS, each parity node is a function of
the entire information stored in the system. Therefore, in asingle update, each parity node needs to be updated at least in one
of the elements it stores. Anoptimal update code is one that needs to update each parity nodeexactly once in an update of
any information element. Namely, an optimal update code updates the minimum number of times in any value change. Since
updating is a highly frequent operation, a storage system with the optimal update property has a huge advantage. A reasonable
question to answer is what can be said on systems that posses both the optimal access/bandwidth and optimal update properties.
In this section we derive a tight bound on the number of information disks for these systems. However the derived bound
applies only for a special case of anoptimal update code, where all the encoding matrices are diagonal. Note that in Theorem
2, if the code is composed of diagonal encoding matrices, then in the theorem, the constructed code with constant repairing
subspaces will also be composed of diagonal matrices. Therefore Corollary 3 applies also to codes with diagonal matrices.

We begin with a simple lemma on the entropy function.

Lemma 6 Let X be a random variable such that for any possible outcomex, P(X = x) 6 1
r , then its entropy satisfiesHr(X) > 1,

whereHr(·) is the entropy function calculated in baser.

Proof: SinceP(X) 6 1
r then logr(

1
P(X)

) > 1 and

Hr(X) = E(logr(
1

P(X)
)) > 1.

Next we make a few definitions. A partitionX of some setT is a set of subsets ofT such that

∪x ∈X x = T,

and for any distinct setsx1, x2 ∈X
x1 ∩ x2 = ∅.

Moreover, for two partitionsX ,Y , their meet is defined as,

X ∧ Y = {x ∩ y : x ∈X , y ∈Y}.
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Note that the meet of two partitions of same set is also a partition. We denote partitions by Calligraphic lettersA,B, ..., and
sets in a partition by lowercase letters, e.g.x ∈X . For a set of indicesx ⊆ [l] denote byspan(ex) = span(ei : i ∈ x), where
ei is the i-th vector in the standard basis.

Since each encoding matrixCi,j is diagonal, the standard basis vectors are its set of eigenvectors, and the entries along the
diagonal are its eigenvalues. ThereforeCi,j defines a partitionXi,j of [l], by m, n∈ [l] are in the same set of the partition, iff
the corresponding standard basis vectorsem and en have the same eigenvalue inCi,j. Let m′ ∈ [k] be some node that needs to
be repaired, and denote byX the meet of the partitions

X = ∧i∈ [r],m 6=m′Xi,m.

In addition, letS = Sm′ be the repair subspace for that node.
The following lemma shows thatS can be decomposed into a direct sum of subspaces, such that each subspace is an invariant

subspace of all the matricesCi,m, i∈ [r], m 6= m′. Note that for eachx ∈X andm 6= m′, the subspacespan(ex) is a subspace
of some eigenspace ofCi,m. Therefore,span(ex) andS ∩ span(ex) are invariant subspaces ofCi,m.

Lemma 7 The repair subspaceS of the nodem′ can be written as

S = ⊕x ∈X Sx, (14)

whereSx = S ∩ span(ex).

Proof: It is clear that a vectorv 6= 0 is an eigenvector for all the matricesCi,m, m 6= m′ iff v ∈ span(ex), for some setx
in the partitionX . AssumeS is represented in its reduced row echelon form, and without loss of generality we assume that
the first l/r columns ofS are linearly independent, hence

S =
(

I l
r

A
)

.

Here It is the identity matrix of ordert and A is an l/r × l(r − 1)/r matrix, and recall thatS is an l/r × l matrix. For any
j∈ [l/r] let vj = (ej|aj) be the j-th row of S, whereaj is the j-th row of A. By the optimal bandwidth property,S is an
invariant subspace of any matrixCi,m for any m 6= m′ and i ∈ [r], which are all diagonal matrices. Therefore, we get

vjCi,m = (αej|a
′
j)∈ S = span(v1, ...vl/r),

for some non zeroα ∈F and a vectora′j. Namely

rank

(

S
vjCi,m

)

= rank

(

I l
r

A

αej a′j

)

= l/r.

We claim thata′j = αaj, namely(ej|aj) the j-th row of S is an eigenvector ofCi,m. This follows since sincevj, vjCi,m ∈ S and

αvj − vjCi,m = α(ej|aj)− (αej|a
′
j) = (0|αaj − a′j)∈ S.

However, the only vector inS with first l/r entries being zero, is the zero vector. Hence we conclude that a′j = αaj, and each
row vectorvj of S is an eigenvector ofCi,m for any m 6= m′. Namely,vj ∈ span(ex) for some setx in the partitionX , and
the result follows.

