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Abstract—Over the past few years, an increasing number of
applications of generative models have emerged that rely on
large amounts of contextually rich information about individuals.
Owing to possible privacy violations of individuals whose data
is used to train these models, however, publishing or sharing
generative models is not always viable. In this paper, we introduce
a novel solution geared for privately releasing generative models
as well as entire high-dimensional datasets produced by these
models. We model the generator distribution of the training
data by a mixture of k generative neural networks. These
networks are trained together, and collectively learn the generator
distribution of the given dataset. More specifically, the data is first
divided into k clusters using a novel differential private kernel k-
means, then each cluster is given to a separate generative neural
network, such as Restricted Boltzmann Machines or Variational
Autoencoders, which are trained only on their own cluster using
differentially private gradient descent. As the components of
our model are neural networks, it can characterize complicated
data distributions, and applies to various types of data. We
evaluate our approach using the MNIST dataset and a large
Call Detail Records (CDR) dataset, and show that it produces
realistic synthetic samples, which can also be used to accurately
compute arbitrary number of counting queries.

I. INTRODUCTION

Generative models are an emerging area in machine learn-
ing, as recent advances enable the artificial generation of
various kinds of data, including images, videos, texts, music.
These models are used in a plethora of applications, such
as compression [41], denoising [5], inpainting [49], super-
resolution [26], semi-supervised learning [36], clustering [42],
and deep neural networks pretraining [18] in cases where
labeled data is expensive. The main goal of generative models
is to estimate the underlying distribution of the data and
then randomly generate realistic samples according to their
estimated distribution. The real distribution-generating data is
described with significantly fewer parameters than the number
of available samples from this distribution. This “enforced
compression” incentivizes the model to describe general fea-
tures of the training data. Ideally, such generalization should
prevent the model to learn any individual-specific information.
However, common learning algorithms do not provide such pri-
vacy guarantees and often overfit on specific training samples
by implicitly memorizing them. For example, model inversion
attacks [19] show how an adversary can use a trained model
to make predictions of unintended (sensitive) attributes used
as input to the model. Therefore, even if only internal model
parameters are released, they might still pose significant threats
to the privacy of individuals whose data is used for training.

In this paper, we present a novel approach supporting the
release of generative models while guaranteeing differential
privacy to individuals whose data are used to train these
models. Differential privacy gained momentum both in the
research community and in industry as it provides solid and

measurable privacy guarantees independent of any auxiliary
information of the adversary. While previous work explored
the use of differential privacy in different areas of machine
learning, including deep learning [1], [31], [38], the privacy
of generative models has fallen beyond the scope so far.

Generative models play an important role whenever entities
holding rich personal datasets are willing or compelled to
publish their data, e.g., aiming to monetize it or allow third par-
ties with the appropriate expertise to analyze it. For instance,
Call Detail Records (CDRs) collected by telecommunication
companies are not only useful to capture interactions between
customers, but also to understand their behavior, e.g., for
infectious disease spreading or migration patterns.1 As a result,
telcos are often interested in releasing them—more specifically,
rather than only releasing specific aggregate statistics, such as
certain counting queries or histograms, the ultimate goal is
to share an “anonymized” dataset, which replaces the original
data in any, perhaps privacy-sensitive, data analytics. Tradi-
tional anonymization models, such as k-anonymity, are known
to fail on high dimensional data, providing poor utility with
insufficient privacy guarantees [3]. A more promising approach
is to model the data generating distribution by training a
generative model on the original data, and only publish the
model along with its (differential private) parameters. Provided
with this privacy-preserving model, anybody can generate a
synthetic dataset resembling the original (training) data as
much as possible without violating differential privacy. The
intuition is that generative models have the potential to au-
tomatically learn the general features of a dataset including
complex regularities such as the subtle and valuable correlation
among different attributes.

In this work, we propose a generative model that is a
mixture of k generative artificial neural networks (ANNs).
These ANNs are trained together and collectively learn the
generator distribution of the given dataset. The data is first
divided into k clusters using a differential private clustering
approach, then each cluster is given to a separate genera-
tive neural network, such as Restricted Boltzmann Machines
(RBM) [20] or Variational Autoencoders (VAE) [24], which
are trained only on their own cluster using differential private
gradient descent. A high-level overview of our proposal is
shown in Fig. 1. As the components of our model are neural
networks, it can characterize complicated data distributions,
and potentially applies to various types of data.

Training distinct generative models on different partitions
of the dataset has several benefits. First, multiple models can
generate more accurate synthetic samples than a single model
trained on the whole dataset, as each ANN is trained only
on similar data samples. This prevents the mixture model
to generate unrealistic synthetic samples which may arise

1See, e.g., http://www.flowminder.org.
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Fig. 1: Overview of our differentially private generative model (DPGM).

from the implausible combination of multiple very different
clusters. This scenario is much more likely when the training is
perturbed to guarantee differential privacy. Second, each ANN
models a different component of the generator distribution,
and hence learn any specifics of a cluster faster than a single
model. In other words, a single model would need more
training epochs than a mixture of generative models to achieve
a comparably rich representation of the clusters. As each
iteration of the learning algorithm requires some perturbation
to guarantee privacy, a mixture model needs less noise which
eventually yields more accurate model parameters. Finally,
separate models provide larger control over synthetic data
generation; unlike a single model, our approach allows to
choose the component model and generate synthetic data only
from the chosen cluster.

For the data clustering, we use a novel differential private
kernel k-means algorithm. Kernel k-means [37] is a nonlinear
extension of the classical k-means algorithm and has been
shown to be equivalent with most other kernel based clustering
algorithms [15]. We first transform the data into a low-
dimensional space using random Fourier features [33], and
then apply a differential private version of Lloyd’s algorithm
[7] to find the clusters in the data. Random Fourier features
does not only make kernel k-means scalable for large datasets
[14], but, unlike standard k-means [7], require to add limited
amount of noise to guarantee privacy. Finally, when clusters
are created, a generative model is trained on each cluster using
differential private stochastic gradient descent (SGD), which
is a standard learning technique of many generative ANNs.
Previous works added constant amount of noise to the gradient
update in each SGD iteration to guarantee differential privacy.
Instead, we add noise to each gradient update which is tailored
to the data. We prove that our complete scheme provides
differential privacy by using the moment accountant method,
proposed in [1], which allows to quantify the privacy guarantee
of the composition of differential private mechanisms (e.g.,
noisy k-means iterations followed by noisy SGD iterations)
much more accurately than previous work [17].

Contributions. This paper makes the following contributions:

1) We propose a novel approach relying on generative neural
networks to model the data generating distribution of
various kinds of data. It provides differential privacy to

each individual in the training data, thus, it can be used to
effectively “anonymize” and share large high-dimensional
datasets with any potentially adversarial third party.

2) As part of our model, we design a novel differential
private clustering algorithm based on kernel k-means,
which efficiently clusters high-dimensional large datasets
with strong privacy guarantees.

3) We improve the differential private gradient descent al-
gorithm recently proposed by Abadi et al. [1] by using a
novel adaptive perturbation technique. We adaptively re-
compute the magnitude of the noise used to perturb the
gradient updates in each SGD iteration, which can lead to
significant accuracy improvement of the trained model.

