
Neural Computing Applications manuscript No.
(will be inserted by the editor)

EANN2014: Unsupervised Feature Selection

for Sensor Time-series in Pervasive Computing

Applications

Davide Bacciu

Received: date / Accepted: date

Abstract The paper introduces an efficient feature selection approach for
multivariate time-series of heterogeneous sensor data within a pervasive com-
puting scenario. An iterative filtering procedure is devised to reduce infor-
mation redundancy measured in terms of time-series cross-correlation. The
algorithm is capable of identifying non-redundant sensor sources in an un-
supervised fashion even in presence of a large proportion of noisy features.
In particular, the proposed feature selection process does not require expert
intervention to determine the number of selected features, which is a key ad-
vancement with respect to time-series filters in literature. The characteristic of
the prosed algorithm allow to enrich learning systems, in pervasive computing
applications, with a fully automatized feature selection mechanism which can
be triggered and performed at run-time during system operation. A compara-
tive experimental analysis on real-world data from three pervasive computing
applications is provided, showing that the algorithm addresses major limita-
tions of unsupervised filters in literature when dealing with sensor time-series.
Specifically, it is presented an assessment both in terms of reduction of time-
series redundancy as well as in terms of preservation of informative features
with respect to associated supervised learning tasks.

Keywords Feature Selection · Multivariate time-series · Pervasive comput-
ing · Echo State Networks · Wireless Sensor Networks

D. Bacciu
Dipartimento di Informatica - Università di Pisa
Tel.: +39-050-2212749
Fax: +39-050-2212726
E-mail: bacciu@di.unipi.it

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80261473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 D. Bacciu

1 Introduction

Pervasive computing puts forward a vision of an environment enriched by a
distributed network of devices with heterogeneous sensing and computational
capabilities, that are used to realize customized services supporting every-
day activities. Pervasive computing systems deploy sensors that continuously
collect data concerning the user and/or the environmental status. This data
comes under the form of streams, i.e. time-series, of sensor information with a
considerably heterogeneous nature (e.g. temperature, presence, motion, etc.).
This results in consistent amounts of information that need to be transferred
and processed, typically in real time, to implement the system services, that
are often realized by computational learning models (e.g. for predicting user
activities based on sensed data) [18]. In this context, the availability of effective
feature selection techniques for multivariate time-series becomes fundamental.
Feature selection entails the identification of a subset of the original input
sequences from a given dataset, targeted at removing irrelevant and/or redun-
dant information sources. In a pervasive computing application this serves, on
the one hand, to reduce the computational and communication overhead of
transferring and processing large amounts of sensor information. On the other
hand, it suppresses redundant/irrelevant information which might negatively
affect the predictive performance of the learning models.

The key difference between feature selection and feature extraction is that
the former approach identifies a subset of the original input features, preserving
the original semantics of the data, while the latter approach seeks a transfor-
mation (more or less complex) of the original data to generate a more compact
representation of the information [8]. This is particularly relevant in a pervasive
system where, at run-time, the original data is sensor information distributed
across the network. In this context, the computation of a feature extraction
transform would typically require to transfer all sensor data to a single device
where the transformation is computed. Additionally, the run-time application
of a feature extraction transformation requires higher computational efforts
with respect to a simple selection rule on a pre-determined subset of features.
The former, in fact, requires at least to compute a linear combination of the
original features (e.g. such as in Principal Component Analysis) to generate
the transformed data representation (i.e with a cost that is at least linear with
respect to the size of original data), whereas the latter can be performed with
a constant time operation. Such computational aspects are a key factor to be
taken into consideration if the application runs on low-power devices.

This work has been developed in the context of the RUBICON project [1],
which proposes a vision of a wireless sensor and actuator network where data
analysis and learning capabilities are spread in all components of the systems,
depending on the capabilities of the hosting devices. To this end, it defines
a pervasive learning system that consists of a network of learning modules
distributed on devices characterized by limited computational and commu-
nication capabilities. Each such device hosts a learning component which is
trained to perform real-time short-term predictions based on the temporal his-

Unsupervised time-series Selection in Pervasive Computing 3

tory of the input signals, gathered by the sensors onboard the mote or received
from another node through its radio interface. The learning components are
are realized using Echo State Networks (ESNs) [11], that are recurrent neural
networks from the Reservoir Computing paradigm [13] which are character-
ized by a good trade-off between computational efficiency and ability to deal
with dynamic systems and noisy data. By this means, it is possible to de-
ploy a learning component even on devices with very low-computational and
power capabilities, such as wireless sensor motes [2]. This allows a pervasive
embedding of intelligence within the ambient where the learned knowledge
is deployed, close to where the related input information is generated, e.g.
the sensors. RUBICON realizes a general purpose learning system capable of
addressing a large variety of tasks concerning the on-line processing of sensor-
data streams; it also provides mechanisms that allow to continuously adapt the
learned knowledge by incrementally adding new learning tasks, e.g. allowing
the system to accommodate changes in the monitored environment.

We are interested in designing an efficient feature selection scheme for
such a pervasive learning system. The optimization of the number of sensor
streams feeding the learning modules is, in fact, a key issue in such a resource
constrained environment, requiring effective feature selection techniques for
multivariate time-series. Further, the fact that the RUBICON learning system
allows to incrementally deploy new predictive tasks during system’s opera-
tion, poses additional requirements on the feature selection model. The first
is computational efficiency, as the selection process has to be performed dur-
ing system operation whenever a request for a new predictive task is posted.
The second is the automatization of the feature selection process, as this has
to be performed automatically by the learning system without any form of
human/expert intervention (e.g to determine the number of selected features
from a ranking).

In literature, there are few feature selection approaches specifically tai-
lored to multivariate time-series. Most take a wrapper approach where feature
subset selection optimizes the performance of a specific learning model [9],
typically by training multiple model instances with different configurations
of the inputs. Filter approaches, instead, select features through an external
optimization criterion: their use is typically limited to supervised classifica-
tion problems, where the class labels can be exploited to identify those fea-
tures that do not contribute substantially to class-separability. The CleVer
approach [19], which will be further discussed in the next section, is among
the unique unsupervised filter techniques developed primarily for multivariate
time-series. Previous works have noted how such sophisticated state-of-the-art
feature selection techniques, which show excellent performances on multivari-
ate time-series benchmarks, do not provide significant results in the context
of open-ended discovery in real-world scenarios comprising a sensor-rich en-
vironment [6]. Motivated by this, we propose a simple, yet effective, feature
selection technique based on a cross-correlation analysis of multivariate sensor
time-series, that is specifically tailored to the identification and removal of re-
dundant sensor streams in an autonomous fashion. The proposed approach is

4 D. Bacciu

based on an iterative filter heuristics that incrementally removes/selects time-
series based on redundancy information. The algorithm is characterized by
limited computational requirements and by the ability to cope with the het-
erogeneous information sources that characterize a pervasive sensor system.
Further, the feature selection process does not require expert intervention to
determine the number of selected features and can therefore be fully automa-
tized in the distributed learning system.

The remainder of the paper is organized as follows: Section 2 summarizes
the background on feature selection techniques for multivariate time-series;
Section 3 presents the proposed incremental feature selection algorithm, whose
performance is assessed on real-world benchmarks from indoor pervasive com-
puting scenarios in Section 4. Finally, Section 5 concludes the paper.