So far we have looked atX the meet of the partitionsXi,m, i∈ [r], m 6= m′. Next, we are going to partition each set inX
using the partitionsXi,m′ , i ∈ [r], and then upper bound the size of each set in that partition.

Lemma 8 For x ∈X denote byPx = x ∧ (∧iXi,m′), the partition ofx by Xi,m′ , 1 6 i 6 r. Then the size of each set in the
partitionPx is at most|x|/r, namely

maxz ∈Px
|z| 6

|x|

r
. (15)

Proof: Assume the contrary that the size of some setz in Px is |z| > |x|/r. On one hand, for eachx ∈X the subspace
Sx is contained inspan(ex), moreover,span(ex) is an invariant subspace forCi,m′ for any i ∈ [r], since it is a diagonal matrix.
Therefore

SxCi,m′ ⊆ span(ex)Ci,m′ = span(ex). (16)

In addition

⊕x ∈X span(ex) = F
l

= ⊕i ∈ [r]SCi,m′ (17)

= ⊕i ∈ [r] ⊕x ∈X SxCi,m′ (18)

= ⊕x ∈X ⊕i ∈ [r] SxCi,m′ . (19)
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Here (17) follows from (10) and (18) follows from (14). From (16) and (19) we conclude that for anyx ∈X

⊕i∈ [r] SxCi,m′ = span(ex). (20)

Calculating the dimensions in (20)

|x| = dim(span(ex))

= dim(⊕i ∈ [r]SxCi,m′)

=
r

∑
i=1

dim(SxCi,m′)

= r dim(Sx),

i.e.,

dim(Sx) =
|x|

r
. (21)

On the other hand, letαi be the eigenvalue of the matrixCi,m′ that corresponds to the vectors inspan(ez). W.l.o.g assume
that z = {1, 2, ..., |z|}, hence by (20)

|x| = rank











SxC1,m′

...
SxCr−1,m′

SxCr,m











= rank











Sx(C1,m′ − α1 I)
...

Sx(Cr−1,m′ − αr−1I)
Sx











. (22)

Here the last equality in (22) follows sinceCr,m is the identity matrix, and the two matrices are row equivalent. However, for
any i ∈ [r], the first |z| columns in the diagonal matrix

Ci,m′ − αi I

are zeros. In additionSx is contained inspan(ex), i.e. the indices of the non zero entries in any vector ofSx are contained
in x. Therefore we get that for anyi,

Sx(Ci,m′ − αi I) ⊆ span(ex\z).

Hence

rank







Sx(C1,m′ − α1 I)
...

Sx(Cr−1,m′ − αr−1 I)






6 dim(span(ex\z))

= |x| − |z|

< |x| −
|x|

r
, (23)

Therefore we have

|x| = rank











SxC1,m′

...
SxCr−1,m′

SxCr,m











6 rank







Sx(C1,m′ − α1 I)
...

Sx(Cr−1,m′ − αr−1I)






+ rank(Sx)

< |x| −
|x|

r
+

|x|

r
(24)

= |x|.

Here (24) follows from (23) and (21), therefore (15) holds.
Now we are ready to prove the upper bound on the number of systematic nodes.

Theorem 9 Let C = (Ci,j) be an(k + r, k, l) optimal bandwidth code composed of diagonal encoding matrices, namely eachCi,j

is a diagonal matrix, and constant repairing subspacesS1, ..., Sk, thenk 6 logr l.
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Proof: Let j be a random variable that gets any integer value1, 2, ..., l with equal probability. Define form′ ∈ [k] the
random variableYm′ to be the setz in the partition∧iXi,m′ that containsj. By (15) we conclude that

P(Ym′ = z|Ym = ym, m ∈ [k]\{m′}) 6
1

r
,

for any values ofym, m ∈ [k]\{m′}. Hence from Lemma 6 we conclude that the conditional entropyof Ym′ satisfies

Hr(Ym′ |Ym, m ∈ [k]\{m′}) > 1. (25)

Therefore,

logr l = Hr(j)

= Hr(j, Y1, ..., Yk)

= Hr(Y1, ..., Yk) + Hr(j|Y1, ..., Yk)

> Hr(Y1, ..., Yk)

=
k

∑
m=1

Hr(Ym|Y1, ..., Ym−1)

>
k

∑
m=1

Hr(Ym|Ym, m 6= m′) (26)

>
k

∑
m=1

1 = k, (27)

where (26) follows since conditioning reduces entropy, and(27) follows from (25).

Corollary 10 Let k be the largest number of systematic nodes in an optimal bandwidth (k + r, k, l) MDS code with diagonal
encoding matrices, thenk = logr l.

Proof: The lower bound is given by the codes constructed in [3], [10], [17], [18].

