876 research outputs found

    Unsupervised Body Part Regression via Spatially Self-ordering Convolutional Neural Networks

    Full text link
    Automatic body part recognition for CT slices can benefit various medical image applications. Recent deep learning methods demonstrate promising performance, with the requirement of large amounts of labeled images for training. The intrinsic structural or superior-inferior slice ordering information in CT volumes is not fully exploited. In this paper, we propose a convolutional neural network (CNN) based Unsupervised Body part Regression (UBR) algorithm to address this problem. A novel unsupervised learning method and two inter-sample CNN loss functions are presented. Distinct from previous work, UBR builds a coordinate system for the human body and outputs a continuous score for each axial slice, representing the normalized position of the body part in the slice. The training process of UBR resembles a self-organization process: slice scores are learned from inter-slice relationships. The training samples are unlabeled CT volumes that are abundant, thus no extra annotation effort is needed. UBR is simple, fast, and accurate. Quantitative and qualitative experiments validate its effectiveness. In addition, we show two applications of UBR in network initialization and anomaly detection.Comment: Oral presentation in ISBI1

    Regularizing Deep Networks by Modeling and Predicting Label Structure

    Full text link
    We construct custom regularization functions for use in supervised training of deep neural networks. Our technique is applicable when the ground-truth labels themselves exhibit internal structure; we derive a regularizer by learning an autoencoder over the set of annotations. Training thereby becomes a two-phase procedure. The first phase models labels with an autoencoder. The second phase trains the actual network of interest by attaching an auxiliary branch that must predict output via a hidden layer of the autoencoder. After training, we discard this auxiliary branch. We experiment in the context of semantic segmentation, demonstrating this regularization strategy leads to consistent accuracy boosts over baselines, both when training from scratch, or in combination with ImageNet pretraining. Gains are also consistent over different choices of convolutional network architecture. As our regularizer is discarded after training, our method has zero cost at test time; the performance improvements are essentially free. We are simply able to learn better network weights by building an abstract model of the label space, and then training the network to understand this abstraction alongside the original task.Comment: to appear at CVPR 201

    NiftyNet: a deep-learning platform for medical imaging

    Get PDF
    Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this application requires substantial implementation effort. Thus, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. NiftyNet provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on TensorFlow and supports TensorBoard visualization of 2D and 3D images and computational graphs by default. We present 3 illustrative medical image analysis applications built using NiftyNet: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. NiftyNet enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications.Comment: Wenqi Li and Eli Gibson contributed equally to this work. M. Jorge Cardoso and Tom Vercauteren contributed equally to this work. 26 pages, 6 figures; Update includes additional applications, updated author list and formatting for journal submissio

    Recycle-GAN: Unsupervised Video Retargeting

    Full text link
    We introduce a data-driven approach for unsupervised video retargeting that translates content from one domain to another while preserving the style native to a domain, i.e., if contents of John Oliver's speech were to be transferred to Stephen Colbert, then the generated content/speech should be in Stephen Colbert's style. Our approach combines both spatial and temporal information along with adversarial losses for content translation and style preservation. In this work, we first study the advantages of using spatiotemporal constraints over spatial constraints for effective retargeting. We then demonstrate the proposed approach for the problems where information in both space and time matters such as face-to-face translation, flower-to-flower, wind and cloud synthesis, sunrise and sunset.Comment: ECCV 2018; Please refer to project webpage for videos - http://www.cs.cmu.edu/~aayushb/Recycle-GA

    BlobGAN: Spatially Disentangled Scene Representations

    Full text link
    We propose an unsupervised, mid-level representation for a generative model of scenes. The representation is mid-level in that it is neither per-pixel nor per-image; rather, scenes are modeled as a collection of spatial, depth-ordered "blobs" of features. Blobs are differentiably placed onto a feature grid that is decoded into an image by a generative adversarial network. Due to the spatial uniformity of blobs and the locality inherent to convolution, our network learns to associate different blobs with different entities in a scene and to arrange these blobs to capture scene layout. We demonstrate this emergent behavior by showing that, despite training without any supervision, our method enables applications such as easy manipulation of objects within a scene (e.g., moving, removing, and restyling furniture), creation of feasible scenes given constraints (e.g., plausible rooms with drawers at a particular location), and parsing of real-world images into constituent parts. On a challenging multi-category dataset of indoor scenes, BlobGAN outperforms StyleGAN2 in image quality as measured by FID. See our project page for video results and interactive demo: https://www.dave.ml/blobganComment: ECCV 2022. Project webpage available at https://www.dave.ml/blobga
    • …
    corecore