2 Feature Selection for Multivariate Time-series

The literature on feature selection provides a wide choice of algorithms devel-
oped for flat vectorial data, while very few approaches have been designed to
deal specifically with multivariate time-series. Feature selection, in this con-
text, amounts to the identification of relevant/non-redundant attributes of a
multivariate sample that represents the evolution of information in time. Let
us define an univariate time-series xn as a the sequence of observations

xn(1), . . . , xn(t), . . . , xn(T n),

where xn(t) is the observation at time t of the n-th sample time-series, and
T n is the sequence length. A D-dimensional Multivariate Time-Series (MTS)
xn is a collection of D univariate time-series

xni = xni (1), . . . , x
n
i (T

n) s.t. i = 1, . . . , D,

where xni (t) is the observation at time t of the i-th component of the n-th
sample MTS. The term xni denotes the i-th univariate time-series in xn. In
the following, we use the terms feature and variable to refer to a component
of the MTS: each feature i is then associated to a set of univariate time-series,
one for each sample n. In this context, feature selection can be interpreted as
the problem of identifying a subset of D′ relevant/informative univariate time-
series {xi1 , . . . , xiD′

} out of the original D time-series composing the MTS x

(where we have dropped the n-th superscript to identify a generic variable,
rather than the specific sample).

Approaches in literature can be differentiated, as for the flat case, in wrap-

per and filter methods. Wrappers are the prominent approach to feature se-
lection for multivariate time-series in literature: here, the feature subset is
selected to optimize the predictive and generalization abilities of a specific
computational learning model. For instance, Recursive Feature Elimination
(RFE) [9] iteratively trains a Support Vector Machine (SVM) classifier and
ranks the input features with respect to a SVM-performance criterion, re-
moving the attributes with the lowest rank at each iteration. RFE has been

Unsupervised time-series Selection in Pervasive Computing 5

originally proposed for vectorial data only but it has later been applied to
MTS information, e.g. in [12]. Corona (Correlation as Features) [17] is an-
other wrapper method that transforms each multivariate time-series into the
corresponding correlation matrix, whose coefficients are fed to a support vec-
tor machine that is then used to apply the RFE method. The central issues
of the wrapper approach are its considerable computational requirements, in-
duced by the multiple retraining of the underlying learning model, and the
fact that the selected attributes tend to be extremely specific for the given
learning module and for the target learning task.

Differently from wrappers, filter approaches use an external optimization
criterion with respect to the learning model that will be using the selected
data. The optimization criterion can be either supervised, typically targeting
the preservation of most task-discriminative features, or unsupervised, that
usually seeks to remove redundancy between the attributes to yield to a com-
pact set of good quality features for subsequent learning tasks. Most of the
filter techniques for time-series data in literature, are limited to supervised
approaches for classification tasks, such as the work in [10], where the selected
time-series are those that best separate multivariate samples from different
classes. The Relief method, originally proposed for vectorial data, uses en-
tropy as a measure of the ability of a feature to discriminate classes and has
been extended to time-series data by [7]. The Maximum-Relevance Minimum-
Redundancy (MRMR) [16] method is among the most popular filter techniques
for vectorial data whose objective is the identification of a feature subset such
that selected attributes are mutually as dissimilar as possible, while they are as
similar as possible to the target class variable. Similarity and dissimilarity are
measured by means on pairwise mutual information and the MRMR algorithm
is derived from the maximization of a joint function of the feature dissimilarity
and similarity. Despite its widespread diffusion in vectorial feature selection,
the MRMR algorithm has not yet found application to timeseries data: this
might be the result of the difficulty in estimating mutual information on time-
series. Such problems are already manifest when estimating mutual informa-
tion for continuous vectorial observations [16]: these are, typically, discretized
to a number of categorical values on which mutual information is ultimately
estimated. The MRMR technique appears to be poorly suited to feature selec-
tion in our pervasive computing scenario, for a number of reasons: first, it is a
supervised technique developed specifically for classification tasks, whereas in
our pervasive computing scenario we seek an unsupervised method which iden-
tifies features that can be employed in a number of different supervised tasks,
of both classification and regression type. Second, it is difficult to define accu-
rate and robust estimators of mutual information for heterogeneous timeseries
data (e.g. of mixed categorical and continuous nature) which typically require
either strong approximations, such as the discretization of continuous vari-
ables, or computationally intensive routines [15]. Finally, the MRMR method
provides a ranking of the features but requires the user to determine the num-
ber of ultimately selected features, whereas we seek a completely data-driven
process that can automatically determine such number.

6 D. Bacciu

The CleVer method [19] is one of the few unsupervised filter approaches
specifically tailored to multivariate time-series. It exploits the properties of
the principal components common to all the time-series to provide a ranking
of the more informative features. Based on the assumption that there exists a
common subspace across all multivariate data items, it first performs a Prin-
cipal Component Analysis (PCA) considering each univariate time-series in
isolation, i.e. using the set of observations for the given univariate time-series
as the PCA dataset. Then, it computes the principal components common
to the univariate time-series, by bisecting the angles between their principal
components, and calculates a loading matrix providing information on the
contribution of each of the original D features to the common principal com-
ponents. Such a loading matrix provides only a ranking of the original features;
hence, a selection criterion is required to extract the relevant feature subset.
Three approaches are proposed by [19] for subset selection from the ranking

– a classical top-k method selecting the k features whose loading vector has
the largest L2-norm;

– a clustering-based method using k-means to identify attributes with similar
patterns of loading values which selects the k features closest to each of
the k cluster prototypes;

– an hybrid approach applying, first, k-means clustering and, then, ranking
the attributes with respect to their contribution to the clusters.

Clearly, all the approaches described above require expert intervention (by
the user) to determine the number of selected features, i.e. the top-k elements
for the ranking based method and the number of clusters k for the k-means
based approach. On the positive side, the CleVer method is characterized by
low computational requirements coupled with a competitive performance on
MTS feature selection benchmarks [19]. Its excellent performance, together
with the fact that it represents the sole example of unsupervised feature filter
for MTS in literature, motivates to consider it as the reference baseline for the
experimental comparison with the algorithm introduced in this paper.

The characterizing contribution of the proposed algorithm with respect
to the state of the art discussed above is two-fold. On the one hand, it puts
forward an approach that formulates feature selections as a completely unsu-
pervised process, devoid of any need for human expert intervention and that
does not require to associate the feature selection process to a specific super-
vised learning task and/or to a specific learning model. As discussed above,
the majority of MTS feature selection approaches in literature are, instead,
based on supervised techniques; the very few of them taking an unsupervised
approach, i.e. those related to the CleVer method, require expert intervention
to determine the number of selected features from a ranking. On the other
hand, the proposed algorithm is (to the extent of the author knowledge) the
first specifically tailored to the identification and removal of redundant sensor
MTS. Previous works [6] have observed that state-of-the-art feature selection
techniques with competitive performances on MTS benchmarks are poorly
suited to deal with the characteristics of multivariate sensor streams. This

Unsupervised time-series Selection in Pervasive Computing 7

paper provides an experimental grounding of such intuition by thoroughly as-
sessing the performance of the proposed model and of the state of the art
CleVer method on real-world data from pervasive sensor networks.

3 Unsupervised Sensor Time-series Selection by Cross-Correlation

The Section introduces a filter algorithm for the unsupervised open-ended
discovery of non-redundant feature subsets from sensor data. The algorithm
has been designed to take into account the key requirements posed by the
specific pervasive computing application, that are

– the ability to deal specifically with multivariate time-series (MTS) data;
– the use of unsupervised information only, such that its result are indepen-

dent of a specific predictive task;
– the automatization of the feature selection process, so that it can be per-

formed online with respect to system operation, with no human interven-
tion;

– computational efficiency.