Note that when restricting to diagonal encoding matrices, there is no difference if the code is an optimal access or optimal
bandwidth in terms of maximum code lengthk (see Table 2). However, in the next section we show that thesetwo properties
are not equivalent in the general case.

V. UPPERBOUND ON THE NUMBER OF NODES FOROPTIMAL ACCESS

Storage systems with optimal bandwidth MDS property introduce high efficiency in data transmission during a repair process.
However a major bottleneck can still emerge if the transmitted information is a function of a large portion of the data stored
in each node. In the extreme case the information is a function of theentire information within the node. Namely, in order to
generate the transmitted data from some surviving node, onehas to access and read all the information stored in that node,
which of course can be an expensive task. Anoptimal access code is an optimal bandwidth code that transmits only the
elements it accesses. Namely, the amount of information read is equal to the amount of information transmitted. The property
of optimal access is equivalent to that each repairing subspaceSi is spanned by anl/r-subset of the standard basise1, ..., el,
i.e., Si = span(em : m ∈ I) for someI an l/r-subset of[l]. As before, if the code in Theorem 2 is optimal access then the
constructed code in that theorem will also have the optimal access property. This follows since the set of repairing subspaces
for the newly constructed code is a subset of the repairing subspaces for the old code. Therefore Corollary 3 applies alsoto
optimal access codes.

We start with an useful lemma that shows that in an optimal access code with constant repairing subspaces, the intersections
between the subspaces are not large.

Lemma 11 LetC be an(k+ r, k, l) optimal access code with constant repairing subspacesS1, ..., Sk, then for any subset of indices
T ⊆ [k]

dim(∩t ∈ TSt) 6
l

r|T|
.

Proof: We prove by induction on the size ofT. For |T| = 1 there is nothing to prove. For|T| = t, w.l.o.g assume that
T = [t], and denote byS = ∩j ∈ [t]Sj. Assume the contrary thatdim(S) >

l
rt . It is clear by definition thatS ⊆ Sj for any

j∈ [t − 1], hence by (9), for anyi ∈ [r − 1]
SCi,t ⊆ ∩j ∈ [t−1]Sj.
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We conclude thatSC1,t, ..., SCr,t arer subspaces of dimension greater thanl/rt, which are contained in the subspace∩j ∈ [t−1]Sj,

which by the induction hypothesis is of dimension at mostl
rt−1 . Therefore the sum of these subspaces is not a direct sum,

which contradicts (10).

Corollary 12 By the conditions of the previous theorem, the number of repairing subspaces{Si}
k
i=1 that contain an arbitrary

vectorv 6= 0 is at mostlogr l.

Proof: Let J = {j : v ∈ Sj}, then

1 6 dim(∩j∈ JSj) 6
l

r|J|
,

and the result follows.
The previous Lemma shows that an arbitrary vectorv 6= 0 can not belong to “too many” repairing subspacesSi. This

observation leads to a bound on the number of nodes in an optimal access code.

Theorem 13 Let C be an(k + r, k, l) optimal access MDS code with constant repairing subspacesS1, ..., Sk, thenk 6 r logr l.

Proof: Define a bipartite graph with one set of vertices to be the standard basis vectorse1, ..., el. The second set of vertices
will be the repairing subspacesS1, ..., Sk. Define an edge between a vectorei and a subspaceSj iff Sj containsei. Count in
two different ways the number of edges in the graph. By the assumption the code is optimal bandwidth, hence each repairing
subspace containsl/r standard basis vectors, and the degree of each repairing subspace in the graph isl/r. In total there are
kl/r edges in the graph. However by Corollary 12 the degree in the graph of each standard basis vector is at mostlogr l.
Hence there are at mostl logr l edges in the graph, namely

k
l

r
6 l logr l,

and the result follows.

Corollary 14 Let k be the largest number of systematic nodes in an optimal access (k + r, k, l) MDS code, then

k = r logr l.

Proof: The lower bound is derived by the codes constructed in [4], [20].
Note that [20] constructed also an optimal bandwidth code with k = (r + 1) logr l. Therefore, in the general case where

we do not require an optimal update code, there is a difference between optimal access and optimal bandwidth code. Namely,
these two properties are not equivalent (see Table 2).