4) We evaluate our approach on the MNIST dataset [25]
as well as a large Call Detail Records (CDR) dataset,
and show that our techniques provide realistic synthetic
samples which can also be used to accurately compute
arbitrary number of counting queries.

II. PRELIMINARIES

This section reviews concepts used throughout the rest of
the paper. We use the following notation: I denotes a universe
of items (e.g., set of visited locations, pixels in an image, etc.),
where |I| = m. A dataset D ⊆ 2I is the ensemble of all items
of some set of individuals. A record, which is a non-empty
subset of I, refers to all items of an individual from D and is
represented by a binary vector x of size m.

A. Restricted Boltzmann Machines (RBM)

A Restricted Boltzmann Machine (RBM) is a bipartite
undirected graphical model composed of m visible and n
invisible (or latent) binary random variables denoted by, re-
spectively, v = (v1, v2, . . . , vm) and h = (h1, h2, . . . , hn).
In our case, visible variables represent the attributes of D
and their values are composed of records from D. Hidden
variables capture the dependencies between different visible
variables (i.e., dependencies between the items in I). As the
above model is a Markov random field with strictly positive
joint probability distribution p over the model variables, p can
be represented as a Boltzmann distribution defined as:

p(v,h) =
1

Z
e−E(v,h) (1)
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where Z =
∑

v,h e
−E(v,h) is the partition function, E(v,h)

the energy function, i.e., E(v,h) = −
∑n
i=1

∑m
j=1 vijhivj −∑m

j=1 bjvj −
∑n
i=1 cihi, with wij being real valued weights

describing the inter-dependency between vj and hi, and bj , ci
real valued bias terms associated with the jth visible and ith
hidden units, respectively. Using matrix notation, E(v,h) =
−v>Wh − b>v − c>h, where W = JwKi,j , c = [c]i, and
b = [b]j . The goal is to approximate the true data generating
distribution with the Boltzmann distribution p, given in Eq. (1).
To this end, we train the RBM model on dataset D to compute
parameters W, c,b.

There are a few algorithms to train RBMs, that approximate
or relate to gradient descent on the log-likelihood of the data.
If θ = (W,b, c), then we want to maximize the likelihood
function L(θ|D) =

∏
x∈D p(x|θ) given dataset D, where

x ∈ {0, 1}m is a record from D and p is the Boltzmann
distribution defined in Eq. (1). A numerical approximation,
gradient descent, is used where the model parameters θ are
iteratively updated using D and the gradient of the log-
likelihood function as: θt+1 = θt+η

∂ logL(θt|D)
∂θt

, with η ∈ R+

being the learning rate. The model parameters are updated
until the log-likelihood converges. In this paper, we employ
Persistent Contrastive Divergence [43].

B. Variational Autoencoder (VAE)

A variational autoencoder [24] consists of two neural
networks (an encoder and a decoder), and a loss function.
The encoder compresses data into a latent space (z) while the
decoder reconstructs the data given the hidden representation.
Let x be a random vector of m observed variables, which are
either discrete or continuous. Let z be a random vector of n la-
tent continuous variables. The probability distribution between
x and z assumes the form pθ(x, z) = pθ(z)pθ(x | z), where
θ indicates that p is parametrized by θ. Also, let qφ(z | x)
be a recognition model whose goal is to approximate the true
and intractable posterior distribution pθ(z | x). We can then
define a lower-bound on the log-likelihood of x as follows:
L(x) = −DKL(qφ(z | x) || pθ(z)) + Eqφ(z|x)[log pθ(x | z)].
The first term pushes qφ(z | x) to be similar to pθ(z) ensuring
that, while training, VAE learns a decoder that, at generation
time, will be able to invert samples from the prior distribution
such they look just like the training data. The second term
can be seen as a form of reconstruction cost, and needs to be
approximated by sampling from qφ(z | x).

In VAEs, we propagate the gradient signal through the sam-
pling process and through qφ(z | x) using the reparametriza-
tion trick. This is done by making z be a deterministic function
of φ and some noise ε, i.e., z = f(φ, ε). For instance, sampling
from a normal distribution can be done like z = µ + σε,
where ε ∼ N (0, I). The reparametrization trick can be viewed
as an efficient way of adapting qφ(z | x) to help improve
the reconstruction. We train the variational autoencoder using
stochastic gradient descent to optimize the loss with respect to
the parameters of the encoder and decoder θ and φ.

C. Kernel k-means with Random Features

Given a set of samples D = {x1,x2, . . . ,xN}, k-means
linearly separates D into k clusters C1, C2, . . . , Ck (k ≤ N)
so that it aims to minimize the error

∑k
i=1

∑
x∈Ci ||x− ci||22,

where ci =
∑

x∈Ci x/|Ci| is the centroid of cluster Ci.
Although this problem is NP-hard, there are efficient heuristic
algorithms (such as Lloyd’s algorithm) which iteratively refines
clustering and converge quickly to a local optimum. However,
k-means can provide very inaccurate clustering of linearly
non-separable data, which are very common in practice. To
overcome this shortcoming, kernel k-means [37] first maps
samples from input space to a higher dimensional feature space
through a non-linear transformation Φ, then applies standard
k-means on {Φ(x1),Φ(x2), . . . ,Φ(xN )}. Hence, kernel k-
means provides linear separators of clusters in feature space
which correspond to non-linear separators in input space.
Kernel k-means iteratively computes ||Φ(x) − c′i||22 for each
sample x to decide which cluster a sample belongs to,
where c′i =

∑
x∈Ci Φ(x)/|Ci|. To do so, the inner product

〈Φ(x),Φ(y)〉 must be known for all x,y ∈ D. Since Φ(·)
is hard to explicitly compute due to its large, often infinite
dimension, the kernel trick is applied; 〈Φ(x),Φ(y)〉 = κ(x,y),
where κ is an easily computable kernel function. Still, this
approach requires evaluating κ for all pairs of samples and
store the results, which is not scalable for large datasets.

To make kernel k-means scalable, the kernel function can
be approximated with low-dimensional explicit feature maps.
In particular, the samples are first mapped to a low-dimensional
Euclidean inner product space using an explicit random feature
map z : Rm → Rd so that 〈Φ(x),Φ(y)〉 ≈ 〈z(x), z(y)〉. Then,
standard k-means is applied on the low-dimensional mapped
samples {z(x1), z(x2), . . . , z(xN )} in Rd to approximate the
result of the kernel k-means with implicit feature map Φ and
kernel κ. Although the approximation error decreases as d
increases, quite accurate approximations can be obtained even
for d < m. Explicit nonlinear feature maps have already been
proposed for shift-invariant kernels (e.g., generalized RBF
kernels) [44] as well as polynomial kernels [32] among others.

D. Differential Privacy (DP)

Differential privacy allows a party to privately release a
dataset: using perturbation mechanisms, a function of an input
dataset is modified, so that any information which can discrim-
inate a record from the rest of the dataset is bounded [16].