To this end, we introduce the Incremental Cross-correlation Filter (ICF) al-
gorithm for unsupervised feature subset selection on multivariate time-series
(MTS) of sensor data. The ICF algorithm targets the reduction of feature
redundancy, measured in terms of their pairwise cross-correlation. The cross-
correlation of two discrete time-series x1 and x2 is a measure of their similarity
as a function of a time lag (offset) τ , calculated through the sliding dot product

φx1x2(τ) =

min{(T 1−1+τ),(T 2−1)}
∑

t=max{0,τ}

x1(t− τ) · x2(t), (1)

where τ ∈ [−(T 1 − 1), . . . , 0, . . . , (T 2 − 1)] and T 1, T 2 are the time-series
lengths. Intuitively, the lag where the maximum of the cross-correlation is
computed provides information about the displacement between the first time-
series and the second.

The cross-correlation in (1) tends to return large numbers for signals whose
amplitude is larger: this would prevent from comparing time-series from dif-
ferent sensor modalities due to the considerably different scales of the sensor
readings. To this end, we introduce the normalized cross-correlation

φx1x2(τ) =
φx1x2(τ)

φx1x1(0) · φx2x2(0)
, (2)

where φxx(0) denotes the zero-lag autocorrelation, i.e. the correlation of a time-
series x with itself. The normalized function φx1x2(τ) takes values in [−1,+1],
where a value of φx1x2(τ) = 1 denotes that the two time-series have the exact
same shape if aligned at time τ . Similarly, a value of φx1x2(τ) = −1 indicates
that the time-series have the same shape but opposite signs, while φx1x2(τ) = 0

8 D. Bacciu

denotes complete signal uncorrelation. From our point of view, both negative
and positive extremes denote a certain redundancy in the information captured
by the two time-series. Therefore, the correlation value at the point in time
where the signals of the two time-series are best aligned is

φ
∗

x1x2 = max
τ

|φx1x2(τ)|. (3)

The ICF algorithm implements a forward selection-elimination procedure
that filters out redundant features, where redundancy is measured by the nor-
malized cross-correlation in (2). ICF is based on the iterative application of
a set of four selection/elimination rules, with no backtracking on the inclu-
sion/exclusion of a feature in the final subset, which allows to maintain the
computational complexity of the iterative process linear with respect to the
feature number. The four selection/elimination rules are backed-up by the
following intuitions

– A variable that is not correlated with any of the other features, should be
selected.

– A variable that is correlated with all the variables that have already been
selected is a good candidate for elimination.

– If the selection/elimination rules result in a working set of mutually corre-
lated variables, act conservatively and maintain all those features that are
less correlated with the selected ones.

The ICF algorithm is articulated in three phases:

1. The first computes a score of pairwise feature redundancy using (3);
2. The second phase performs a preliminary denoising to get rid of uninfor-

mative features;
3. The last phase iteratively applies the selection rules until all features are

assigned to either the selected or the deleted status.

The first ICF phase builds a matrix of feature redundancy R ∈ {0, 1}D×D,
such that Rij = 1 if features i and j are pairwise redundant and Rij = 0
otherwise. Given a MTS dataset, the redundancy matrix is computed as follows

1. For each sample xn, use (3) to compute the maximum cross-correlation

between all univariate sequences xni , x
n
j in xn. If φ

∗

xn
i
xn
j
≈ 1 for the pair i, j,

assume features i and j to be correlated on the n-th sample, and increment
the partial correlation counts in the frequency matrix (assuming Sij = 0
initially)

Sij = Sij + 1.

2. Compute the percentage of samples in which each pair i, j is correlated,
i.e. Sij = Sij/N .

3. Set Rij = 1, if the corresponding feature pair i, j, with i 6= j, is correlated
on more than θP% samples, i.e. Sij > θP%.

4. Set the diagonal of R to zero, i.e. Rii = 0 for all features i, to discount
trivial correlations.

Unsupervised time-series Selection in Pervasive Computing 9

The redundancy matrix R provides a unified picture of which variables are
mutually correlated on a sufficiently large share of input samples S. Experi-
mentally, we have determined that a value of θP% = 20% is already sufficient
to detect redundancies in a variety of experimental scenarios (nevertheless the
value can also be determined on a per-task basis through cross-validation).

Note that numerical issues discourage from using the exact φ
∗

xn
i
xn
j
= 1 match

in item 2 above: here, we suggest to consider a pair i, j to be correlated if
φ

∗

xn
i
xn
j
> 0.99.

The second phase preprocesses the initial feature set to delete those fea-
tures comprising mostly noise. To this end, it uses feature autocorrelation,
that is the cross-correlation of a univariate time-series to itself. In particular,
autocorrelation is computed using the un-normalized sliding dot product in
(1): this measure is characterized by the fact that a time-series constituted
primarily by noise has a peak value at lag τ = 0 and a mean autocorrelation
approximately equal to 0 off time 0 (i.e. for all other lags). More formally,
given a feature i, we compute the average off time 0 absolute autocorrelation
as

ψ∗
i =

∑N

n=1
1

Tn−1

∑

τ 6=0 |φxn
i
xn
i
(τ)|

N
(4)

where φxn
i
xn
i
(τ) is defined in (1) and T n is the length of the n-th time-series.

The i-th feature is deleted if its average absolute autocorrelation approaches
0: the ψ∗

i value will not be exactly 0, in general, so the deletion test is softened
by pruning those features i having ψ∗

i < 0.1. Deletion of a feature, in this
phase, resizes the redundancy matrix R by removing the row Ri· and column
R·i associated with the feature.

The third phase applies the feature selection/elimination rules exploiting
the information in the redundancy matrix R generated by the previous two
steps. It defines a set of unassigned features F , that initially contains all the
variables that have not been deleted by the second phase. The rules are applied
iteratively to F following a priority order, until all features are assigned to
either the set of selected variables SF or to the set of the deleted ones DF .
The details of the ICF rules and their priority pattern are described by the
following procedure

1. RULE 1 - If a row Ri· is completely uncorrelated with the others in R (i.e.
Ri· contains only zeros)
(a) Add i to the selected subset: SF = SF ∪ {i};
(b) Remove i from F and remove the corresponding entries in R;
(c) If an uncorrelated feature j is generated as a result of the previous step,

move j from F to DF and remove the corresponding entries in R.
2. RULE 2 - If a row Ri· is correlated with all the others and there is at

least 1 non completely correlated feature (i.e. R does not contain only ones
off-diagonal)
(a) Add i to the deleted subset: DF = DF ∪ {i};
(b) Remove i from F and remove the corresponding entries in R.

10 D. Bacciu

3. RULE 3 - If all features in F are mutually correlated with each other, i.e.
R contains only ones off-diagonal,
(a) Select the feature i that is less correlated with those currently in SF ;
(b) Add i to the selected subset: SF = SF ∪ {i};
(c) Remove i from F ;
(d) Move the remaining features F to the deleted subset (DF = DF ∪ F)

and terminate.
4. RULE 4 - If neither RULE 2 nor RULE 3 apply,

(a) Extract feature i ∈ F that is correlated with the minimum number of
features still in F ;

(b) Define S(i) ⊂ F as the subset of features correlated with i and select
j ∈ S(i) as the maximally correlated feature with those currently in
SF ;

(c) Add i to SF and j to DF ;
(d) Remove i, j from F and remove the corresponding entries in R.

