7 research outputs found

    Unsupervised Learning of Individuals and Categories from Images

    Get PDF
    Motivated by the existence of highly selective, sparsely firing cells observed in the human medial temporal lobe (MTL), we present an unsupervised method for learning and recognizing object categories from unlabeled images. In our model, a network of nonlinear neurons learns a sparse representation of its inputs through an unsupervised expectation-maximization process. We show that the application of this strategy to an invariant feature-based description of natural images leads to the development of units displaying sparse, invariant selectivity for particular individuals or image categories much like those observed in the MTL data

    Experience-driven formation of parts-based representations in a model of layered visual memory

    Get PDF
    Growing neuropsychological and neurophysiological evidence suggests that the visual cortex uses parts-based representations to encode, store and retrieve relevant objects. In such a scheme, objects are represented as a set of spatially distributed local features, or parts, arranged in stereotypical fashion. To encode the local appearance and to represent the relations between the constituent parts, there has to be an appropriate memory structure formed by previous experience with visual objects. Here, we propose a model how a hierarchical memory structure supporting efficient storage and rapid recall of parts-based representations can be established by an experience-driven process of self-organization. The process is based on the collaboration of slow bidirectional synaptic plasticity and homeostatic unit activity regulation, both running at the top of fast activity dynamics with winner-take-all character modulated by an oscillatory rhythm. These neural mechanisms lay down the basis for cooperation and competition between the distributed units and their synaptic connections. Choosing human face recognition as a test task, we show that, under the condition of open-ended, unsupervised incremental learning, the system is able to form memory traces for individual faces in a parts-based fashion. On a lower memory layer the synaptic structure is developed to represent local facial features and their interrelations, while the identities of different persons are captured explicitly on a higher layer. An additional property of the resulting representations is the sparseness of both the activity during the recall and the synaptic patterns comprising the memory traces.Comment: 34 pages, 12 Figures, 1 Table, published in Frontiers in Computational Neuroscience (Special Issue on Complex Systems Science and Brain Dynamics), http://www.frontiersin.org/neuroscience/computationalneuroscience/paper/10.3389/neuro.10/015.2009

    Signature Verification Using Siamese Convolutional Neural Networks

    Get PDF
    This research entails the processes undergone in building a Siamese Neural Network for Signature Verification. This Neural Network which uses two similar base neural networks as its underlying architecture was built, trained and evaluated in this project. The base networks were made up of two similar convolutional neural networks sharing the same weights during training. The architecture commonly known as the Siamese network helped reduce the amount of training data needed for its implementation and thus increased the model’s efficiency by 13%. The convolutional network was made up of three convolutional layers, three pooling layers and one fully connected layer onto which the final results were passed to the contrastive loss function for comparison. A threshold function determined if the signatures were forged or not. An accuracy of 78% initially achieved led to the tweaking and improvement of the model to achieve a better prediction accuracy of 93%

    Does level of processing affect the transition from unconscious to conscious perception?

    Get PDF
    Abstract Recently, Windey, Gevers, and Cleeremans (2013) proposed a level of processing (LoP) hypothesis claiming that the transition from unconscious to conscious perception is influenced by the level of processing imposed by task requirements. Here, we carried out two experiments to test the LoP hypothesis. In both, participants were asked to classify briefly presented pairs of letters as same or different, based either on the letters physical features (a low-level task), or on a semantic rule (a high-level task). Stimulus awareness was measured by means of the four-point Perceptual Awareness Scale (PAS). The results showed that low or moderate stimulus visibility was reported more frequently in the low-level task than in the high-level task, suggesting that the transition from unconscious to conscious perception is more gradual in the former than in the latter. Therefore, although alternative interpretations remain possible, the results of the present study fully support the LoP hypothesis

    Über die Selbstorganisation einer hierarchischen GedĂ€chtnisstruktur fĂŒr kompositionelle ObjektreprĂ€sentation im visuellen Kortex