Definition 1 (Privacy loss): Let A be a privacy mech-
anism which assigns a value Range(A) to a dataset D.
The privacy loss of A with datasets D and D′ at output
O ∈ Range(A) is a random variable P(A, D,D′, O) =

log Pr[A(D)=O]
Pr[A(D′)=O] where the probability is taken on the random-

ness of A.
Definition 2 ((ε, δ)-Differential Privacy [16]): A privacy

mechanism A guarantees (ε, δ)-differential privacy if for
any database D and D′, differing on at most one record,
and for any possible output S ⊆ Range(A), Pr[A(D) ∈
S] ≤ eε × Pr[A(D′) ∈ S] + δ or, equivalently,
PrO∼A(D)[P(A, D,D′, O) > ε] ≤ δ.

This definition guarantees that every output of algorithm
A is almost equally likely (up to ε) on datasets differing in
a single record except with probability at most δ, preferably
smaller than 1/|D|. Intuitively, this guarantees that an adver-
sary, provided with the output of A, can draw almost the same
conclusions about any individual no matter if this individual
is included in the input of A or not [16].
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Differential privacy maintains composition, i.e., if each
of A1, . . . ,Ak is (ε, δ)-DP, then their k-fold adaptive com-
position2 is (kε, kδ)-DP. However, a tighter upper bound
can be derived on the privacy loss of the composite us-
ing a generic Chernoff bound. In particular, it follows
from Markov’s inequality that Pr[P(A, D,D′, O) ≥ ε] ≤
E[exp(λP(A, D,D′, O))]/ exp(λε) for any output O ∈
Range(A) and λ > 0. This implies that A is (ε, δ)-DP
(see Definition 2) with δ = minλ exp(αA(λ) − λε), where
αA(λ) = maxD,D′ logEO∼A(D)[exp(λP(A, D,D′, O))] is
the log of the moment generating function of the privacy loss.

Theorem 1 (Moments accountant [1]): Let αAi(λ) be
maxD,D′ logEO∼A(D)[exp(λP(A, D,D′, O))] and A1:k the
k-fold adaptive composition of A1,A2, . . . ,Ak. It holds:

1) αA1:k
(λ) ≤

∑k
i=1 αAi(λ)

2) A1:k is (ε,minλ exp(
∑k
i=1 αAi(λ)−λε))-differential pri-

vate

where A1,A2, . . . ,Ak use independent coin tosses.

There are a few ways to achieve DP, including the Gaussian
mechanism [16]. A fundamental concept of all of them is the
global sensitivity of a function [16].

Definition 3 (Global Lp-sensitivity): For any function f :
D → Rd, the Lp-sensitivity of f is ∆pf = maxD,D′ ||f(D)−
f(D′)||p, for all D,D′ differing in at most one record, where
|| · ||p denotes the Lp-norm.

Gaussian Mechanism. The Gaussian Mechanism (GM) [16]
consists of adding Gaussian noise to the true output of a func-
tion. In particular, for any function f : D → Rd, GM is defined
as G(D) = f(D)+[N1(0,∆2f ·σ), . . . ,Nd(0,∆2f ·σ)], where
Ni(0,∆2f · σ) are i.i.d. normal random variables with zero
mean and variance (∆2f · σ)2.

Lemma 1: αG(λ) = (λ2 + λ)/4σ2

Proof: See Appendix A.

Given αG(λ), the exact privacy cost ε (or δ) of the k-fold
adaptive composition of G is computed based on Theorem 1.

III. DPGM: DIFFERENTIALLY PRIVATE GENERATIVE
MODEL

In this section, we present our Differential Private Gen-
erative Model (DPGM), which is described in Alg. 1 and
also illustrated in Fig. 1. The dataset D is first partitioned
into k clusters, denoted by D̂1, D̂2, . . . , D̂k, which are in
turn used to train k distinct generative models, where the
parameters of the resulting models are denoted, respectively, by
θ1, θ2, . . . , θk. Data samples are similar within a cluster, thus,
generative models simultaneously trained on each partition
converge faster than a single model trained on the whole
dataset D. As θ1, θ2, . . . , θk are learnt using perturbed gradient
descent, they can be released and used to generate synthetic
data using the k generative models.

Our learning approach involves two main steps: (1) records
in D are clustered in a random feature space using differen-
tial private kernel k-means (see Section III-A) into clusters

2The output of Ai−1 is used as an input of Ai, i.e., their executions are not
necessarily independent except their coin tosses.

Algorithm 1: DPGM: Differentially Private Generative Model

Input: Dataset: D = {x1, . . . ,xN}, # of custers: k, k-means
iterations: TK, SGD iterations: TS , Noise scales: σC , σK, σS

1 Cluster data records in D:
{D̂1, D̂2, . . . , D̂k} = DPkmeans(k, TK, D, σC , σK)

2 Initialize θ1, θ2, . . . , θk randomly
3 for t ∈ [TS ] do
4 Select (D̂s, θs) ∈ {(D̂1, θ1), . . . , (D̂k, θk)} with probability

|D̂s|/|D|
5 Update parameters of model θs:
6 θs = DP-SGD(D̂s, θs, σC , σS) //see Alg. 4

Output: θ1, θ2, . . . , θk

Algorithm 2: DPkmeans: Private kernel k-means with Random Fourier
Features

Input: Data: D = {x1, . . . ,xN}, Cluster number: k, Iterations: T ,
Feature number: d, Kernel function: κ, Noise scales: σC , σK

1 Compute Features: wi ∼iid p(w) for all 1 ≤ i ≤ d, where
p(w) = 1

2π

∫
Rm exp(−j〈w,x〉)κ(w)dx

2 bi ∼iid U [0, 2π] for all 1 ≤ i ≤ d
3 D′ ← {z(x1), . . . , z(xN )}, where

z(x) =
√

2/d[cos(〈w1,x〉+ b1), . . . , cos(〈wd,x〉+ bd)]
4 Clip Features: Cs ← DPNorm(D′, σC) //see Alg. 3
5 D̂′ ← {ẑ(x1), . . . , ẑ(xN )}, where

ẑ(xi) = z(xi)/max (1, ||z(xi)||2/Cs)
6 Initialize cluster centers ĉ1, ĉ2, . . . , ĉk on public data
7 for t ∈ [T ] do
8 for i ∈ [k] do
9 Assign: D̂i ← {x : arg minj ||ẑ(x)− ĉj ||22 = i}

10 Update: n̂i ← |D̂i|+N (0,
√

2σK)

11 ĉi ← 1/n̂i

(∑
x∈D̂i

ẑ(x) +N (0,
√

2CsσKI)
)

Output: D̂1, D̂2, . . . , D̂k

D̂1, D̂2, . . . , D̂k; (2) a generative model (e.g., RBM [20] or
VAE [24]) with parameter θi is trained on cluster D̂i (see
Section III-B) using differential private gradient descent, where
the training data are composed of the records of D̂i. In each
SGD iteration (Line 4-6 in Alg. 1), a model θs is chosen
uniformly at random along with its corresponding training data
D̂s, and a single SGD iteration is performed to update θs using
a random sample S of D̂s with size L (Line 7 in Alg. 1). The
output of our algorithm are composed of the parameters of
the trained generative models, i.e., θ1, θ2, . . . , θk. Finally, these
privately trained k models can be used to generate synthetic
records which resemble the original ones, i.e., preserve their
general characteristics that are not specific to any single
individual (up to ε and δ which is computed in Section III-D).