The elimination-selection rules are tested sequentially, in the order in which
they are presented above, and their test conditions are such that at least one
of them fires at each iteration of the algorithm; hence, the cost of computing
the third phase is at most linear in the number of the original features.

The rationale of step 1(c) above is that a feature j encoding the same
information of already selected variables has to be deleted to avoid to be
selected by future steps (otherwise RULE 1 is likely to be applied to j at the
following iteration). Note that, in step 3(a), we determine the feature i that
is minimally correlated with those in SF by measuring the pairwise cross-
correlation between i and all j ∈ SF , averaged across all samples, i.e.

µij =

N
∑

n=1

φ
∗

xn
i
xn
j

N
, (5)

where N is the number of multivariate time-series in the dataset. The value of
µij is then used to determine the minimally correlated feature i (in average)
as

i = argmin
i′∈F

{

∑

j∈SF µi′j

|SF|

}

, (6)

where |SF| is the cardinality of SF . Step 4(a) uses a similar strategy to
determine which feature j, from the set of i-correlated features S(i), has to be
deleted, i.e.

j = arg max
j′∈S(i)

{
∑

k∈SF µj′k

|SF|

}

. (7)

The use of cross-correlation to assess the pairwise information redundancy
among timeseries is not novel. The key contribution of ICF is to use such a
measure within a novel forward selection/elimination scheme based on the in-
tuitions discussed early in this section. By this means, ICF allows to perform
a multivariate feature selection process using only pairwise dependency infor-
mation, thus maintaining a limited computational complexity (as discussed in

Unsupervised time-series Selection in Pervasive Computing 11

the forthcoming paragraph). Such an approach resembles the characteristics
of constraint-based algorithm for Bayesian Network structure search [4]: here,
such intuition is used, for the first time, in the context of multivariate time-
series. Despite the ICF algorithm being defined in terms of cross-correlation,
this is general enough to be seamlessly extended to work with any pairwise or
multivariate measure of timeseries rendundancy/dependency.

A pseudo-algorithmic description of the complete ICF procedure is pro-
vided in Algorithm 1. The computational complexity of this algorithm is, in
general, dominated by the computation of the redundancy matrix in the first
phase which mainly depends on the cost of computing the pairwise cross-
correlation on the sample MTS. The asymptotic complexity of redundancy
matrix computation is

O(N · (D2 · Tmax)),

where N is the dataset length and the second term results from the com-
putation of pairwise cross-correlations between D univariate time-series with
a maximum length Tmax. Computation of the autocorrelation parameter for
noisy suppression in the second ICF can be embedded in the redundancy ma-
trix calculation loop at no additional costs, as shown in Algorithm 1. The
third ICF phase is very efficient, i.e. linear in the number of features D, as
the forward selection scheme processes each variable, at most, once with con-
stant time operations. Therefore, the final complexity of the ICF algorithm
is O(N · (D2 · Tmax) +D). The asymptotic complexity of the CleVer method
cannot be straightforwardly derived as it depends on the number of iterations
required by the k-means algorithm to identify the feature clusters. Neverthe-
less, it can be approximated from below as

Ω(N · (D2 · Tmax) +N2 · p),

where the first summation term depends on the singular value decomposition
performed on the N timeseries, while the second term is due to the identifica-
tion of the p common principal components among the timeseries [19]. Hence,
the ICF asymptotic complexity can be considered not worse that that of the
CleVer method.

4 Experimental Evaluation

4.1 Experimental Setup and Scenario

The experimental evaluation is intended to assess the capability of the ICF
algorithm in detecting and removing redundant MTS features in indoor per-
vasive computing scenarios. In particular, we compare the performance of ICF
with respect to the CleVer method, a state of the art unsupervised feature
filter for time-series, for a varying proportion of irrelevant features in the orig-
inal MTS1. To this end, we have employed real-world data collected in two

1 Matlab code for ICF and CleVer available at www.di.unipi.it/~bacciu/icf

12 D. Bacciu

Algorithm 1 Incremental Cross-correlation Filter
Require: A dataset of N multivariate time-series xn composed of D features.

// Redundancy matrix computation (phase 1)
for n = 1 to N do

for i, j = 1 to D do

if i == j then

ψi = ψi + (
∑

τ 6=0
|φxn

i
xn
i
(τ)|)/(Tn − 1)

else if φ
∗

xn
i
xn
j
> 0.99 then

Sij = Sij + 1
end if

end for

end for

for i = 1 to D do

for j = 1 to D do

if Sij/N > 0.2 and i 6= j then

Rij = 1
end if

end for

// Noise reduction (phase 2)
if (ψi/N) < 0.1 then

DF = DF ∪ i
end if

end for

Remove i-th rows and columns from R for all i ∈ DF
// Forward Selection/Elimination (phase 3)

Set F = {1, . . . , D} \ DF , SF = {}
while F ! = {} do

// Rule 1
if ∃i ∈ F s.t. (Rij == 0) ∀j ∈ F \ i then

F = F \ i, SF = SF ∪ i
Remove i-th rows and columns from R
if ∃k ∈ F s.t. (Rkj == 0) ∀j ∈ F \ k then

F = F \ k, DF = DF ∪ k
Remove k-th rows and columns from R

end if

end if

// Rule 2
if ∃i ∈ F s.t. (Rij == 1) ∀j ∈ F \ i and R contains at least one 0 off-diagonal then

F = F \ i, DF = DF ∪ i
Remove i-th rows and columns from R

else if R is a matrix of all 1’s off-diagonal then
// Rule 3

Select feature i using (6) and set F = F \ i, SF = SF ∪ i
DF = DF ∪F , F = {}

else

// Rule 4
Find i = argmini′∈F

∑
j∈F Ri′k

Find j ∈ S(i) using (7)
F = F \ {i, j}, SF = SF ∪ i, DF = DF ∪ j
Remove i-th and j-th rows and columns from R

end if

end while

return SF ,DF

Unsupervised time-series Selection in Pervasive Computing 13

Fig. 1 Experimental scenario for the Entrance and Kitchen tasks in the Ängen facilities:
Mi denotes the i-th WSN mote (Telosb platform running TinyOS). The two photos on the
right show snapshots of the kitchen (top) and entrance-living (bottom) areas of the flat.

experimental deployments, one associated to mobile robot navigation and one
related to Human Activity Recognition (HAR).

The former scenario comprises two different regression tasks involving the
prediction of robot navigation preferences in a sensorized home-environment.
The idea underlying these tasks is to learn to predict which navigation system
is best to use to perform a certain trajectory based on environment character-
istics and on user preferences. The preference weight to be learned is a value
in [0, 1], where 1 is interpreted as maximum confidence on the navigation sys-
tem and 0 denotes the lowest preference (i.e. the navigation system should
not be used). The resulting computational learning task is, basically, a regres-
sion problem between the multivariate input time-series and the corresponding
univariate sequence of preference weights. The second scenario comprises the
classification of which activity is being performed by a user based on sensor
readings from wireless devices deployed in the environment as well as worn
by the user. Note that, for the purpose of feature selection, we only consider
the input information (i.e. the sensor readings and the robot trajectory in-
formation) but we discard the target data (i.e. the preference weight and the
activity classification) as we are interested in assessing unsupervised selection
methods. An in-depth analysis of the supervised learning tasks associated to
the mobile robot experiment is provided by [5].

