4,712 research outputs found

    Unsupervised feature selection for sensor time-series in pervasive computing applications

    Get PDF
    The paper introduces an efficient feature selection approach for multivariate time-series of heterogeneous sensor data within a pervasive computing scenario. An iterative filtering procedure is devised to reduce information redundancy measured in terms of time-series cross-correlation. The algorithm is capable of identifying nonredundant sensor sources in an unsupervised fashion even in presence of a large proportion of noisy features. In particular, the proposed feature selection process does not require expert intervention to determine the number of selected features, which is a key advancement with respect to time-series filters in the literature. The characteristic of the prosed algorithm allows enriching learning systems, in pervasive computing applications, with a fully automatized feature selection mechanism which can be triggered and performed at run time during system operation. A comparative experimental analysis on real-world data from three pervasive computing applications is provided, showing that the algorithm addresses major limitations of unsupervised filters in the literature when dealing with sensor time-series. Specifically, it is presented an assessment both in terms of reduction of time-series redundancy and in terms of preservation of informative features with respect to associated supervised learning tasks

    Surveying human habit modeling and mining techniques in smart spaces

    Get PDF
    A smart space is an environment, mainly equipped with Internet-of-Things (IoT) technologies, able to provide services to humans, helping them to perform daily tasks by monitoring the space and autonomously executing actions, giving suggestions and sending alarms. Approaches suggested in the literature may differ in terms of required facilities, possible applications, amount of human intervention required, ability to support multiple users at the same time adapting to changing needs. In this paper, we propose a Systematic Literature Review (SLR) that classifies most influential approaches in the area of smart spaces according to a set of dimensions identified by answering a set of research questions. These dimensions allow to choose a specific method or approach according to available sensors, amount of labeled data, need for visual analysis, requirements in terms of enactment and decision-making on the environment. Additionally, the paper identifies a set of challenges to be addressed by future research in the field

    DropIn: Making Reservoir Computing Neural Networks Robust to Missing Inputs by Dropout

    Full text link
    The paper presents a novel, principled approach to train recurrent neural networks from the Reservoir Computing family that are robust to missing part of the input features at prediction time. By building on the ensembling properties of Dropout regularization, we propose a methodology, named DropIn, which efficiently trains a neural model as a committee machine of subnetworks, each capable of predicting with a subset of the original input features. We discuss the application of the DropIn methodology in the context of Reservoir Computing models and targeting applications characterized by input sources that are unreliable or prone to be disconnected, such as in pervasive wireless sensor networks and ambient intelligence. We provide an experimental assessment using real-world data from such application domains, showing how the Dropin methodology allows to maintain predictive performances comparable to those of a model without missing features, even when 20\%-50\% of the inputs are not available

    Deep Learning for Sensor-based Human Activity Recognition: Overview, Challenges and Opportunities

    Full text link
    The vast proliferation of sensor devices and Internet of Things enables the applications of sensor-based activity recognition. However, there exist substantial challenges that could influence the performance of the recognition system in practical scenarios. Recently, as deep learning has demonstrated its effectiveness in many areas, plenty of deep methods have been investigated to address the challenges in activity recognition. In this study, we present a survey of the state-of-the-art deep learning methods for sensor-based human activity recognition. We first introduce the multi-modality of the sensory data and provide information for public datasets that can be used for evaluation in different challenge tasks. We then propose a new taxonomy to structure the deep methods by challenges. Challenges and challenge-related deep methods are summarized and analyzed to form an overview of the current research progress. At the end of this work, we discuss the open issues and provide some insights for future directions
    • …
    corecore