A. Private kernel k-means

We now discuss our private kernel k-means algorithm,
presented in Alg. 2. It first transforms the data D into a low-
dimensional representation D′ = {z(x1), . . . , z(xN )} using
randomized Fourier feature map z : Rm → Rd [33], and then
applies standard differential private k-means [7] on these low-
dimensional features.

Specifically, z : Rm → Rd is defined as:

z(x) =

√
2

d
[cos(〈w1,x〉+ b1), . . . , cos(〈wd,x〉+ bd)] (2)

where each wi ∈ Rm is drawn independently from p(w) =
1
2π

∫
Rm exp(−j〈w,x〉)κ(w)dx, i.e., p(w) is the Fourier trans-
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form of kernel function κ, and bi ∈ R is chosen from [0, 2π)
uniformly at random. In particular, Bochner’s theorem implies
that p(w) is a valid probability density function, if κ is
continuous, positive-definite, and shift-invariant kernel. Hence,
κ(x,y) = κ(x − y) =

∫
Rm exp(j〈w,x − y〉)p(w)dw =

Ew,b[〈
√

2 cos(〈w,x〉 + b),
√

2 cos(〈w,y〉 + b)〉], where the
expectation is approximated with the empirical mean over d
randomly chosen values of w and b [33].

Standard DP k-means [7] releases the noisy cluster centers
which are computed iteratively using a noisy variant of Lloyd’s
algorithm; in each iteration, gaussian noise with scale

√
2σK

is added to the size of all clusters, and with scale
√

2σKCs
to the sum of all cluster members in each cluster. These
noisy values are used to compute the noisy cluster centers
{ĉ1, . . . , ĉk}3. To determine the scale of the gaussian noise,
the L2-sensitivity of the cluster size and that of the sum of
norms must be known within each cluster. Although the L2-
sensitivity of the set of cluster size is always

√
2 (a single

record can change the size of at most 2 clusters), such a
priori bound does not exist for the L2-norm of the feature
vectors in general. Hence, we need to clip all feature vectors
in L2-norm before applying standard DP k-means, where the
clipping threshold Cs should be set to the average norm
of the feature vectors (i.e., (1/N)

∑
x∈D ||z(xi)||2) and is

approximated by Alg. 3 (see Section III-C). Replacing z(xi)
with ẑ(xi) = z(xi)/max (1, ||z(xi)||2/Cs) guarantees that all
feature vectors are kept as long as their norm is less then Cs,
otherwise they are scaled down to have a norm of Cs.

Nevertheless, for some kernel functions, such as the Radial
Basis Function (RBF), a small norm bound Cs can be com-
puted analytically – see Theorem 2. Interestingly, this bound
is constant for any input data and feature size independently
of the width γ of the RBF kernel. Therefore, as opposed to
standard k-means [7], our approach can detect linearly non-
separable clusters, and, used with RBF kernel, add constant
noise to feature vectors independently of their size d.

Theorem 2: If κ(x,y) = exp(−γ||x − y||2), then
E[||z(x)||2] ≤ 1 for any x ∈ {0, 1}∗ and γ, where the
expectation is taken on the randomness of z.

Proof: See Appendix B.

Therefore, DP kernel k-means has two main advantages
over standard DP k-means [7]. First, kernel k-means can find
linearly non-separable clusters. Second, if it is used with RBF
kernel, the added noise is independent of the L2-norm of the
data records. As we show in Section IV, this can lead to
much larger clustering accuracy especially for stringent privacy
requirements (i.e., for ε < 0.5) even for large dimensional data.

B. Private Stochastic Gradient Descent

We now present our private SGD technique—Alg. 4 out-
lines a single SGD iteration. Our starting point is the work
by Abadi et al. [1]: similar to theirs, our solution provides
differential privacy to the training data by first clipping the

3At the beginning, we initialize the clusters centers to random records drawn
from publicly available non-sensitive data which are generated by the same
distribution as the sensitive data. We only need k representative samples, and
such public datasets already exist for images, location data, or even medical
data.

Algorithm 3: DPNorm: Private Approximation of Average Norm

Input: Data: S = {xc1 , . . . ,xc|S|}, Noise scale: σC , Max. norm
bound: Cmax, Max. number of discretized norm bounds: w

1 Cj ← j · Cmax/w for 0 ≤ j ≤ w
2 Cs ← arg maxj≥1{tj +N (0,

√
2σC)}, where

tj = |{x ∈ S : Cj−1 < ||g(x)||2 ≤ Cj}|
Output: Cs

Algorithm 4: Private Stochastic Gradient Descent

Input: Data: D̂, Model parameters: weights and biases θ, Noise
scales: σC , σS , Loss function: L(θ) = 1

|D̂|
∑
i L(θ,xci ),

Learning rate: η, Batch size: L
1 Sampling: Take a random sample S = {xc1 , . . . ,xc|S|} of D̂ with

sampling probability q = L/|D̂|
2 Compute Gradient: For each xci ∈ S, compute
g(xci )← ∇θL(θ,xci )

3 Clip Gradient: S′ ← {g(xci ), . . . ,g(xc|S| )}
4 Cs ← DPNorm(S′, σC) //see Alg. 3

5 ; ĝ(xci )← g(xci )/max
(

1,
||g(xci )||2

Cs

)
6 Add noise: g̃← 1

L

(∑|S|
i=1 ĝ(xci ) +N (0,

√
2σSCsI)

)
7 Descent: θ ← θ − ηg̃

Output: θ

norm of the gradient update of each record, and then perturbing
these clipped gradients by the Gaussian mechanism. However,
we achieve better accuracy as the clipping threshold is selected
adaptively in each SGD iteration. In particular, in each SGD
iteration, we also (1) compute the gradient of the loss function
L on a random subset S of records (denoted as “batch”)
in Line 2 of Alg. 4, (2) clip the L2 norm of the gradient
of each record in S to have a norm at most Cs (in Line
3), (3) add gaussian noise N (0,

√
2σSCsI) to the average

of these clipped gradient updates (Line 6), and finally (4)
perform the descent step (Line 7). At the end, the updated
model parameters θ are returned. A complete training epoch
on the whole dataset D consists of (|D|/L) SGD iterations,
which are required to process all records in every cluster on
average. Indeed, each record in a cluster D̂s is selected with
probability (|D̂s|/

∑k
i=1 |D̂i|) × (L/||D̂s|) = L/|D|, where∑k

i=1 |D̂i| = |D|. Notice that the L2-sensitivity of
∑
i ĝ(xi)

is
√

2Cs, as the norm of every ĝ(xi) is at most Cs, and one
record can change at most two clusters.