The mobile robot scenario has been designed and put into operation in the
Ängen senior residence facilities in Örebro Universitet. The scenario, depicted
in Fig. 1, comprises a real-world flat sensorized by an RFID floor, a mobile
robot with range-finder localization and a Wireless Sensor Network (WSN)
with six mote-class devices, where the termMi is used to denote the i-th mote.
Each device is equipped with light (L), temperature (T), humidity (H) and
passive infrared (P) presence sensors. The input information sources include
all sensors from the six motes, plus robot trajectory information under the
form of its (x, y) position and orientation θ, for a total of 24 features.

14 D. Bacciu

As shown in Fig. 1, the experimental assessment involves two tasks. The
Entrance task is intended to predict a weight evaluating the performance of
the localization system on two different trajectory types, represented as dashed
and continuous lines in Fig. 1. Performance on the dashed trajectory is ex-
pected to be low due to the effect of mirror disturbances which, conversely,
should not affect trajectories on the continuous line. For the purpose of feature
selection, the only relevant information is robot position and orientation (x, y
and θ) as well as the P sensors onboard motes M3 and M6 (referred to as P3

and P6, respectively), that are the only presence sensors triggered by robot
motion. The remainder of the sensors collect data that is poorly informative
as it does not undergo significant changes across the timespan of data collec-
tion. The Kitchen task concerns a single trajectory type (dash-dotted arrows
in Fig. 1) heading to the kitchen, where a user might be present or not. Since
the robot range-finder localization is based on camera, the user is willing to
switch it off every time he/she is in the room with the robot (the correspond-
ing example trajectories are then marked with minimal preference, i.e. 0). The
target of this task is to learn this user preference based on robot trajectory
information and on the user presence pattern captured by the P sensors. The
relevant information for this task is robot x-position (orientation and y coordi-
nates do not change for this trajectory type) as well as the P sensors onboard
motes M1 to M5 (i.e. P1 to P5), that are the only presence sensors that are
triggered by robot or human motion. A total of 87 and 104 sequences have
been collected for the two tasks sampling at 2Hz with an average length of
127 and 197 elements.

The HAR scenario involves a WSN comprising 4 stationary devices, called
anchors, that are deployed on the walls of a bedroom as depicted in Fig 2.
These anchors exchange radio packets with 3 sensor motes, that measure the
signal strength of the received radio packets and are also equipped with tem-
perature sensors (T) and 2D accelerometers on the x (Ax) and y (Ay) axes.
Two of such motes, i.e. M1 and M2, are worn by the user as shown in Fig. 3;
the latter mote, i.e. M3, is deployed on a small table as shown in Fig. 2. The
Received Signal Strength (RSS) measured from the packets received by the
motes provide some very noisy form of distance information from the anchors
on the walls, allowing to localize the motes in the 2D space (e.g. and also the
user wearing them, see for instance the application in [2]). Therefore, the input
information sources in this scenario include the 3 sensors from the 3 motes,
plus the 4 RSS measurements from each anchor to each mote, for a total of 21
features.

The HAR experimental campaign comprised the collection of 90 sequences
corresponding to 3 classes (of 30 sequences each) of user activities, that are
Exercising, Relaxing and Cleaning. The sequences have been collected with the
user performing the three activities as naturally as possible and the collected
sequences have been hand-labeled with the corresponding activity class. The
exercising activity involves a number of push-ups, squats and sit-ups and it
is performed in the middle of the room; relaxation involves laying still on
the sofa, while cleaning is associated to dusting furniture located in different

Unsupervised time-series Selection in Pervasive Computing 15

M3

Fig. 2 Room layout for the HAR scenario: anchor devices are located at an height of 1.80m
from the floor and their position is represented by the red circles enclosing their identifier
number. Mote M3 is located on a small table (dark rounded rectangle on the right hand
side). The Relaxation activity is performed on the sofa (depicted in light gray at the bottom
of the picture), Exercising is carried on in the center of the room, while Cleaning involves
moving around the room. The black rectangles on the left-side denote generic room furniture
(not relevant for the task).

Fig. 3 Motes worn by the user are located on the right wrist, i.e. mote M1, and on the
right ankle, i.e. mote M2.

positions of the room. Due to the nature of the task, it is hard to define
ground-truth knowledge on which information source is significative and non-
redundant: for instance, we expect the RSS sources to be relevant (due to
the positioning information they convey) but also redundant (it is likely that
2 or 3 anchors provide sufficient information given the relatively small room
size). Nevertheless, we can identify with reasonable certainty which sensors
are gathering poorly informative measurements, that are all the temperature

16 D. Bacciu

sensors, as well as the accelerometers on mote M3 and its associated RSS
(given that is permanently located on a table).

4.2 Experimental Results and Discussion

The performance of the CleVer and ICF algorithms can be evaluated in terms
of what information sources are selected for varying input configurations com-
prising different initial sets of features and characterized by increasing pro-
portions of redundant features. Among the three CleVer subset selection ap-
proaches discussed in 2, we have implemented the k-means selection approach
as it has shown the best experimental performance in the original CleVer paper
[19]. Table 1 shows the features selected by CleVer and ICF on the Entrance
and Kitchen task of the mobile robot scenario, where the selected relevant fea-
tures are highlighted in bold. In Table 1, we use the term Mi to indicate that
the input configuration includes all the transducers in the i-th mote, while x, y
and θ denote the robot position and orientation. Since the CleVer algorithm
requires the user to determine the number of selected features, we provide
two set of results: one (CleVer-OPT) using the (known) optimal number of
relevant features; the second (CleVer-ID) using the number of features found
by ICF on the same configuration.

The prevalence of bold-highlighted terms in Table 1 shows that the ICF
algorithm always manages to identify a larger number of significative features,
with respect to both CleVer algorithm versions. In particular, the ICF is ca-
pable of consistently reducing the number of input features by maintaining
the majority (if not all, as in the Kitchen task) of the relevant features even
when a large number of uninformative features is included. Conversely, the
performance of both the CleVer methods deteriorates consistently as the pro-
portion of redundant features increases. Additionally, the results on last four
configurations of the Entrance task in Table 1 highlight a key critical point
of the CleVer algorithm, which yields different features subsets for different
repetitions of the feature selection process (note that the number of selected
features in CleVer-OPT and CleVer-ID is the same for these configurations).
This behavior originates from the well-known sensitivity to initialization of
the k-means algorithm integrated in the CleVer selection process. ICF, on the
other hand, has a stable behavior yielding to the selection of the same feature
subset for multiple algorithm repetitions. A stable behavior is fundamental
for operating feature selection in our pervasive computing scenario, as we are
seeking a reliable and compact set of features which will serve as inputs of a
learning module that will be automatically trained and deployed during sys-
tem operation, with no expert intervention to counteract randomizing effect
of the feature selection process.

A quantitative evaluation of the performance of ICF and CleVer methods
can be provided in terms of precision and recall analysis of the selected fea-
tures. In this context, precision is the proportion of selected features that are
truly significative (i.e. the true positives) with respect to the total size of the

Unsupervised time-series Selection in Pervasive Computing 17

Table 1 Feature selection result on the Entrance and Kitchen data for varying input con-
figurations: Mi denotes all the transducers in the i-th mote while x, y and θ are the robot
position and orientation. The relevant features (based on expert knowledge) are in bold.

