236 research outputs found

    DCA: Diversified Co-Attention towards Informative Live Video Commenting

    Full text link
    We focus on the task of Automatic Live Video Commenting (ALVC), which aims to generate real-time video comments with both video frames and other viewers' comments as inputs. A major challenge in this task is how to properly leverage the rich and diverse information carried by video and text. In this paper, we aim to collect diversified information from video and text for informative comment generation. To achieve this, we propose a Diversified Co-Attention (DCA) model for this task. Our model builds bidirectional interactions between video frames and surrounding comments from multiple perspectives via metric learning, to collect a diversified and informative context for comment generation. We also propose an effective parameter orthogonalization technique to avoid excessive overlap of information learned from different perspectives. Results show that our approach outperforms existing methods in the ALVC task, achieving new state-of-the-art results

    Holographic Generative Memory: Neurally Inspired One-Shot Learning with Memory Augmented Neural Networks

    Get PDF
    Humans quickly parse and categorize stimuli by combining perceptual information and previously learned knowledge. We are capable of learning new information quickly with only a few observations, and sometimes even a single observation. This one-shot learning (OSL) capability is still very difficult to realize in machine learning models. Novelty is commonly thought to be the primary driver for OSL. However, neuroscience literature shows that biological OSL mechanisms are guided by uncertainty, rather than novelty, motivating us to explore this idea for machine learning. In this work, we investigate OSL for neural networks using more robust compositional knowledge representations and a biologically inspired uncertainty mechanism to modulate the rate of learning. We introduce several new neural network models that combine Holographic Reduced Representation (HRR) and Variational Autoencoders. Extending these new models culminates in the Holographic Generative Memory (HGMEM) model. HGMEM is a novel unsupervised memory augmented neural network. It offers solutions to many of the practical drawbacks associated with HRRs while also providing storage, recall, and generation of latent compositional knowledge representations. Uncertainty is measured as a native part of HGMEM operation by applying trained probabilistic dropout to fully-connected layers. During training, the learning rate is modulated using these uncertainty measurements in a manner inspired by our motivating neuroscience mechanism for OSL. Model performance is demonstrated on several image datasets with experiments that reflect our theoretical approach

    Social Media Based Deep Auto-Encoder Model for Clinical Recommendation

    Get PDF
    One of the most actively studied topics in modern medicine is the use of deep learning and patient clinical data to make medication and ADR recommendations. However, the clinical community still has some work to do in order to build a model that hybridises the recommendation system. As a social media learning based deep auto-encoder model for clinical recommendation, this research proposes a hybrid model that combines deep self-decoder with Top n similar co-patient information to produce a joint optimisation function (SAeCR). Implicit clinical information can be extracted using the network representation learning technique. Three experiments were conducted on two real-world social network data sets to assess the efficacy of the SAeCR model. As demonstrated by the experiments, the suggested model outperforms the other classification method on a larger and sparser data set. In addition, social network data can help doctors determine the nature of a patient's relationship with a co-patient. The SAeCR model is more effective since it incorporates insights from network representation learning and social theory

    Towards Evaluating Veracity of Textual Statements on the Web

    Get PDF
    The quality of digital information on the web has been disquieting due to the absence of careful checking. Consequently, a large volume of false textual information is being produced and disseminated with misstatements of facts. The potential negative influence on the public, especially in time-sensitive emergencies, is a growing concern. This concern has motivated this thesis to deal with the problem of veracity evaluation. In this thesis, we set out to develop machine learning models for the veracity evaluation of textual claims based on stance and user engagements. Such evaluation is achieved from three aspects: news stance detection engaged user replies in social media and the engagement dynamics. First of all, we study stance detection in the context of online news articles where a claim is predicted to be true if it is supported by the evidential articles. We propose to manifest a hierarchical structure among stance classes: the high-level aims at identifying relatedness, while the low-level aims at classifying, those identified as related, into the other three classes, i.e., agree, disagree, and discuss. This model disentangles the semantic difference of related/unrelated and the other three stances and helps address the class imbalance problem. Beyond news articles, user replies on social media platforms also contain stances and can infer claim veracity. Claims and user replies in social media are usually short and can be ambiguous; to deal with semantic ambiguity, we design a deep latent variable model with a latent distribution to allow multimodal semantic distribution. Also, marginalizing the latent distribution enables the model to be more robust in relatively smalls-sized datasets. Thirdly, we extend the above content-based models by tracking the dynamics of user engagement in misinformation propagation. To capture these dynamics, we formulate user engagements as a dynamic graph and extract its temporal evolution patterns and geometric features based on an attention-modified Temporal Point Process. This allows to forecast the cumulative number of engaged users and can be useful in assessing the threat level of an individual piece of misinformation. The ability to evaluate veracity and forecast the scale growth of engagement networks serves to practically assist the minimization of online false information’s negative impacts
    • …
    corecore