C. Adaptive selection of the norm bound

Both our private SGD method (in Line 4 of Alg. 4) and
private kernel k-means (in Line 4 of Alg. 2) require the
differential private computation of the average L2-norm in
a given set of records, which is then used as the clipping
threshold Cs in both algorithms. For this purpose, these
algorithms invoke DPNorm which is detailed in Alg. 3. In
fact, our SGD technique differs from the original private SGD
method [1] in the selection of the norm bound Cs (in Line
3-5 of Alg. 4). In the original approach [1], Cs is provided
as input to the private SGD and no guideline is given how
to compute its value without violating differential privacy.
Moreover, the selection of the norm bound Cs has a large
impact on the performance of the private SGD in general. If Cs
is too small, there will be slow convergence. Conversely, if it is
too large, unnecessarily large gaussian noise will be introduced
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on the gradient update. Intuitively, Cs should be adjusted so
that ||g(xci)||2 ≈ Cs for each record xci . This guarantees
that the contribution of xci to g̃ is maximally preserved
with the smallest relative error. Hence, instead of fixing Cs
for the whole training, we aim to compute Cs adaptively
for each batch as Cs = (1/L)

∑
i ||g(xci)||2. This adaptive

approach would ensure fast convergence with small error,
and also adapt to the gradient update of every batch. Indeed,
SGD is iterative, so the gradient update g̃ of a batch/iteration
depends on that of the previous batch/iteration, which means
that (1/L)

∑
i ||g(xci)||2 is different for each batch.

In DPNorm (see Alg. 2), the computation of the average
norm in a set S of records is randomized to guarantee
privacy. A naive solution is to add Gaussian noise to this
average, i.e., Cs = (1/|S|)

∑
x∈S ||x||2 + N (0, s · σ′/L),

where s ≥ maxx∈S ||x||2. However, maxx∈S ||x||2 is data-
dependent and can be too large if there are outliers in S.
Instead, we approximate Cs such that its value is close to the
norm of many records in S, i.e., it is a good approximator of
(1/L)

∑
x∈S ||x||2. In particular, we discretize the domain of

Cs by dividing (0, Cmax) uniformly into w intervals (Line 1
of Alg. 3). Then, we use the Gaussian mechanism (Line 2 of
Alg. 3) to select among the upper bounds Cj = jCmax/w
of these intervals (0 ≤ j ≤ w), which will be the norm
bound Cs for S. Specifically, we build a histogram where
bin i equals the number of records whose gradient norm falls
within (Ci−1, Ci]. Then, the (noisy) mode of this histogram is
computed by adding independent gaussian noise N (0,

√
2σC)

to each count, and selecting the bin which has the greatest
noisy count. Note that the L2-sensitivity of the histogram is
always bounded by

√
2 no matter how large maxx∈S ||x||2 is.

D. Privacy Analysis

DPGM is the composition of private kernel k-means and
private SGD. Let K denote the private kernel k-means algo-
rithm whose output is the noisy mapped cluster centers after
TK clustering iterations (i.e., K(D) = {ĉ1, . . . , ĉk}). K is
composed of (1) selecting the norm bound using DPNorm
and (2) TK iterations of k-means. Let G1 denote the gaussian
mechanism which selects the norm bound as per Section III-C.
A single k-means iteration is the 2-fold adaptive composition
of two gaussian mechanisms G2 and G3 (in Line 10-11 of
Alg. 2), where G2 perturbs the cluster size (Line 10), while
G3 adds noise to the sum of Fourier features of the cluster
members (Line 11). The L2-sensitivity of the size of every
clusters is

√
2, as changing a single record can change the

size of at most two clusters. Similarly, the L2-sensitivity of
the sum of Fourier features of the cluster members is

√
2Cs

as it is detailed in Section III-A. Since K is the TK-fold
adaptive composition of TK clustering iterations, it follows
from Theorem 1 and Lemma 1 that

αK(λ) ≤ TK(αG1(λ) + αG2(λ) + αG3(λ))

≤ TK(λ2 + λ)(1/4σ2
C + 1/2σ2

K) (3)

Note that if the RBF kernel is used in kernel k-means (i.e.,
κ(x,y) = exp(−γ||x−y||2) in Alg. 2), then αG1(λ) = 0 and
αK(λ) ≤ TK(λ2 + λ)/2σ2

K since Cs = 1 is a priori bound on
the L2-norm of every feature vector (cf. Theorem 2).

Let Sk denote the private SGD algorithm whose output
is the noisy model parameters after TS SGD iterations (i.e.,

S(D) = {θ1, . . . , θk})4, and the input is the cluster centers
{ĉ1, . . . , ĉk} provided by K. At the very beginning, S assigns
each record to its closest cluster center in feature space to
obtain k non-overlapping training sets (this is implemented by
the last iteration in Alg. 2). Changing a single record alters
at most a single record in at most 2 training sets (clusters),
as the modified record can be moved from one to another
training set. Since all training sets are non-overlapping, each
record is selected in an SGD iteration with probability q =
(|D̂s|/|D|)×(L/||D̂s|) = L/|D| for any k. Moreover, each of
the k models are trained independently, so αSk(λ) ≤ αS1(λ),
where S1 denotes the case when k = 1 (i.e., a single model is
trained on the whole dataset D during TS epochs).

The complete SGD training of S1 (Line 3-6 in Alg. 1) is
the TS -fold adaptive composition of TS SGD iterations, where
we jointly use two perturbation mechanisms G4 and G5 in each
iteration; G4 selects a batch uniformly at random and computes
the norm bound Cs (Line 4 of Alg. 4) for this batch, then
G5 selects the same batch and perturbs its gradient updates
with gaussian noise whose magnitude is calibrated to Cs
(Line 6 of Alg. 4). The composition of these two mechanisms
uses independent source of randomness through different SGD
iterations, hence we can use Theorem 1 to quantify the overall
privacy. However, within a single iteration, G4 and G5 do not
use independent source of randomness, although both mecha-
nisms use independent gaussian noise but select the same batch
S from the dataset. The following theorem computes αS1(λ),
and is a generalization of Theorem 1 when the component
mechanisms can use dependent source of randomness.

Theorem 3 (General Moments Accountant): Let αAi(λ)
be maxD,D′ logEO∼A(D)[exp(λP(A, D,D′, O))], and A1:k

be the k-fold adaptive composition of A1,A2, . . . ,Ak. Then:
1) αA1:k

(λ) ≤
∑k
i=1 jiαAi(λ/ji)

2) A1:k is (ε,minλ exp(
∑k
i=1 ji · αAi(λ/ji)− λε))-DP

for any
∑k
i=1 ji = 1, where ji > 0 and A1,A2, . . . ,Ak can

use dependent coin tosses. (The proof is in Appendix C.)