Entrance Task

Configuration CleVer-OPT CleVer-IT ICF

(M3,x,y,θ) L3,P3,T3,y L3,P3,y P3,x,y

(M3,M6,x,y,θ) L3,P3,P6,T6,θ L3,P6,x,θ P6,P3,x,y

(M4-M6,x,y,θ) L4,P4,L6,T6,θ P4,L6,T6,θ L4,P4,P6,y

(M3-M6,x,y,θ) L3,T3,P4,P6,θ L3,P3,T5,θ P3,P6,x,y

(M1-M6,x,y,θ) P2,L3,P4,L5,θ L1,P2,T2,L3,L6,θ P1,P2,P3,P6,x,y

Kitchen Task

Configuration CleVer-OPT CleVer-IT ICF

(M3,x,y,θ) x,y L3,x,y L3,P3,x

(M1,M3,x,y,θ) L3,x,y L3,T3,y L1,P3,x

(M1-M3,x,y,θ) L1,L2,H2,x L1,L2,H2,x P1,P2,P3,x

(M1-M5,x,y,θ) L1,P2,L3,T3,L4,H5 L1,L2,H2,L3,T3,L4 P1,P2,P3,P4,P5,x

(M1-M6,x,y,θ) T1,L2,H2,L3,P4,P6 T1,L2,P2,H2,L3,P4 P1,P2,P3,P4,P5,x

feature subset, which therefore includes both True Positives (TP) and False
Positives (FP). Recall, on the other hand, provides information of whether the
algorithms are identifying most of the relevant features for the task, i.e. the
proportion of TP with respect to the total number of significative features. In
other words, precision and recall are

prec =
TP

TP + FP
and rec =

TP

TP + FN
,

where FN are the False Negatives, i.e. the relevant features not included in
the final feature subset.

Figure 4 provides the precision and recall plots corresponding to the con-
figurations in Table 1, as a function of the initial number of features. The
behavior of the precision-recall curves for ICF confirms the intuition that the
number of FP and FN does not grow with the size of the search space (and the
number of potentially irrelevant features). In particular, ICF shows a markedly
higher recall than the CleVer methods, exhibiting a conservative redundancy
reduction process which prevents from discarding consistent shares of features
that will become relevant for the successive training of the supervised learning
tasks. Conversely, both CleVer methods experience a marked precision and
recall deterioration when the number of initial features and the proportion of
irrelevant ones grows, which is due to an increase in both FP and FN in the
identified features subsets.

To further assess the performance of the filter methods with respect to
noisy inputs, we have modified the original Entrance and Kitchen data by
introducing 10 artificial features whose observations have been generated by
random sampling from a uniform distribution in [0, 1] and from a mean-zero

18 D. Bacciu

5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

original features

pr
ec

is
io

n

C−OPT
C−IT
ICF

(a)

5 10 15 20 25 30
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

original features

pr
ec

is
io

n

C−OPT
C−IT
ICF

(b)

5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

original features

re
ca

ll

C−OPT
C−IT
ICF

(c)

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

original features

re
ca

ll

C−OPT
C−IT
ICF

(d)

Fig. 4 Quantitative feature selection performance, where Clever algorithms are identified
as C-OPT and C-IT: 4(a) and 4(b) show the precision of the selected features as a function
of the original input space size for the Entrance and Kitchen tasks, respectively. Figures
4(c) and 4(d) show the associated recall: note that the C-OPT recall curve is completely
overlapping with that by C-ID in 4(c).

unit-variance Gaussian. Table 2 shows the features identified by the 3 meth-
ods: the original input configuration includes all the sensor and trajectory
information (i.e. correspond to the last lines of the Entrance and Kitchen task
in Table 1); the 10-Unif and 10-Gauss denote the noise-injected datasets cor-
responding to uniform and Gaussian sampling, respectively. ICF results are
clearly not influenced by the presence of noisy components, yielding to the
identification of the same feature subsets found on the original data, on both
tasks. Such noise robustness is due to the autocorrelation filtering, as the 10
noisy features are removed completely at second phase of ICF and never enter
the forward selection-elimination part of the algorithm. Conversely, the CleVer
method seems to be considerably affected by both types of noisy features. In
particular, the presence of noisy features confuses the Clever selection process
to the point that it cannot identify any significant feature in the majority of
the cases listed in Table 2.

Representation entropy [14] provides an additional means to quantitatively
assess the effectiveness of the algorithms in terms of amount of redundancy
present in the selected feature subsets. Let X be the K×K covariance matrix

Unsupervised time-series Selection in Pervasive Computing 19

Table 2 Effect of noise addition on feature selection performance: Original denotes the con-
figuration using all inputs from mote M1 to M6 and trajectory information; 10-Unif and
10-Gauss denote the Original configuration extended with additional 10 input features gen-
erated by uniform noise in [0, 1] and zero-mean/unary-variance Gaussian noise, respectively.
The relevant features (based on expert knowledge) are in bold.

Entrance Task

Configuration CleVer-OPT CleVer-IT ICF

Original P2,L3,P4,L5,θ L1,P2,T2,L3,L6,θ P1,P2,P3,P6,x,y

10-Unif T2,H2,x,N2,N4 L2,H2,T5,N2,N3,N4 P1,P2,P3,P6,x,y

10-Gauss T5,x,N1,N5,N6 H2,T5,N1,N4,N6,N9 P1,P2,P3,P6,x,y

Kitchen Task

Configuration CleVer-OPT CleVer-IT ICF

Original T1,L2,H2,L3,P4,P6 T1,L2,P2,H2,L3,P4 P1,P2,P3,P4,P5,x

10-Unif L6,T6,N2,N3,N5,N6 H2,L5,N6,N7,N8,N10 P1,P2,P3,P4,P5,x

10-Gauss P2,L6,N1,N4,N5,N9 H2,L5,N2,N3,N7,N8 P1,P2,P3,P4,P5,x

of the K selected features and λi be the eigenvalue of X associated to the i-th
feature, we define the normalized eigenvalue

λi = λi/
K
∑

j=1

λj .

Then, the representation entropy can be written as

ER = −

K
∑

i=1

λi logλi (8)

and it is such that ER attains its minimum when all the information is concen-
trated along a single feature, making the rest redundant, while it is maximum
when the information is equally distributed among all the features. In other
words, the representation entropy of the selected subset provides a measure
of how much redundant is the final set of features. Figure 5(a) and 5(b) show
the ER value for the Entropy and Kitchen tasks as a function of the input
configuration. Overall, ICF confirms its ability to identify and filter-out re-
dundant information, by selecting features that encode different information,
yielding to consistently better performances with respect to CleVer when the
proportion of redundant features is higher. Coherently with the precision-recall
analysis, the advantages of ICF over CleVer are particularly marked on the
Kitchen task. The representation entropy on the Entrance task in Figure 5(a)
has a less neat behavior: ICF has the best entropy performance when the
proportion of redundant features is higher, though one can observe a drop in
the representation entropy corresponding to the third configuration in Table
1. This is consistent with the drop in precision that can be observed in Fig-
ure 4(a) for the same configuration. The low representation entropy for ICF
in this particular configuration might be due to the presence of the P4 and

20 D. Bacciu

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

original features

re
pr

es
en

ta
tio

n
en

tr
op

y

C−OPT
C−IT
ICF

(a)

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

original features

re
pr

es
en

ta
tio

n
en

tr
op

y

C−OPT
C−IT
ICF

(b)

Fig. 5 Effect of feature selection on redundancy reduction, in terms of representation en-
tropy of the ICF and CleVer methods on the Entrance (Fig. 5(a)) and Kitchen (Fig. 5(b))
tasks.

P6 sensors, which are both selected only in this case, and that might encode
partially redundant information.