VI. DISCUSSION AND SUMMARY

Assume that an MDS code over the fieldF is to be constructed. The capacityl of each node, which is the number of
symbols it can store equals to

l =
M

log|F|
,

whereM is the size in bits of the node, andlog |F| is the number of bits takes to represent each symbol. In this paper we
asked the following question: Given the number of paritiesr and the capacityl, what is the largest number of nodesk such
that there exists an optimal bandwidth (resp. access)(k + r, k, l) MDS code. We used distinct combinatorial tools to derive
3 upper bounds onk. The first bound considers the general case of optimal bandwidth code. The last two bounds are tight,
and they consider optimal access and optimal update codes with diagonal encoding matrices. Moreover, we showed that in
the general case, the properties of optimal bandwidth and optimal access are not equivalent, although in certain codes such as
codes with diagonal encoding matrices, they are. It is an open problem what is the exact bound for optimal bandwidth code
with r parities and capacityl.

Since the capacity of each node is a function of the field size being used, one would like to minimize the field size in order
to increase the capacity and therefore the number of nodes that can be protected. However, in order to satisfy the MDS property
the field size needs to be large enough, e.g. it is well known that for optimal update codes the fieldF2 is not sufficient. It is
an interesting open problem to determine the smallest field size sufficient for the MDS property.
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APPENDIX A
PROOF OFTHEOREM 2

Theorem 2 If there exists an optimal bandwidth (k + r, k, l) MDS code then there exists an optimal bandwidth (k + r −
1, k − 1, l) MDS code with constant repairing subspaces.

Proof: Let the encoding matrices for the code in the hypothesis be






A1,1 ... A1,k
...

. . .
...

Ar,1 ... Ar,k






, (28)

with repairing subspaces(S1,m, S2,m, ..., Sr,m) for nodem. Namely, for any distinctm, m′ ∈ [k] the following holds

S1,mA1,m′ = S2,mA2,m′ = ... = Sr,m Ar,m′ (29)

⊕i ∈ [r] Si,mAi,m = F
l (30)

Define the code

C = (Cj,m) =







C1,1 ... C1,k−1
...

. . .
...

Cr,1 ... Cr,k−1






,

where
Cj,m = Ar,kA−1

j,k Aj,mA−1
r,m.

Note that forCr,m is the identity matrix for anym ∈ [k − 1], namely the last row inC is composed of identity matrices. We
claim that this is an optimal bandwidth(k + r − 1, k − 1, l) MDS code with constant repairing subspaces.

Optimal Bandwidth Property: Assume nodem ∈ [k − 1] was erased, then use the set of repairing subspaces

(Sm, ..., Sm),

whereSm = Sr,m. Namely transmit from parity nodej the informationSmak+j. For the optimal bandwidth property we only
need to show that (8) is satisfied. Letm, m′ ∈ [k − 1] and j∈ [r]

SmCj,m′ = Sr,mCj,m′

= Sr,m Ar,kA−1
j,k Aj,m′ A−1

r,m′

= Sj,m Aj,kA−1
j,k Aj,m′ A−1

r,m′ (31)

= Sj,m Aj,m′ A−1
r,m′

=

{

Sj,m Aj,mA−1
r,m m = m′

Sr,mAr,m′ A−1
r,m′ = Sm else,

(32)

where (31) and (32) follow from (29). Therefore, form′ 6= m

rank







SmC1,m′

...
SmCr,m′






= rank







Sm
...

Sm






=

l

r
,

and (8) is satisfied. Moreover

F
l =⊕j ∈ [r] Sj,mAj,m (33)

= ⊕j ∈ [r]Sj,mAj,mA−1
r,m (34)

= ⊕j ∈ [r]SmCj,m (35)

where (33) follows from (30), and (34) follows sinceAr,m is an invertible matrix. (35) follows from (32), thus (8) is also
satisfied form = m′.

MDS Property: This property follows easily from the MDS code in (28). The code C is MDS iff for any t ∈ [r] and sets
of indices{j1, ..., jt} ⊆ [r], {m1, ..., mt} ⊆ [k − 1] the block sub matrix







Cj1,m1
... Cj1,mt

...
. . .

...
Cjt,m1

... Cjt,mt






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is invertible. However,






Cj1,m1
... Cj1,mt

...
. . .

...
Cjt,m1

... Cjt,mt






=









Ar,kA−1
j1,k Aj1,m1

A−1
r,m1

... Ar,kA−1
j1,k Aj1,mt

A−1
r,mt

...
. . .

...
Ar,kA−1

jt,k
Ajt,m1

A−1
r,m1

... Ar,kA−1
jt,k

Ajt,mt
A−1

r,mt









=









Ar,kA−1
j1,k

. . .

Ar,kA−1
jt,k















Aj1,m1
... Aj1,mt

...
. . .

...
Ajt,m1

... Ajt,mt






· (36)







A−1
r,m1

. . .
A−1

r,mt






.

Since each encoding matrixAi,j is invertible, the first and the third matrices in (36) are invertible. The middle matrix is
invertible since the code in (28) is invertible, and the result follows.
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