16,050 research outputs found

    Bridging Discrete and Backpropagation: Straight-Through and Beyond

    Full text link
    Backpropagation, the cornerstone of deep learning, is limited to computing gradients solely for continuous variables. This limitation hinders various research on problems involving discrete latent variables. To address this issue, we propose a novel approach for approximating the gradient of parameters involved in generating discrete latent variables. First, we examine the widely used Straight-Through (ST) heuristic and demonstrate that it works as a first-order approximation of the gradient. Guided by our findings, we propose a novel method called ReinMax, which integrates Heun's Method, a second-order numerical method for solving ODEs, to approximate the gradient. Our method achieves second-order accuracy without requiring Hessian or other second-order derivatives. We conduct experiments on structured output prediction and unsupervised generative modeling tasks. Our results show that \ours brings consistent improvements over the state of the art, including ST and Straight-Through Gumbel-Softmax. Implementations are released at https://github.com/microsoft/ReinMax.Comment: Work in progres

    PIKS: A Technique to Identify Actionable Trends for Policy-Makers Through Open Healthcare Data

    Full text link
    With calls for increasing transparency, governments are releasing greater amounts of data in multiple domains including finance, education and healthcare. The efficient exploratory analysis of healthcare data constitutes a significant challenge. Key concerns in public health include the quick identification and analysis of trends, and the detection of outliers. This allows policies to be rapidly adapted to changing circumstances. We present an efficient outlier detection technique, termed PIKS (Pruned iterative-k means searchlight), which combines an iterative k-means algorithm with a pruned searchlight based scan. We apply this technique to identify outliers in two publicly available healthcare datasets from the New York Statewide Planning and Research Cooperative System, and California's Office of Statewide Health Planning and Development. We provide a comparison of our technique with three other existing outlier detection techniques, consisting of auto-encoders, isolation forests and feature bagging. We identified outliers in conditions including suicide rates, immunity disorders, social admissions, cardiomyopathies, and pregnancy in the third trimester. We demonstrate that the PIKS technique produces results consistent with other techniques such as the auto-encoder. However, the auto-encoder needs to be trained, which requires several parameters to be tuned. In comparison, the PIKS technique has far fewer parameters to tune. This makes it advantageous for fast, "out-of-the-box" data exploration. The PIKS technique is scalable and can readily ingest new datasets. Hence, it can provide valuable, up-to-date insights to citizens, patients and policy-makers. We have made our code open source, and with the availability of open data, other researchers can easily reproduce and extend our work. This will help promote a deeper understanding of healthcare policies and public health issues

    Learnable Earth Parser: Discovering 3D Prototypes in Aerial Scans

    Full text link
    We propose an unsupervised method for parsing large 3D scans of real-world scenes into interpretable parts. Our goal is to provide a practical tool for analyzing 3D scenes with unique characteristics in the context of aerial surveying and mapping, without relying on application-specific user annotations. Our approach is based on a probabilistic reconstruction model that decomposes an input 3D point cloud into a small set of learned prototypical shapes. Our model provides an interpretable reconstruction of complex scenes and leads to relevant instance and semantic segmentations. To demonstrate the usefulness of our results, we introduce a novel dataset of seven diverse aerial LiDAR scans. We show that our method outperforms state-of-the-art unsupervised methods in terms of decomposition accuracy while remaining visually interpretable. Our method offers significant advantage over existing approaches, as it does not require any manual annotations, making it a practical and efficient tool for 3D scene analysis. Our code and dataset are available at https://imagine.enpc.fr/~loiseaur/learnable-earth-parse

    Colour technologies for content production and distribution of broadcast content

    Get PDF
    The requirement of colour reproduction has long been a priority driving the development of new colour imaging systems that maximise human perceptual plausibility. This thesis explores machine learning algorithms for colour processing to assist both content production and distribution. First, this research studies colourisation technologies with practical use cases in restoration and processing of archived content. The research targets practical deployable solutions, developing a cost-effective pipeline which integrates the activity of the producer into the processing workflow. In particular, a fully automatic image colourisation paradigm using Conditional GANs is proposed to improve content generalisation and colourfulness of existing baselines. Moreover, a more conservative solution is considered by providing references to guide the system towards more accurate colour predictions. A fast-end-to-end architecture is proposed to improve existing exemplar-based image colourisation methods while decreasing the complexity and runtime. Finally, the proposed image-based methods are integrated into a video colourisation pipeline. A general framework is proposed to reduce the generation of temporal flickering or propagation of errors when such methods are applied frame-to-frame. The proposed model is jointly trained to stabilise the input video and to cluster their frames with the aim of learning scene-specific modes. Second, this research explored colour processing technologies for content distribution with the aim to effectively deliver the processed content to the broad audience. In particular, video compression is tackled by introducing a novel methodology for chroma intra prediction based on attention models. Although the proposed architecture helped to gain control over the reference samples and better understand the prediction process, the complexity of the underlying neural network significantly increased the encoding and decoding time. Therefore, aiming at efficient deployment within the latest video coding standards, this work also focused on the simplification of the proposed architecture to obtain a more compact and explainable model

