6 research outputs found

    정보 μˆ˜μ€€μ„ μ΄μš©ν•œ κ°•κ±΄ν•œ μ‹œλΉŒκ³΅κ²© λ°©μ–΄ μ•Œκ³ λ¦¬μ¦˜ 섀계 및 뢄석

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 전기·컴퓨터곡학뢀, 2014. 8. κΉ€μ’…κΆŒ.μΆ”μ²œ μ‹œμŠ€ν…œ(Recommender System, RS)은 ꢁ극적인 μ†ŒλΉ„μž (즉, μΆ”μ²œ μ‹œμŠ€ν…œ μ‚¬μš©μž)μ—κ²Œ 상업적인 μ•„μ΄ν…œλ“€μ„ μΆ”μ²œν•΄ μ£ΌλŠ” 것이 μ£Όμš” κΈ°λŠ₯이닀. μΆ”μ²œ μ‹œμŠ€ν…œμ—μ„œ μ •ν™•ν•œ 정보λ₯Ό μ œκ³΅ν•˜λŠ” 것은 μΆ”μ²œ μ„œλΉ„μŠ€ κ³΅κΈ‰μžμ™€ μ‹œμŠ€ν…œ μ‚¬μš©μž λͺ¨λ‘μ—κ²Œ μ€‘μš”ν•˜λ‹€. 온라인 μ†Œμ…œ λ„€νŠΈμ›Œν¬μ˜ ν™•μ‚°μœΌλ‘œ μΆ”μ²œ μ‹œμŠ€ν…œμ˜ 영ν–₯λ ₯은 κΈ‰κ²©νžˆ μ¦κ°€ν•˜κ³  μžˆλ‹€. λ°˜λ©΄μ— μΆ”μ²œ μ‹œμŠ€ν…œμ˜ μ˜λ„μ™€λŠ” λ°˜λŒ€λ‘œ 정보λ₯Ό μ‘°μž‘ν•˜λŠ” 거짓 아이덴터티듀을 μ‚¬μš©ν•œ μ•…μ˜μ μΈ μ‚¬μš©μžλ“€μ˜ μΆ”μ²œ μ‹œμŠ€ν…œμ— λŒ€ν•œ 곡격이 μ¦κ°€ν•˜κ³  μžˆλ‹€. μ΄λŸ¬ν•œ 거짓 아이덴터티듀을 ν™œμš©ν•œ 곡격을 μ‹œλΉŒ(Sybil) 곡격이라 λΆ€λ₯Έλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” λ‹€λ₯Έ μ—°κ΅¬μ—μ„œ μ†Œκ°œλœ 적이 μ—†λŠ” μ–΄λ“œλ―Έμ…˜ ν†΅μ œ κ°œλ…μ„ ν™œμš©ν•œ RobuRec이라 λΆˆλ¦¬λŠ” μƒˆλ‘œμš΄ κ°•κ±΄ν•œ μΆ”μ²œ μ‹œμŠ€ν…œμ„ μ œμ•ˆν•œλ‹€. μ–΄λ“œλ―Έμ…˜ ν†΅μ œλΌλŠ” κ°•λ ₯ν•œ κ°œλ…μ„ ν™œμš©ν•˜μ—¬ μ •μ§ν•œ μ‚¬μš©μžκ°€ μƒμ„±ν•œ 평가인지 ν˜Ήμ€ μ‹œλΉŒ 아이덴터티듀을 ν™œμš©ν•œ μ•…μ˜μ μΈ 평가인지에 관계없이 κ³ μ‹ λ’° μˆ˜μ€€μ˜ μΆ”μ²œμ„ μ˜ˆμΈ‘ν•  수 μžˆλ‹€. RobuRec μ‹œμŠ€ν…œμ˜ μ„±λŠ₯을 보이기 μœ„ν•΄, λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μ—¬λŸ¬κ°€μ§€ κ°€λŠ₯ν•œ μ‹œλΉŒ 곡격 μ‹œλ‚˜λ¦¬μ˜€λŠ” λ¬Όλ‘  λ‹€μ–‘ν•œ 데이터셋을 ν™œμš©ν•˜μ—¬ κ΄‘λ²”μœ„ν•œ μ‹€ν—˜μ„ μˆ˜ν–‰ν•˜μ˜€λ‹€. RobuRec은 μ‹€ν—˜ 및 뢄석을 톡해 RobuRecκ³Ό 비ꡐ κ°€λŠ₯ν•œ PCA (Principal Component Analysis) 방식 및 LTSMF (Least Trimmed Squared Matrix Factorization) 방식보닀 ν”„λ¦¬λ”•μ…˜ μ‰¬ν”„νŠΈ (Prediction Shift, PS) 및 적쀑 λΉ„μœ¨(Hit Ratio, HR)μ—μ„œ μ›”λ“±ν•œ μ„±λŠ₯을 보여 μ£Όμ—ˆλ‹€.As the major function of Recommender Systems (RSs) is recommending commercial items to potential consumers (i.e., system users), providing correct information of RS is crucial to both RS providers and system users. The influence of RS over Online Social Networks (OSNs) is expanding rapidly, whereas malicious users continuously try to attack the RSs with fake identities (i.e., Sybils) by manipulating the information in the RS adversely. In this thesis, we propose a novel robust recommendation algorithm called RobuRec which exploits a distinctive feature, admission control. RobuRec provides highly Trusted recommendation results since RobuRec predicts appropriate recommendations regardless of whether the ratings are given by honest users or by Sybils thanks to the power of admission control. To demonstrate the performance of RobuRec, we have conducted extensive exper iments with various datasets as well as diverse attack scenarios. The evaluation results confirm that RobuRec outperforms the comparable schemes such as Principal Component Analysis (PCA) and Least Trimmed Squared Matrix Factorization (LTSMF) significantly in terms of Prediction Shift (PS) and Hit Ratio (HR).Chapter 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . 1 1.2 Goal and Contribution . . . . . . . . . . . . . . 3 1.3 Thesis Organization . . . . . . . . . . . . . . . 6 Chapter 2 Related Work 7 2.1 RS approaches . . . . . . . . . . . . . . . . . . 7 2.2 Sybil Attack Defense . . . . . . . . . . . . . . 9 2.3 Robust RS Approaches . . . . . . . . . . . . . . 10 Chapter 3 System Model 13 3.1 Target Applications . . . . . . . . . . . . . . 17 3.2 Strong Attacker . . . . . . . . . . . . . . . . 17 3.3 Attack Model . . . . . . . . . . . . . . . . . . 18 3.4 Model Assumptions . . . . . . . . . . . . . . . 21 Chapter 4 RobuRec Design 23 4.1 Algorithm Intuition . . . . . . . . . . . . . . 23 4.2 Initialization Phase . . . . . . . . . . . . . . 25 4.3 Admission Control Phase . . . . . . . . . . . . 26 4.4 Rating Prediction Phase . . . . . . . . . . . . 30 4.5 Dynamic Parameter Control . . . . . . . . . . . 35 4.5.1 Simplifying Control Parameters . . . . . . . . 36 4.5.2 Dynamic Cmax Control . . . . . . . . . . . . . 37 4.5.3 Dynamic Global and Local Control . . . . . . 42 Chapter 5 Evaluation and Analysis 45 5.1 Evaluation Metrics . . . . . . . . . . . . . . . 45 5.2 Parameter (alpha) Study . . . . . . . . . . . . 47 5.3 Datasets and Setup . . . . . . . . . . . . . . . 48 5.4 Results and Analysis . . . . . . . . . . . . . . 52 5.4.1 Performance on PS . . . . . . . . . . . . . . 52 5.4.2 Impact of Filler Size . . . . . . . . . . . . 55 5.4.3 Impact of Target Selection Strategy . . . . . 58 5.4.4 Dynamic Parameter Control . . . . . . . . . . 59 5.4.5 Performance on HR . . . . . . . . . . . . . . 62 5.4.6 Analysis on Escaping Probability . . . . . . . 63 Chapter 6 Conclusion 67Docto

    Unsupervised Retrieval of Attack Profiles in Collaborative Recommender Systems

    No full text
    Trust, reputation and recommendation are key components of successful ecommerce systems. However, ecommerce systems are also vulnerable in this respect because there are opportunities for sellers to gain advantage through manipulation of reputation and recommendation. One such vulnerability is the use of fraudulent user profiles to boost (or damage) the ratings of items in an online recommender system. In this paper we cast this problem as a problem of detecting anomalous structure in network analysis and propose a novel mechanism for detecting this anomalous structure. We present an evaluation that shows that this approach is effective at uncovering the types of recommender systems attack described in the literature.Science Foundation Irelan
    corecore