    Get PDF
    At present, there is a huge lag between the artificial and the biological information processing systems in terms of their capability to learn. This lag could be certainly reduced by gaining more insight into the higher functions of the brain like learning and memory. For instance, primate visual cortex is thought to provide the long-term memory for the visual objects acquired by experience. The visual cortex handles effortlessly arbitrary complex objects by decomposing them rapidly into constituent components of much lower complexity along hierarchically organized visual pathways. How this processing architecture self-organizes into a memory domain that employs such compositional object representation by learning from experience remains to a large extent a riddle. The study presented here approaches this question by proposing a functional model of a self-organizing hierarchical memory network. The model is based on hypothetical neuronal mechanisms involved in cortical processing and adaptation. The network architecture comprises two consecutive layers of distributed, recurrently interconnected modules. Each module is identified with a localized cortical cluster of fine-scale excitatory subnetworks. A single module performs competitive unsupervised learning on the incoming afferent signals to form a suitable representation of the locally accessible input space. The network employs an operating scheme where ongoing processing is made of discrete successive fragments termed decision cycles, presumably identifiable with the fast gamma rhythms observed in the cortex. The cycles are synchronized across the distributed modules that produce highly sparse activity within each cycle by instantiating a local winner-take-all-like operation. Equipped with adaptive mechanisms of bidirectional synaptic plasticity and homeostatic activity regulation, the network is exposed to natural face images of different persons. The images are presented incrementally one per cycle to the lower network layer as a set of Gabor filter responses extracted from local facial landmarks. The images are presented without any person identity labels. In the course of unsupervised learning, the network creates simultaneously vocabularies of reusable local face appearance elements, captures relations between the elements by linking associatively those parts that encode the same face identity, develops the higher-order identity symbols for the memorized compositions and projects this information back onto the vocabularies in generative manner. This learning corresponds to the simultaneous formation of bottom-up, lateral and top-down synaptic connectivity within and between the network layers. In the mature connectivity state, the network holds thus full compositional description of the experienced faces in form of sparse memory traces that reside in the feed-forward and recurrent connectivity. Due to the generative nature of the established representation, the network is able to recreate the full compositional description of a memorized face in terms of all its constituent parts given only its higher-order identity symbol or a subset of its parts. In the test phase, the network successfully proves its ability to recognize identity and gender of the persons from alternative face views not shown before. An intriguing feature of the emerging memory network is its ability to self-generate activity spontaneously in absence of the external stimuli. In this sleep-like off-line mode, the network shows a self-sustaining replay of the memory content formed during the previous learning. Remarkably, the recognition performance is tremendously boosted after this off-line memory reprocessing. The performance boost is articulated stronger on those face views that deviate more from the original view shown during the learning. This indicates that the off-line memory reprocessing during the sleep-like state specifically improves the generalization capability of the memory network. The positive effect turns out to be surprisingly independent of synapse-specific plasticity, relying completely on the synapse-unspecific, homeostatic activity regulation across the memory network. The developed network demonstrates thus functionality not shown by any previous neuronal modeling approach. It forms and maintains a memory domain for compositional, generative object representation in unsupervised manner through experience with natural visual images, using both on- ("wake") and off-line ("sleep") learning regimes. This functionality offers a promising departure point for further studies, aiming for deeper insight into the learning mechanisms employed by the brain and their consequent implementation in the artificial adaptive systems for solving complex tasks not tractable so far.GegenwĂ€rtig besteht immer noch ein enormer Abstand zwischen der LernfĂ€higkeit von kĂŒnstlichen und biologischen Informationsverarbeitungssystemen. Dieser