    Security and Privacy Problems in Voice Assistant Applications: A Survey

    Full text link
    Voice assistant applications have become omniscient nowadays. Two models that provide the two most important functions for real-life applications (i.e., Google Home, Amazon Alexa, Siri, etc.) are Automatic Speech Recognition (ASR) models and Speaker Identification (SI) models. According to recent studies, security and privacy threats have also emerged with the rapid development of the Internet of Things (IoT). The security issues researched include attack techniques toward machine learning models and other hardware components widely used in voice assistant applications. The privacy issues include technical-wise information stealing and policy-wise privacy breaches. The voice assistant application takes a steadily growing market share every year, but their privacy and security issues never stopped causing huge economic losses and endangering users' personal sensitive information. Thus, it is important to have a comprehensive survey to outline the categorization of the current research regarding the security and privacy problems of voice assistant applications. This paper concludes and assesses five kinds of security attacks and three types of privacy threats in the papers published in the top-tier conferences of cyber security and voice domain.Comment: 5 figure

    RAFEN -- Regularized Alignment Framework for Embeddings of Nodes

    Full text link
    Learning representations of nodes has been a crucial area of the graph machine learning research area. A well-defined node embedding model should reflect both node features and the graph structure in the final embedding. In the case of dynamic graphs, this problem becomes even more complex as both features and structure may change over time. The embeddings of particular nodes should remain comparable during the evolution of the graph, what can be achieved by applying an alignment procedure. This step was often applied in existing works after the node embedding was already computed. In this paper, we introduce a framework -- RAFEN -- that allows to enrich any existing node embedding method using the aforementioned alignment term and learning aligned node embedding during training time. We propose several variants of our framework and demonstrate its performance on six real-world datasets. RAFEN achieves on-par or better performance than existing approaches without requiring additional processing steps.Comment: ICCS 202

    Machine Learning Applications in Studying Mental Health Among Immigrants and Racial and Ethnic Minorities: A Systematic Review

    Full text link
    Background: The use of machine learning (ML) in mental health (MH) research is increasing, especially as new, more complex data types become available to analyze. By systematically examining the published literature, this review aims to uncover potential gaps in the current use of ML to study MH in vulnerable populations of immigrants, refugees, migrants, and racial and ethnic minorities. Methods: In this systematic review, we queried Google Scholar for ML-related terms, MH-related terms, and a population of a focus search term strung together with Boolean operators. Backward reference searching was also conducted. Included peer-reviewed studies reported using a method or application of ML in an MH context and focused on the populations of interest. We did not have date cutoffs. Publications were excluded if they were narrative or did not exclusively focus on a minority population from the respective country. Data including study context, the focus of mental healthcare, sample, data type, type of ML algorithm used, and algorithm performance was extracted from each. Results: Our search strategies resulted in 67,410 listed articles from Google Scholar. Ultimately, 12 were included. All the articles were published within the last 6 years, and half of them studied populations within the US. Most reviewed studies used supervised learning to explain or predict MH outcomes. Some publications used up to 16 models to determine the best predictive power. Almost half of the included publications did not discuss their cross-validation method. Conclusions: The included studies provide proof-of-concept for the potential use of ML algorithms to address MH concerns in these special populations, few as they may be. Our systematic review finds that the clinical application of these models for classifying and predicting MH disorders is still under development

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    One Small Step for Generative AI, One Giant Leap for AGI: A Complete Survey on ChatGPT in AIGC Era

    Full text link
    OpenAI has recently released GPT-4 (a.k.a. ChatGPT plus), which is demonstrated to be one small step for generative AI (GAI), but one giant leap for artificial general intelligence (AGI). Since its official release in November 2022, ChatGPT has quickly attracted numerous users with extensive media coverage. Such unprecedented attention has also motivated numerous researchers to investigate ChatGPT from various aspects. According to Google scholar, there are more than 500 articles with ChatGPT in their titles or mentioning it in their abstracts. Considering this, a review is urgently needed, and our work fills this gap. Overall, this work is the first to survey ChatGPT with a comprehensive review of its underlying technology, applications, and challenges. Moreover, we present an outlook on how ChatGPT might evolve to realize general-purpose AIGC (a.k.a. AI-generated content), which will be a significant milestone for the development of AGI.Comment: A Survey on ChatGPT and GPT-4, 29 pages. Feedback is appreciated ([email protected]

    Kurcuma: a kitchen utensil recognition collection for unsupervised domain adaptation

    Get PDF
    The use of deep learning makes it possible to achieve extraordinary results in all kinds of tasks related to computer vision. However, this performance is strongly related to the availability of training data and its relationship with the distribution in the eventual application scenario. This question is of vital importance in areas such as robotics, where the targeted environment data are barely available in advance. In this context, domain adaptation (DA) techniques are especially important to building models that deal with new data for which the corresponding label is not available. To promote further research in DA techniques applied to robotics, this work presents Kurcuma (Kitchen Utensil Recognition Collection for Unsupervised doMain Adaptation), an assortment of seven datasets for the classification of kitchen utensils—a task of relevance in home-assistance robotics and a suitable showcase for DA. Along with the data, we provide a broad description of the main characteristics of the dataset, as well as a baseline using the well-known domain-adversarial training of neural networks approach. The results show the challenge posed by DA on these types of tasks, pointing to the need for new approaches in future work.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was supported by the I+D+i project TED2021-132103A-I00 (DOREMI), funded by MCIN/AEI/10.13039/501100011033. Some of the computing resources were provided by the Generalitat Valenciana and the European Union through the FEDER funding program (IDIFEDER/2020/003). The second author is supported by grant APOSTD/2020/256 from “Programa I+D+i de la Generalitat Valenciana”
    corecore