Therefore, it follows from Theorem 1 and 3 that:

αSk(λ) ≤ αS1(λ)

≤ TS · min
j1,j2∈(0,1):j1+j2=1

(j1αG4(λ/j1) + j2αG5(λ/j2))

(4)
We compute αG4(λ) and αG5(λ) similarly to [1]. That is, let

µ0(x|σ) = g(x|σ) and µ1(x|σ) = (1−q)g(x|σ)+qg(x−1|σ),
where q = L/|D| is the probability that a record is included in
the batch S of an SGD iteration and g(x|σ) = 1√

2πσ2
e−x

2/2σ2

.
Then, it holds:

αG3(λ) = log max(E1(λ, σC), E2(λ, σC))

αG4(λ) = log max(E1(λ, σS), E2(λ, σS))

where
E1(λ, σ) =

∫ ∞
−∞

µ0(x|σ) ·
(
µ0(x|σ)

µ1(x|σ)

)λ
dx

E2(λ, σ) =

∫ ∞
−∞

µ1(x|σ) ·
(
µ1(x|σ)

µ0(x|σ)

)λ
dx

The next theorem immediately follows from Theorem 1 and
Theorem 3.
4Computed in the last iteration of Alg. 2.
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Dataset |D| |I| = m max ||x||1 avg ||x||1
MNIST 60,000 784 311.69 102.44
CDR 4,427,486 1303 422 11.42

TABLE I: Datasets.

Theorem 4: DPGM (Alg. 1) is
(minλ (αK(λ) + αSk(λ)− log δ) /λ, δ)-differential private
for any fixed δ, where αK(λ) and αSk(λ) are defined in Eq. 3
and 4.

In this paper, we use the convention that δ =
1/|D|, and compute ε numerically. Specifically, ε =
minλ (αK(λ) + αSk(λ)− log δ) /λ is minimized over integer
values of λ, where λ is usually no more than 100 in practice.
The computation of αG3 and αG4 are performed through
numerical integration, and it suffices to consider 10 different
values of j1 and j2 in order to have a sufficiently small value
of j1αG3(λ/`1)+j2αG4(λ/`2) in Eq. 4. Therefore, in practice,
given δ, an accurate approximation of ε can be obtained with
negligible overhead.

IV. EXPERIMENTAL EVALUATION

In this section, we compute, numerically, the exact privacy
guarantees of DPGM (presented in Alg. 1). Furthermore, we
discuss the results of an experimental evaluation assessing its
performance in terms of the quality of generated samples as
well as counting (linear) queries computed on the synthetic
data. Counting queries provide the basis of many data analysis
and learning algorithms (see [7] for examples). Finally, we
measure the accuracy of our private kernel k-means described
in Alg. 2.

Datasets. We use two datasets for our evaluations, summarized
in Table I. MNIST is a public image dataset [25], which
includes 28 × 28-pixel images of hand-written digits, a total
of 60, 000 samples. We vectorize and binarize each image
to have binary data records with size m = 784. Throughout
our experiments, we assume that each of the 60, 000 records
originates from a different person. We also use CDR (Call
Detail Record) data given to us by a cell phone operator.
For this dataset, I represents the set of cell towers of the
operator in a large city with |D| = 4, 427, 486 customers. We
use a simplified version of the dataset, which contains the set
of visited cell towers per customer within the administrative
region of the city over 128.1 km2, where the total number of
towers is m = 1, 303. The average number of individuals per
tower over this period was 38, 817 with a standard deviation
of 50, 911.

Experimental Settings. For the RBM, the number of hidden
units is set to 200 and the learning rate is 0.01. The biases b
and c are initialized to zeros, while the initial values of the
weights W are randomly chosen from a zero-mean Gaussian
with a standard deviation of 0.01. For the VAE, the number
of hidden units is set to 200 with single layer encoder and
decoder, and a bi-dimensional latent space. We also used
the rectifier activation function (ReLu) for all neurons and
the Adam optimizer [23]. For our purposes, it is enough to
compute α(λ) for λ ≤ 32. We set the number of the private k-
means iterations to 20 and δ = 1/|D|. We also set Cmax = 10,
w = 100 (in Alg. 3), as different values of these parameters
do not have a strong impact on the results.

We implement DPGM with both RBM (in C++) and VAE
(in Python). Experiments are performed on a workstation
running Ubuntu Server 16.04 LTS, with a 3.4 GHz CPU i7-
6800K, 32GB RAM, and NVIDIA Titan X GPU card. Source
code is available upon request.

Privacy guarantees. We report the privacy loss ε of DPGM
(Alg. 1) in Fig. 2 for the MNIST dataset. Recall that ε is
computed from the noise level σC , σK, and σG , the sampling
probability q, the number of k-means iterations TK, and the
number of SGD iterations TS using Theorem 4. Fig. 2 shows
ε depending on the number of SGD training epochs, where
one epoch consists of d1/qe SGD iterations. In Fig. 2a–2c, we
fix σC = 4.0, and report the value of ε as a function of the
number of epochs. We note that larger sampling probabilities
(q) and more epochs yield larger values of ε, i.e., worse privacy
guarantee. Fig. 2b–2c show that larger values of σK and σG
yield stronger privacy guarantees.

Clustering accuracy. Next, in Fig. 4, we compare the private
kernel k-means (Alg. 2) with RBF kernel with standard DP k-
means [7]. We evaluate the unsupervised clustering accuracy
(ACC) [48], where ACC = maxu

|{x:x∈D∧label(x)=u(K(x))}|
|D| ,

label(x) is the ground-truth label of sample x5, K(x) is the
cluster assignment obtained by clustering algorithm K, and u is
a one-to-one mapping between cluster assignments and labels.
The best mapping can be obtained using the Hungarian algo-
rithm. To make a fair comparison, we fix Cs to

√
m = 28 for

standard private k-means without RFF features, and Cs = 1 for
private kernel k-means with RFF features based on Theorem
2 – i.e., we do not call DPNorm in either of the algorithms.
We compute the clustering accuracy for different values of
d depending on σK, which directly yields the privacy bound
ε using Eq. 3 and Theorem 1. Finally, we plot the average
accuracy over 100 runs as function of ε in Figure 4.6 Private
kernel k-means is clearly superior to standard DP k-means,
as the difference in clustering accuracy can be as large as
20%, especially for smaller values of ε. Shorter RFF features
(i.e., smaller d) result in larger accuracy for smaller values
of ε, whereas the reverse holds for larger ε. For the rest of
experiments, we set d to 200. Selecting the optimal number of
clusters k for kernel k-means can be qualitatively and visually
done by relying on dimensionality reduction algorithms (e.g.,
t-SNE [?]). To this end, one can use public data sampled from
the same underlying distribution, and therefore not requiring
to make the parameter selection step differentially private. For
MNIST we set k = 10, while we select only one cluster for
the CDR dataset. We plan to investigate the effects of different
values of k as part of future work.

Synthetic Samples. As training progresses, the synthetic
samples produced by the generative models should resemble
the true samples. To evaluate model quality, we show the
synthetic samples obtained at epoch 20 in Fig. 3 from a
Restricted Boltzmann Machine and a Variational Autoencoder
with k = 10 clusters on MNIST. For this experiment, we set
q = 0.0017 for a final privacy budget ε of 1.74, and performed
TK = 20 clustering iterations before training the generative
neural networks. Overall, the samples generated from VAE

5For MNIST, these are digits ranging from 0 to 9.
6Standard deviation of accuracy is less than 0.05 for all values of ε and d.