Representation entropy does not provide information on how significant
is the portion of information left out of the final subset, nor it provides an
indication on how adequate are the identified features for the final super-
vised learning task. To understand whether the redundancy reduction process
implemented by ICF has an impact on such final learning tasks, we have con-
sidered a simple supervised learning scenario, comprising training of an ESN
on the Kitchen task, using different numbers of reservoir neurons from the
set [10, 50, 100, 300, 500] (see [11] for further details on the model and [5] for
a detailed account on model selection and on the supervised learning task).
Training has been performed using a cross validation setting to identify the
model hyperparameters and performance has been measured in terms of the
Mean Absolute Error (MAE) on a test set comprising hold-out sequences not
seen in training and validation. Figure 6 shows the performance when using all
the WSN inputs without feature filtering, when using oracular ground truth
knowledge on the relevant features and when using the CleVer-OPT,CleVer-IT
and ICF filtered inputs reported in the last row of Table 1. Clearly, there is no
difference between the performance when using oracular knowledge and the
ICF-selected configuration, confirming that the ICF algorithm is capable of
identifying a compact set of non-redundant features, without discarding task-
significant features that may affect the final supervised learning performance.
Conversely, the features identified by both CleVer methods do not provide suf-
ficient discriminative information yielding to considerably poorer supervised
learning performances. Note how the presence of redundant features in both
CleVer-selected and non-feature selected configurations negatively impacts the
performance as the size of the ESN increases, due to the fact that the noise
introduced by the redundant features tends to be incorporated in the larger
parameter space.

Table 3 shows the feature selection results on the HAR task comprising
sensor data related to user exercising, relaxing and cleaning activities. Due

Unsupervised time-series Selection in Pervasive Computing 21

10 50 100 300 500
0

0.1

0.2

0.3

0.4

0.5

0.6

Reservoir Dimension

M
ea

n
A

bs
ol

ut
e

T
es

t E
rr

or

Ground−truth
ICF (M1−M6)
No Feature Selection
C−IT (M1−M6)
C−OPT (M1−M6)

Fig. 6 Mean Squared Error of the supervised learning model on the Kitchen task using
different input configurations resulting from the use of ICF and CleVer feature selection
(ICF, C-IT and C-OPT), ground-truth oracular knowledge and when using all available
inputs (No Feature Selection).

Table 3 Feature selection result on the HAR data for varying input configurations: Mi

denotes all the transducers in the i-th mote, Axi and Ayi are the 2D accelerometers of the
i-th mote and Rj

i denotes the RSS value of the i-th mote with respect to the j-th anchor.
The best representation entropy ER for each configuration is highlighted in bold.

CleVer-OPT CleVer-IT ICF

Conf Selected ER Selected ER Selected ER

(M1) Ax1,Ay1,R1

1
,R2

1
,R3

1
,R4

1
0.624 Ax1,R1

1
,R3

1
0.022 R2

1
,R3

1
,R4

1
1.063

(M2) T2,Ay2,R1

2
,R2

2
,R3

2
,R4

2
0.058 Ay2,R4

2
0.016 R1

2
,R3

2
0.665

(M1,M3) Ax1,R1

1
R2

1
R4

1
,R2

3
,R4

3
0.043 Ax1,R3

1
,R4

3
0.019 R2

1
,R3

1
,R4

1
1.063

(M2,M3) T2,R1

2
,R2

2
,R3

2
,R4

2
,R2

3
1.517 R3

2
,R1

3
0.465 R1

2
,R3

2
0.665

(M1,M2)
Ax1,Ay1,R1

1
R2

1
R3

1
,R4

1
,

0.851 Ax1,R1

1
R3

2
0.785 R2

1
R3

1
,R4

1
1.063

T2,Ay2,R1

2
,R2

2
,R3

2
,R4

2

(M1 −M3)
T1,R1

1
R2

1
R3

1
,R4

1
,R1

2
,R2

2
,

0.097 T1,R1

1
R2

1
0.020 R2

1
R3

1
,R4

1
1.063

R3

2
,R4

2
,Ax3,R3

3
,R4

3

to the nature of the task, it is difficult to determine a-priori which features
are truly significant and non-redundant; hence, in Table 3, we measure fea-
ture selection performance in terms of the purely unsupervised representation
entropy score in (8). Nevertheless, as noted in Section 4.1, there are certain
sensors sources that are certainly capturing little information, given the user
activity setup. This is the case of all temperature sensors Ti as well as of the
RSS information associated to mote M3, i.e. R

j
3 for the RSS received from the

j-th anchor. The ICF algorithm always selects a very compact set of features,
all involving RSS information; nevertheless, none of them involves the non-
significant table mote M3. Conversely, both versions of the CleVer algorithm
select at least one RSS value in moteM3 whenever this is provided in the input
configuration. Additionally, CleVer has also the tendency to select the non-
significant temperature sensors from motes T1 and T2. This is particularly true

22 D. Bacciu

for the CleVer-OPT version, due to the larger number of features selected (in
this case, due to the lack of ground truth, we have approximated the optimal
number of features to all those features that were not clearly non-significant).
The values of the representation entropy confirm the ability of ICF in isolating
a compact number of non-redundant features, yielding to the highest entropy
on almost all input configurations. The CleVer-IT method, despite using the
same number of features as ICF, yields considerably poorer results, with as
little as 2% of the representation entropy for the same input configuration.

To evaluate the impact of feature selection on the final HAR tasks, we have
performed an analysis of the supervised learning performance of ESN models
trained on the three classification tasks, that are the recognition of the Exer-
cising, Relaxing and Cleaning activities. We have considered the same model
selection and cross-validation setup discussed for the Kitchen task in Figure 6,
while varying the number of reservoir neurons in [10, 50, 100, 300]; the perfor-
mance has again been measured in terms of mean absolute error on hold-out
test sequences (amounting to roughly 30% of the total sequences). Figure 7
shows the performance when using all inputs without feature filtering as well
as when using the features selected by the three methods (ICF, Clever-IT and
Clever-OPT) corresponding to the last row of Table 3. These results suggest
that the three HAR tasks are characterized by fewer irrelevant features with
respect to the Kitchen task and which do not seem to have a negative impact
on the predictive performance when using all available inputs. This, in turn,
results in the fact that the CleVer-OPT configuration has generally the second
best performance, as it is the feature-selected configuration using the largest
set of original inputs, i.e. 57% of the all input features. The ICF configuration,
on the other hand, uses only 3 features yielding predictive performances that
are comparable to the CleVer-OPT and non feature selected cases in the Exer-
cising task. On the Relaxing and Cleaning tasks, ICF performance is closer to
CleVer-OPT, which uses thrice the number of input features, than to CleVer-
IT, which uses the same number of features: for instance, on the Relaxing
task ICF yields to test errors 2% higher than CleVer-OPT, whereas CleVer-
IT makes 10% more errors. This confirms ICF ability in identifying compact
subsets of non-redundant features, that encode relevant information for the su-
pervised learning tasks, in a completely unsupervised manner. CleVer, on the
other hand, requires expert supervision to determine the number of selected
features and the relative quality of its features with respect to supervised per-
formance seems to be lower than that of ICF. The trade-off between reducing
the number of input features and achieving good supervised performances is
central for our pervasive computing application, where the supervised ESN
models are intended to be deployed on computationally constrained devices.
Here, reducing the number of ESNs inputs preserves memory and computa-
tional resources (by reducing the number of learning model parameters) and
may prolong battery duration in WSN devices (due to the lower transmission
costs associated with fewer inputs). In this sense, the ICF results in Figure
7 seem promising as they show a good trade-off between predictive accuracy
and the number of input features needed to achieve it.

