3,384 research outputs found

    JUNIPR: a Framework for Unsupervised Machine Learning in Particle Physics

    Full text link
    In applications of machine learning to particle physics, a persistent challenge is how to go beyond discrimination to learn about the underlying physics. To this end, a powerful tool would be a framework for unsupervised learning, where the machine learns the intricate high-dimensional contours of the data upon which it is trained, without reference to pre-established labels. In order to approach such a complex task, an unsupervised network must be structured intelligently, based on a qualitative understanding of the data. In this paper, we scaffold the neural network's architecture around a leading-order model of the physics underlying the data. In addition to making unsupervised learning tractable, this design actually alleviates existing tensions between performance and interpretability. We call the framework JUNIPR: "Jets from UNsupervised Interpretable PRobabilistic models". In this approach, the set of particle momenta composing a jet are clustered into a binary tree that the neural network examines sequentially. Training is unsupervised and unrestricted: the network could decide that the data bears little correspondence to the chosen tree structure. However, when there is a correspondence, the network's output along the tree has a direct physical interpretation. JUNIPR models can perform discrimination tasks, through the statistically optimal likelihood-ratio test, and they permit visualizations of discrimination power at each branching in a jet's tree. Additionally, JUNIPR models provide a probability distribution from which events can be drawn, providing a data-driven Monte Carlo generator. As a third application, JUNIPR models can reweight events from one (e.g. simulated) data set to agree with distributions from another (e.g. experimental) data set.Comment: 37 pages, 24 figure

    Classification of lidar measurements using supervised and unsupervised machine learning methods

    Get PDF
    While it is relatively straightforward to automate the processing of lidar signals, it is more difficult to choose periods of good measurements to process. Groups use various ad hoc procedures involving either very simple (e.g. signal-to-noise ratio) or more complex procedures (e.g. Wing et al. 2018) to perform a task that is easy to train humans to perform but is time-consuming. Here, we use machine learning techniques to train the machine to sort the measurements before processing. The presented method is generic and can be applied to most lidars. We test the techniques using measurements from the Purple Crow Lidar (PCL) system located in London, Canada. The PCL has over 200 000 raw profiles in Rayleigh and Raman channels available for classification. We classify raw (level-0) lidar measurements as clear sky profiles with strong lidar returns, bad profiles, and profiles which are significantly influenced by clouds or aerosol loads. We examined different supervised machine learning algorithms including the random forest, the support vector machine, and the gradient boosting trees, all of which can successfully classify profiles. The algorithms were trained using about 1500 profiles for each PCL channel, selected randomly from different nights of measurements in different years. The success rate of identification for all the channels is above 95 %. We also used the t-SNE) method, which is an unsupervised algorithm, to cluster our lidar profiles. Because the t-SNE is a data-driven method in which no labelling of the training set is needed, it is an attractive algorithm to find anomalies in lidar profiles. The method has been tested on several nights of measurements from the PCL measurements. The t-SNE can successfully cluster the PCL data profiles into meaningful categories. To demonstrate the use of the technique, we have used the algorithm to identify stratospheric aerosol layers due to wildfires

    Binary JUNIPR: an interpretable probabilistic model for discrimination

    Full text link
    JUNIPR is an approach to unsupervised learning in particle physics that scaffolds a probabilistic model for jets around their representation as binary trees. Separate JUNIPR models can be learned for different event or jet types, then compared and explored for physical insight. The relative probabilities can also be used for discrimination. In this paper, we show how the training of the separate models can be refined in the context of classification to optimize discrimination power. We refer to this refined approach as Binary JUNIPR. Binary JUNIPR achieves state-of-the-art performance for quark/gluon discrimination and top-tagging. The trained models can then be analyzed to provide physical insight into how the classification is achieved. As examples, we explore differences between quark and gluon jets and between gluon jets generated with two different simulations.Comment: 6 pages, 3 figure
    corecore