1,422 research outputs found

    Differentially Private Mixture of Generative Neural Networks

    Get PDF
    Generative models are used in a wide range of applications building on large amounts of contextually rich information. Due to possible privacy violations of the individuals whose data is used to train these models, however, publishing or sharing generative models is not always viable. In this paper, we present a novel technique for privately releasing generative models and entire high-dimensional datasets produced by these models. We model the generator distribution of the training data with a mixture of kk generative neural networks. These are trained together and collectively learn the generator distribution of a dataset. Data is divided into kk clusters, using a novel differentially private kernel kk-means, then each cluster is given to separate generative neural networks, such as Restricted Boltzmann Machines or Variational Autoencoders, which are trained only on their own cluster using differentially private gradient descent. We evaluate our approach using the MNIST dataset, as well as call detail records and transit datasets, showing that it produces realistic synthetic samples, which can also be used to accurately compute arbitrary number of counting queries.Comment: A shorter version of this paper appeared at the 17th IEEE International Conference on Data Mining (ICDM 2017). This is the full version, published in IEEE Transactions on Knowledge and Data Engineering (TKDE

    Detection of Freezing of Gait using Unsupervised Convolutional Denoising Autoencoder

    Get PDF
    At the advanced stage of Parkinson’s disease, patients may suffer from ‘freezing of gait’ episodes: a debilitating condition wherein a patient’s “feet feel as though they are glued to the floor”. The objective, continuous monitoring of the gait of Parkinson’s disease patients with wearable devices has led to the development of many freezing of gait detection models involving the automatic cueing of a rhythmic auditory stimulus to shorten or prevent episodes. The use of thresholding and manually extracted features or feature engineering returned promising results. However, these approaches are subjective, time-consuming, and prone to error. Furthermore, their performance varied when faced with the different walking styles of Parkinson’s disease patients. Inspired by state-of-art deep learning techniques, this research aims to improve the detection model by proposing a feature learning deep denoising autoencoder to learn the salient characteristics of Parkinsonian gait data that is applicable to different walking styles for the elimination of manually handcrafted features. Even with the elimination of manually handcrafted features, a reduction in half of the data window sizes to 2s, and a significant dimensionality reduction of learned features, the detection model still managed to achieve 90.94% sensitivity and 67.04% specificity, which is comparable to the original Daphnet dataset research
    • 

    corecore