Unsupervised time-series Selection in Pervasive Computing 23

10 50 100 300
0.05

0.1

0.15

0.2

0.25

0.3

Reservoir Dimension

M
ea

n
T

es
t E

rr
or

C−OPT
C−IT
ICF
No Feature Selection

(a)

10 50 100 300
0

0.05

0.1

0.15

0.2

0.25

0.3

Reservoir Dimension

M
ea

n
T

es
t E

rr
or

C−OPT
C−IT
ICF
No Feature Selection

(b)

10 50 100 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Reservoir Dimension

M
ea

n
T

es
t E

rr
or

C−OPT
C−IT
ICF
No Feature Selection

(c)

Fig. 7 Mean Test Error achieved by the supervised learning model on the three HAR
classification task, comprising recognition of Exercising (7(a)), Relaxing (7(b)) and Cleaning
(7(c)) activities. Results have been obtained for different input configurations resulting from
the use of CleVer (C-OPT and C-IT) and ICF feature selection, as well as when using all
available inputs (No Feature Selection).

5 Conclusion

Multivariate sensor time-series comprise large shares of noisy, highly redun-
dant information which can hamper the deployment of effective predictive
models in pervasive computing applications. As noted in [6] and experimen-
tally confirmed in this paper, state-of-the-art feature filtering algorithms with
competitive performances on MTS benchmarks are poorly suited to deal with
the characteristics of such noisy, slowly changing, yet heterogeneous in nature,
sensor streams. To address this fundamental limitation, we have introduced
an efficient feature filter algorithm tailored to real-time pervasive computing
applications.

The ICF algorithm has been shown to be capable of identifying non-
redundant sensor information in a completely unsupervised fashion and to
outperform the state-of-the-art CleVer filter method on different pervasive
computing scenarios. Differently from CleVer, ICF does not require expert in-
tervention to determine the number of selected features and provides stable
feature subsets that do not change with algorithm initialization. ICF effec-

24 D. Bacciu

tiveness is not obtained at the cost of its computational efficiency, with an
asymptotic complexity that is at most quadratic with respect to the feature
set size, resulting in running times that are comparable with that of the ef-
ficient CleVer algorithm. For instance, the average time required to complete
feature selection for the most complex configuration of the Entrance task (i.e.
the fifth in Table 1) is of 2153msec, obtained by Java code running in an
Eclipse box on an Intel I5 Quad-core at 2.7 GHz CPU equipped with 4GBytes
of RAM. Note that the majority of the running time is spent on redundancy
mask computation, while feature filtering effort is negligible, i.e. 1msec. When
considering much more resource constrained environments such time to com-
plete is expected to remain acceptable for non real-time applications. For in-
stance, the same Entrance task can be expected to complete in roughly 914
seconds (time estimated based on floating-point benchmarks execution costs)
on a ARM Cortex M3 CPU, which is a widely adopted architecture on smart
watch systems.

The robustness and limited computational complexity of ICF makes it an
excellent candidate to implement an automatized feature selection mechanism
within an autonomous learning system, such as that developed as part of
the RUBICON project [2]. In particular, we are planning to exploit ICF as a
preliminary filtering step to reduce the complexity of a relevance-guided super-
vised wrapper specifically targeted at optimizing the predictive performance
of the ESNs implementing the distributed learning system [3]. In this sense,
the fact that ICF is limited to the detection of linear time-series correlation
assumes less relevance, as we expect the supervised wrapper algorithm to iden-
tify possible nonlinear dependencies, e.g. through the nonlinearity of the ESN
reservoir neurons, and to determine if the associated features can be deleted
with significative advantages for the predictive performance of the supervised
task. Nevertheless, we would like to study whether the ICF iterative policy
can be successfully applied also to non-linear time-series correlation measures
to extend the range of its applications.

Acknowledgements

This work is supported by the FP7 RUBICON project (contract n. 269914).
The author would like to thank Claudio Gallicchio for providing part of the
results on the Echo State Network experiment, as well as Filippo Barontini
for the collection of the HAR dataset.

References

1. Amato, G., Bacciu, D., Broxvall, M., Chessa, S., Coleman, S., Di Rocco, M., Drag-
one, M., Gallicchio, C., Gennaro, C., Lozano, H., McGinnity, T., Micheli, A., Ray, A.,
Renteria, A., Saffiotti, A., Swords, D., Vairo, C., Vance, P.: Robotic ubiquitous cognitive
ecology for smart homes. Journal of Intelligent and Robotic Systems pp. 1–25 (2015)

Unsupervised time-series Selection in Pervasive Computing 25

2. Bacciu, D., Barsocchi, P., Chessa, S., Gallicchio, C., Micheli, A.: An experimental char-
acterization of reservoir computing in ambient assisted living applications. Neural Com-
puting and Applications 24(6), 1451–146 (2014)

3. Bacciu, D., Benedetti, F., Micheli, A.: ESNigma: efficient feature selection for Echo State
Networks. In: Proceedings of the European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning (ESANN’15), pp. 189–194 (2015)

4. Bacciu, D., Etchells, T.A., Lisboa, P.J., Whittaker, J.: Efficient identification of inde-
pendence networks using mutual information. Computational Statistics 28(2), 621–646
(2013)

5. Bacciu, D., Gallicchio, C., Micheli, A., Di Rocco, M., Saffiotti, A.: Learning context-
aware mobile robot navigation in home environments. In: Information, Intelligence,
Systems and Applications, IISA 2014, The 5th International Conference on, pp. 57–62.
IEEE (2014)

6. Cheema, S., Henne, T., Koeckemann, U., Prassler, E.: Applicability of feature selection
on multivariate time series data for robotic discovery. In: Proc. of ICACTE’10, vol. 2,
pp. 592–597 (2010)

7. Garćıa-Pajares, R., Beńıtez, J.M., Sainz-Palmero, G.: FRASel: a consensus of feature
ranking methods for time series modelling. Soft Computing 17(8), 1489–1510 (2013)

8. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal
of Machine Learning Research 3, 1157–1182 (2003)

9. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification
using support vector machines. Mach. Learn. 46(1-3), 389–422 (2002)

10. Han, M., Liu, X.: Feature selection techniques with class separability for multivariate
time series. Neurocomput. 110, 29–34 (2013)

11. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. Science 304(5667), 78–80 (2004)

12. Lal, T.N., Schroder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N.,
Scholkopf, B.: Support vector channel selection in BCI. Biomedical Engineering, IEEE
Transactions on 51(6), 1003–1010 (2004)

13. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural net-
work training. Computer Science Review 3(3), 127 – 149 (2009)

14. Mitra, P., Murthy, C.A., Pal, S.K.: Unsupervised feature selection using feature simi-
larity. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 301–312 (2002)

15. Papana, A., Kugiumtzis, D.: Evaluation of mutual information estimators for time series.
International Journal of Bifurcation and Chaos 19(12), 4197–4215 (2009)

16. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of
max-dependency, max-relevance, and min-redundancy. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 27(8), 1226–1238 (2005)

17. Yang, K., Yoon, H., Shahabi, C.: A supervised feature subset selection technique for
multivariate time series. In: Proc. of FSDM’05, pp. 92–101 (2005)

18. Ye, J., Dobson, S., McKeever, S.: Review: Situation identification techniques in pervasive
computing: A review. Pervasive Mob. Comput. 8(1), 36–66 (2012)

19. Yoon, H., Yang, K., Shahabi, C.: Feature subset selection and feature ranking for mul-
tivariate time series. IEEE Trans Knowl. Data Eng. 17(9), 1186–1198 (2005)