7



0 5 10 15 20
Epoch

0

1

2

3

4

5
E
p
si

lo
n

q=0.0033
q=0.0017
q=0.0008
q=0.0003

(a) Sampling probability q (σG = 1.0, σK = 40.0)

0 5 10 15 20
Epoch

0

1

2

3

4

5

E
p
si

lo
n

σK = 10.0

σK = 20.0

σK = 40.0

(b) Clustering noise σK (σG = 1.0, q = 0.0017)

0 5 10 15 20
Epoch

0

1

2

3

4

5

E
p
si

lo
n

σG = 1.0

σG = 2.0

σG = 4.0

(c) SGD noise σG (σK = 40.0, q = 0.0017)

Fig. 2: ε value as a function of the number of SGD training epochs for MNIST (δ = 10−5, TK = 20)

(a) Real samples (b) VAE w/o clustering (c) VAE with clustering (d) RBM with clustering

Fig. 3: Real MNIST samples and samples generated from DPGM with RBM and VAE after 20 epochs (ε = 1.74, TK = 20). In (c) and (d),
each row contains 8 samples generated from a cluster.
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Fig. 4: Clustering accuracy as a function of ε on MNIST (δ =
10−5, TK = 20).

(Fig. 3c) provide higher visual quality than the ones generated
from the RBM (Fig. 3d). Note that the samples generated from
the VAE without our private clustering technique (Fig. 3b) have
bad visual quality.

Counting-Query. We consider counting queries which are
specified by a predicate function p : D → {0, 1} and return the
number of users in the dataset which satisfy the given predicate
p, i.e., Qp(D) =

∑
x∈D p(x). We evaluate the accuracy of

counting queries on a synthetic dataset generated by DPGM
from our call-data-record (CDR) dataset with roughly 4 million
users (see in Table I). A single query is defined by a subset of
tower cells, and returns the number of users in D who visited
these cells. We compare DPGM with MWEM [21], which is
a de facto standard differential private mechanism to answer

counting queries. As done in previous work [47], we measure
the utility of a counting query Qp over the sanitized dataset
D̂ by its relative error with respect to the actual result over
the raw dataset D. The relative error of Qp is thus computed
as |Qp(D̂)−Qp(D)|

max{Qp(D),s} , where s is a sanity bound that weight the
influence of the queries with small selectivities. Following the
convention, the sanity bound is set to 0.1% of the dataset size.

First, we examine the relative error of counting queries with
respect to privacy loss ε. 1, 000 counting queries are randomly
generated with different number of tower cells, which we
refer as the length of the query. Each query set is divided
into 5 subsets such that the query length of the i-th subset
is uniformly distributed in

[
1, i·max ||x||1

5

]
and each item is

randomly drawn from universe of items. Fig. 5 reports the
average relative error for each query set. This shows that our
approach clearly outperforms MWEM. The error of DPGM
ranges from 0.017 for 20% query length to 0.0012 for 100%
when ε = 1.0. Weaker privacy guarantee (smaller values of
ε) lead to slightly smaller errors (Fig. 5b). By contrast, the
error of MWEM7 ranges from 0.11 to 0.05 even for ε = 2.
Also note that the synthetic data produced by DPGM allows
the evaluation of arbitrary number of type of queries, not only
linear counting queries.

7After clipping each record to have L1-norm avg||x||1 = 12, the sensitivity
of queries is set to 12, and the iterations of the algorithm is set to 50 [21].
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Fig. 5: Average relative error vs. ε (q = 2.2 · 10−5, δ = 4.4 · 10−6)

V. RELATED WORK

In this section, we review prior work on privacy-preserving
mechanisms applied to machine learning and data mining.

k-anonymity [40] aims to protect data by generalizing
and suppressing certain identifying attributes, however, it does
not work well on high-dimensional datasets [3], [9]. There-
fore, rather than pursuing input sanitization, prior work has
proposed techniques to produce plausible synthetic records
with strong privacy guarantees, e.g., focusing on differentially
private release of data [2], [11], [13], [22], [29], [30], [45].
Alas, these can often support only the release of succinct
data representations, such as histograms or contingency tables.
Other mechanisms protect privacy by adding noise directly to
the generative model [8], [27], [28], [50]. In this paper, we
follow this approach, while, in a first-of-its-kind attempt, fo-
cusing on building private generative machine learning models
based on neural networks. Other approaches [6], [34], [35]
generate data records first, and then attempt to test their privacy
guarantees, i.e., decoupling the generative model from the
privacy mechanism. By contrast, we attempt to achieve privacy
during the training of the model, thus avoiding eventual high
sample rejection rates due to privacy tests.

Our work builds on the Differential Privacy (DP) frame-
work, specifically, using the Gaussian mechanism [16]. Due
to its generality, DP has served as a building block in several
recent efforts at the intersection of privacy and machine learn-
ing [1], [38]. In general, the majority of privacy-preserving
learning schemes focus on convex optimization problems [4],
[12], [46], whereas, training neural networks typically requires
to optimize non-convex objective functions – as with Restricted
Boltzmann Machine (RBM) [10] and Variational Autoencoder
(VAE) [24] – which is usually done through the application
of Stochastic Gradient Descent (SGD) with poor theoretical
guarantees. Wu et al. [46] propose a private technique which
runs SGD for convex cases for a constant number of iterations
and only adds noise to the final output. By contrast, in
this paper, we introduce a novel differentially private SGD
algorithm for optimizing general non-convex loss functions.

Shokri et al. [38] support distributed training of deep learn-
ing networks in a privacy-preserving way. Specifically, their
system relies on the input of independent entities which aim to
collaboratively build a machine learning model without sharing
their training data. To this end, they selectively share subsets
of noisy model parameters during training. However, their
approach incurs high levels of privacy loss per entity, i.e., the ε
parameter is in the order of thousands. Finally, Abadi et al. [1]

introduce an algorithm for non-convex deep learning models
with strong differential privacy guarantees. They propose a
privacy accounting method, called the moments accountant,
which guarantees a tighter bound of the privacy loss for the
composition of multiple gaussian mechanisms when compared
to the strong composition theorem [17]. Our method also relies
on the moments accountant to measure privacy loss, but we
train generative models (i.e., unsupervised learning) and with
an improved gradient descent, where the noise is carefully
adjusted and injected in each iteration.

Differential private k-means has already been addressed in
several prior works, for a good overview see [39]. However,
all these works aim to find linearly separable clusters, and add
noise which is proportional to the data dimension m or the
L1-norm of data records. By contrast, our private kernel k-
means approach can find even linearly non-separable clusters,
and the added noise is independent of d as well as the norm
of data points. Also, we offer a tighter privacy analysis using
the moments accountant method from [1]. Kernel k-means
clustering with random Fourier features (RFF) has already
been considered in [14], albeit without any privacy guarantee.
Our work somewhat combines [14] and [7], and applies DP k-
means on Fourier features to ultimately achieve better accuracy
than [7].

