3,848 research outputs found

    Unpaired Image Captioning via Scene Graph Alignments

    Full text link
    Most of current image captioning models heavily rely on paired image-caption datasets. However, getting large scale image-caption paired data is labor-intensive and time-consuming. In this paper, we present a scene graph-based approach for unpaired image captioning. Our framework comprises an image scene graph generator, a sentence scene graph generator, a scene graph encoder, and a sentence decoder. Specifically, we first train the scene graph encoder and the sentence decoder on the text modality. To align the scene graphs between images and sentences, we propose an unsupervised feature alignment method that maps the scene graph features from the image to the sentence modality. Experimental results show that our proposed model can generate quite promising results without using any image-caption training pairs, outperforming existing methods by a wide margin.Comment: Accepted in ICCV 201

    Unsupervised Cross-lingual Image Captioning

    Full text link
    Most recent image captioning works are conducted in English as the majority of image-caption datasets are in English. However, there are a large amount of non-native English speakers worldwide. Generating image captions in different languages is worth exploring. In this paper, we present a novel unsupervised method to generate image captions without using any caption corpus. Our method relies on 1) a cross-lingual auto-encoding, which learns the scene graph mapping function along with the scene graph encoders and sentence decoders on machine translation parallel corpora, and 2) an unsupervised feature mapping, which seeks to map the encoded scene graph features from image modality to sentence modality. By leveraging cross-lingual auto-encoding, cross-modal feature mapping, and adversarial learning, our method can learn an image captioner to generate captions in different languages. We verify the effectiveness of our proposed method on the Chinese image caption generation. The comparisons against several baseline methods demonstrate the effectiveness of our approach.Comment: 8 page

    Object-Centric Unsupervised Image Captioning

    Full text link
    Image captioning is a longstanding problem in the field of computer vision and natural language processing. To date, researchers have produced impressive state-of-the-art performance in the age of deep learning. Most of these state-of-the-art, however, requires large volume of annotated image-caption pairs in order to train their models. When given an image dataset of interests, practitioner needs to annotate the caption for each image in the training set and this process needs to happen for each newly collected image dataset. In this paper, we explore the task of unsupervised image captioning which utilizes unpaired images and texts to train the model so that the texts can come from different sources than the images. A main school of research on this topic that has been shown to be effective is to construct pairs from the images and texts in the training set according to their overlap of objects. Unlike in the supervised setting, these constructed pairings are however not guaranteed to have fully overlapping set of objects. Our work in this paper overcomes this by harvesting objects corresponding to a given sentence from the training set, even if they don't belong to the same image. When used as input to a transformer, such mixture of objects enables larger if not full object coverage, and when supervised by the corresponding sentence, produced results that outperform current state of the art unsupervised methods by a significant margin. Building upon this finding, we further show that (1) additional information on relationship between objects and attributes of objects also helps in boosting performance; and (2) our method also extends well to non-English image captioning, which usually suffers from a scarcer level of annotations. Our findings are supported by strong empirical results. Our code is available at https://github.com/zihangm/obj-centric-unsup-caption.Comment: ECCV 202

    Multi-Task Video Captioning with Video and Entailment Generation

    Full text link
    Video captioning, the task of describing the content of a video, has seen some promising improvements in recent years with sequence-to-sequence models, but accurately learning the temporal and logical dynamics involved in the task still remains a challenge, especially given the lack of sufficient annotated data. We improve video captioning by sharing knowledge with two related directed-generation tasks: a temporally-directed unsupervised video prediction task to learn richer context-aware video encoder representations, and a logically-directed language entailment generation task to learn better video-entailed caption decoder representations. For this, we present a many-to-many multi-task learning model that shares parameters across the encoders and decoders of the three tasks. We achieve significant improvements and the new state-of-the-art on several standard video captioning datasets using diverse automatic and human evaluations. We also show mutual multi-task improvements on the entailment generation task.Comment: ACL 2017 (14 pages w/ supplementary
    • …
    corecore