35,381 research outputs found

    Optical tomography: Image improvement using mixed projection of parallel and fan beam modes

    Get PDF
    Mixed parallel and fan beam projection is a technique used to increase the quality images. This research focuses on enhancing the image quality in optical tomography. Image quality can be defined by measuring the Peak Signal to Noise Ratio (PSNR) and Normalized Mean Square Error (NMSE) parameters. The findings of this research prove that by combining parallel and fan beam projection, the image quality can be increased by more than 10%in terms of its PSNR value and more than 100% in terms of its NMSE value compared to a single parallel beam

    Unsupervised morphological segmentation for images

    Get PDF
    This paper deals with a morphological approach to unsupervised image segmentation. The proposed technique relies on a multiscale Top-Down approach allowing a hierarchical processing of the data ranging from the most global scale to the most detailed one. At each scale, the algorithm consists of four steps: image simplification, feature extraction, contour localization and quality estimation. The main emphasis of this paper is to discuss the selection of a simplification filter for segmentation. Morphological filters based on reconstruction proved to be very efficient for this purpose. The resulting unsupervised algorithm is very robust and can deal with very different type of images.Peer ReviewedPostprint (published version

    A new unsupervised feature selection method for text clustering based on genetic algorithms

    Get PDF
    Nowadays a vast amount of textual information is collected and stored in various databases around the world, including the Internet as the largest database of all. This rapidly increasing growth of published text means that even the most avid reader cannot hope to keep up with all the reading in a field and consequently the nuggets of insight or new knowledge are at risk of languishing undiscovered in the literature. Text mining offers a solution to this problem by replacing or supplementing the human reader with automatic systems undeterred by the text explosion. It involves analyzing a large collection of documents to discover previously unknown information. Text clustering is one of the most important areas in text mining, which includes text preprocessing, dimension reduction by selecting some terms (features) and finally clustering using selected terms. Feature selection appears to be the most important step in the process. Conventional unsupervised feature selection methods define a measure of the discriminating power of terms to select proper terms from corpus. However up to now the valuation of terms in groups has not been investigated in reported works. In this paper a new and robust unsupervised feature selection approach is proposed that evaluates terms in groups. In addition a new Modified Term Variance measuring method is proposed for evaluating groups of terms. Furthermore a genetic based algorithm is designed and implemented for finding the most valuable groups of terms based on the new measure. These terms then will be utilized to generate the final feature vector for the clustering process . In order to evaluate and justify our approach the proposed method and also a conventional term variance method are implemented and tested using corpus collection Reuters-21578. For a more accurate comparison, methods have been tested on three corpuses and for each corpus clustering task has been done ten times and results are averaged. Results of comparing these two methods are very promising and show that our method produces better average accuracy and F1-measure than the conventional term variance method

    Nonparametric Feature Extraction from Dendrograms

    Full text link
    We propose feature extraction from dendrograms in a nonparametric way. The Minimax distance measures correspond to building a dendrogram with single linkage criterion, with defining specific forms of a level function and a distance function over that. Therefore, we extend this method to arbitrary dendrograms. We develop a generalized framework wherein different distance measures can be inferred from different types of dendrograms, level functions and distance functions. Via an appropriate embedding, we compute a vector-based representation of the inferred distances, in order to enable many numerical machine learning algorithms to employ such distances. Then, to address the model selection problem, we study the aggregation of different dendrogram-based distances respectively in solution space and in representation space in the spirit of deep representations. In the first approach, for example for the clustering problem, we build a graph with positive and negative edge weights according to the consistency of the clustering labels of different objects among different solutions, in the context of ensemble methods. Then, we use an efficient variant of correlation clustering to produce the final clusters. In the second approach, we investigate the sequential combination of different distances and features sequentially in the spirit of multi-layered architectures to obtain the final features. Finally, we demonstrate the effectiveness of our approach via several numerical studies
    corecore