VI. CONCLUSION

This paper presented a novel differentially private gen-
erative model, relying on a mixture of k generative neural
networks. The trained models can be used to generate and
share synthetic high-dimensional data with provable privacy.
We have evaluated the performance of the model on real
datasets, showing that our approach provides accurate repre-
sentation of large datasets with strong privacy guarantees and
high utility. In future work, we plan to extend our experiments
to location and transportation datasets, as well as pilot deploy
our techniques in the wild.
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APPENDIX

A. Proof of Lemma 1

Let f : D → R be a scalar function, f(D) = f(D′) + ∆1f ,
where ∆1f = ∆2f , and O = f(D) + x, where x ∼ N (0, σ). Let
σ̂ = ∆1f · σ Then, it holds:

P(A, D,D′, O) = ln

(
Pr[G(D) = O]

Pr[G(D′) = O]

)
=

= ln

(
Pr[f(D) +N (0, σ̂) = O]

Pr[f(D′) +N (0, σ̂) = O]

)
= ln

(
exp(−x2/2σ̂2)

exp(−(x+ ∆1f)2/2σ̂2)

)
=

= ln

(
exp(−x2/2σ̂2)

exp(−(x+ ∆1f)2/2σ̂2)

)
=

(
∆1f

σ̂
·
x

σ̂

)
+

1

2

(
∆1f

σ̂

)2

Since x is drawn from N (0, σ̂), P(A, D,D′, O) follows a normal
distribution with mean (∆1f)2/2σ̂2 and standard deviation ∆1f/σ̂,
whose moment generating function is exp

(
(λ2 + λ)(∆1f)2/4σ̂2

)
.

The claim follows from the definition of α and σ̂. For the high-
dimensional case when f : D → Rd, the proof is similar to that of
Theorem A.1 in [16].

B. Proof of Theorem 2

Lemma 2: Let N (0, σ) be a zero-centered normal random vari-
able with standard deviation σ. Then

1) E[cos(N (0, σ))] = exp(−σ2/2) and E[sin(N (0, σ))] = 0,
2) E[cos2(N (0, σ))] = (1 + exp(−2σ2))/2 and

E[sin2(N (0, σ))] = (1− exp(−2σ2))/2

Proof: Let exp(jN (0, σ)) denote a complex random variable.
It follows from the moment generating function of N (0, σ) that:

E[exp(jN (0, σ))] = exp((jσ)2/2) = exp(−σ2/2)

10



which means that:

E[cos(N (0, σ))+j sin(N (0, σ))] = E[exp(jN (0, σ))] = exp(−σ2/2)

This implies that E[cos(N (0, σ))] = exp(−σ2/2) and
E[sin(N (0, σ))] = 0 due to the linearity of expectation. Hence

E[cos2(N (0, σ))] = E[(1+cos(2N (0, σ)))/2] = (1+exp(−2σ2))/2

and

E[sin2(N (0, σ))] = E[(1+cos(2N (0, σ)))/2] = (1−exp(−2σ2))/2

where we used that 2N (0, σ) = N (0, 2σ).

Proof of Theorem 2: If κ(x,y) = exp(−γ||x − y||2), then
p(w) = 1

2π

∫
Rm exp(−j〈w,x〉)κ(w)dx has zero centered gaussian

distribution with standard deviation 2γI.

E[||z(x)||2] = E

((2/d)

d∑
i=1

cos2(〈N (0, 2γI),x〉+ U [0, 2π])

) 1
2


≤
√

2

d

(
d∑
i=1

E
[
cos2(〈N (0, 2γI),x〉+ U [0, 2π])]

]) 1
2

(by Jensen’s inequality and the linearity of expectation)

≤
√

2

d

(
d∑
i=1

E
[
cos2(〈N (0, 2γI),x〉)/2 + sin2(〈N (0, 2γI),x〉)/2

]) 1
2

≤
√

1

d

(
d∑
i=1

E
[
cos2(N (0, 2γ

√
||x||1)

]
+ E

[
sin2(N (0, 2γ

√
||x||1)

]) 1
2

(by Lemma 2)
≤ 1

where, in the second inequality, we used that cos2(a + b) =
cos2(a) cos2(b) − 2 cos(a) sin(a) cos(b) sin(b) + sin2(a) sin2(b),
E[cos(U [0, 2π])] = E[sin(U [0, 2π])] = 0, E[cos2(U [0, 2π])] =
E[sin2(U [0, 2π])] = 0.5.

C. Proof of Theorem 3

This proof is adapted from that of Theorem 2 in [1]. Here we
detail the complete proof for the sake of clarity.

Let A1:k denote the composition of A1,A2, . . . ,Ak and O =
(O1, O2, . . . , Ok). Recall that, from Definition 2, A1:k is (ε, δ)-DP,
if PrO∼A1:k(D)[P(A1:k, D,D

′, O) > ε] ≤ δ.

P(A1:k, D,D
′, O) = log

Pr[A1:k(D) = O]

Pr[A1:k(D′) = O]

= log
k∏
i=1

Pr[Ai(D) = Oi|Ai−1(D) = Oi−1, . . . ,A1(D) = O1]

Pr[Ai(D′) = Oi|Ai−1(D′) = Oi−1, . . . ,A1(D′) = O1]

(by the Chain rule)

=
k∑
i=1

log
Pr[Ai(D) = Oi|Ai−1(D) = Oi−1, . . . ,A1(D) = O1]

Pr[Ai(D′) = Oi|Ai−1(D′) = Oi−1, . . . ,A1(D′) = O1]

=

k∑
i=1

P(Ai, D,D′, Oi) (5)

for any neighboring datasets D and D′. Hence,

αA1:k
(λ) = max

D,D′
logEO∼A(D)[exp(λP(A1:k, D,D

′, O))]

= max
D,D′

logEO∼A(D)

[
exp

(
λ

k∑
i=1

P(Ai, D,D′, Oi)
)]

(by Eq. (5))

= max
D,D′

logEO∼A(D)

[
k∏
i=1

exp
(
λP(Ai, D,D′, Oi)

)]

≤ max
D,D′

log

k∏
i=1

(
EOi∼Ai(D)

[
exp

(
λP(Ai, D,D′, Oi)/ji

)])ji
(by the generalization of Hölder’s inequality)

≤ max
D,D′

k∑
i=1

ji log
(
EOi∼Ai(D)

[
exp

(
λP(Ai, D,D′, Oi)/ji

)])
≤

k∑
i=1

ji max
D,D′

log
(
EOi∼Ai(D)

[
exp

(
λP(Ai, D,D′, Oi)/ji

)])
≤

k∑
i=1

jiαAi (λ/ji) (6)

where we can apply the generalization of Hölder’s inequality in
the first inequality due to the fact that exp(·) is always positive.
Therefore,

Pr[P(A1:k, D,D
′, O) ≥ ε] = Pr[exp(λP(A1:k, D,D

′, O)) ≥ exp(λε)]

≤ EO∼A(D)[exp(λP(A1:k, D,D
′, O))]/ exp(λε)

(by Markov’s inequality)

≤ exp(αA1:k
(λ)− λε) ≤ exp

(
k∑
i=1

jiαAi (λ/ji)− λε
)

(by Eq. (6))

The claim follows from Definition 2.
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