Abstand ließe sich durch eine bessere Einsicht in die höheren Funktionen des Gehirns wie Lernen und GedĂ€chtnis verringern. Im visuellen Kortex etwa werden die Objekte innerhalb kĂŒrzester Zeit entlang der hierarchischen Verarbeitungspfade in ihre Bestandteile zerlegt und so durch eine Komposition von Elementen niedrigerer KomplexitĂ€t dargestellt. Bereits bekannte Objekte werden so aus dem LangzeitgedĂ€chtnis abgerufen und wiedererkannt. Wie eine derartige kompositionell-hierarchische GedĂ€chtnisstruktur durch die visuelle Erfahrung zustande kommen kann, ist noch weitgehend ungeklĂ€rt. Um dieser Frage nachzugehen, wird hier ein funktionelles Modell eines lernfĂ€higen rekurrenten neuronalen Netzwerkes vorgestellt. Im Netzwerk werden neuronale Mechanismen implementiert, die der kortikalen Verarbeitung und PlastizitĂ€t zugrunde liegen. Die hierarchische Architektur des Netzwerkes besteht aus zwei nacheinander geschalteten Schichten, die jede eine Anzahl von verteilten, rekurrent vernetzten Modulen beherbergen. Ein Modul umfasst dabei mehrere funktionell separate Subnetzwerke. Jedes solches Modul ist imstande, aus den eintreffenden Signalen eine geeignete ReprĂ€sentation fĂŒr den lokalen Eingaberaum unĂŒberwacht zu lernen. Die fortlaufende Verarbeitung im Netzwerk setzt sich zusammen aus diskreten Fragmenten, genannt Entscheidungszyklen, die man mit den schnellen kortikalen Rhythmen im gamma-Frequenzbereich in Verbindung setzen kann. Die Zyklen sind synchronisiert zwischen den verteilten Modulen. Innerhalb eines Zyklus wird eine lokal umgrenzte winner-take-all-Ă€hnliche Operation in Modulen durchgefĂŒhrt. Die KompetitionsstĂ€rke wĂ€chst im Laufe des Zyklus an. Diese Operation aktiviert in AbhĂ€ngigkeit von den Eingabesignalen eine sehr kleine Anzahl von Einheiten und verstĂ€rkt sie auf Kosten der anderen, um den dargebotenen Reiz in der NetzwerkaktivitĂ€t abzubilden. Ausgestattet mit adaptiven Mechanismen der bidirektionalen synaptischen PlastizitĂ€t und der homöostatischen AktivitĂ€tsregulierung, erhĂ€lt das Netzwerk natĂŒrliche Gesichtsbilder von verschiedenen Personen dargeboten. Die Bilder werden der unteren Netzwerkschicht, je ein Bild pro Zyklus, als Ansammlung von Gaborfilterantworten aus lokalen Gesichtslandmarken zugefĂŒhrt, ohne Information ĂŒber die PersonenidentitĂ€t zur VerfĂŒgung zu stellen. Im Laufe der unĂŒberwachten Lernprozedur formt das Netzwerk die Verbindungsstruktur derart, dass die Gesichter aller dargebotenen Personen im Netzwerk in Form von dĂŒnn besiedelten GedĂ€chtnisspuren abgelegt werden. Hierzu werden gleichzeitig vorwĂ€rtsgerichtete (bottom-up) und rekurrente (lateral, top-down) synaptische Verbindungen innerhalb und zwischen den Schichten gelernt. Im reifen Verbindungszustand werden infolge dieses Lernens die einzelnen Gesichter als Komposition ihrer Bestandteile auf generative Art gespeichert. Dank der generativen Art der gelernten Struktur reichen schon allein das höhere IdentitĂ€tssymbol oder eine kleine Teilmenge von zugehörigen Gesichtselementen, um alle Bestandteile der gespeicherten Gesichter aus dem GedĂ€chtnis abzurufen. In der Testphase kann das Netzwerk erfolgreich sowohl die IdentitĂ€t als auch das Geschlecht von Personen aus vorher nicht gezeigten Gesichtsansichten erkennen. Eine bemerkenswerte Eigenschaft der entstandenen GedĂ€chtnisarchitektur ist ihre FĂ€higkeit, ohne Darbietung von externen Stimuli spontan AktivitĂ€tsmuster zu generieren und die im GedĂ€chtnis abgelegten Inhalte in diesem schlafĂ€hnlichen "off-line" Regime wiederzugeben. Interessanterweise ergibt sich aus der Schlafphase ein direkter Vorteil fĂŒr die GedĂ€chtnisfunktion. Dieser Vorteil macht sich durch eine drastisch verbesserte Erkennungsrate nach der Schlafphase bemerkbar, wenn das Netwerk mit den zuvor nicht dargebotenen Ansichten von den bereits bekannten Personen konfrontiert wird. Die Leistungsverbesserung nach der Schlafphase ist umso deutlicher, je stĂ€rker die Alternativansichten vom Original abweichen. Dieser positive Effekt ist zudem komplett unabhĂ€ngig von der synapsenspezifischen PlastizitĂ€t und kann allein durch die synapsenunspezifische, homöostatische Regulation der AktivitĂ€t im Netzwerk erklĂ€rt werden. Das entwickelte Netzwerk demonstriert so eine im Bereich der neuronalen Modellierung bisher nicht gezeigte FunktionalitĂ€t. Es kann unĂŒberwacht eine GedĂ€chtnisdomĂ€ne fĂŒr kompositionelle, generative ObjektreprĂ€sentation durch die Erfahrung mit natĂŒrlichen Bildern sowohl im reizgetriebenen, wachĂ€hnlichen Zustand als auch im reizabgekoppelten, schlafĂ€hnlichen Zustand formen und verwalten. Diese FunktionalitĂ€t bietet einen vielversprechenden Ausgangspunkt fĂŒr weitere Studien, die die neuronalen Lernmechanismen des Gehirns ins Visier nehmen und letztendlich deren konsequente Umsetzung in technischen, adaptiven Systemen anstreben

    Unsupervised Learning of Individuals and Categories from Images

    No full text
    corecore