8 research outputs found

    SmartFog: Training the Fog for the energy-saving analytics of Smart-Meter data

    Get PDF
    In this paper, we characterize the main building blocks and numerically verify the classification accuracy and energy performance of SmartFog, a distributed and virtualized networked Fog technological platform for the support for Stacked Denoising Auto-Encoder (SDAE)-based anomaly detection in data flows generated by Smart-Meters (SMs). In SmartFog, the various layers of an SDAE are pretrained at different Fog nodes, in order to distribute the overall computational efforts and, then, save energy. For this purpose, a new Adaptive Elitist Genetic Algorithm (AEGA) is “ad hoc” designed to find the optimized allocation of the SDAE layers to the Fog nodes. Interestingly, the proposed AEGA implements a (novel) mechanism that adaptively tunes the exploration and exploitation capabilities of the AEGA, in order to quickly escape the attraction basins of local minima of the underlying energy objective function and, then, speed up the convergence towards global minima. As a matter of fact, the main distinguishing feature of the resulting SmartFog paradigm is that it accomplishes the joint integration on a distributed Fog computing platform of the anomaly detection functionality and the minimization of the resulting energy consumption. The reported numerical tests support the effectiveness of the designed technological platform and point out that the attained performance improvements over some state-of-the-art competing solutions are around 5%, 68% and 30% in terms of detection accuracy, execution time and energy consumption, respectively

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table

    多変量時系列データの変分オートエンコーダによるロバストな教示なし異常検知

    Get PDF
    九州工業大学博士学位論文 学位記番号:情工博甲第370号 学位授与年月日:令和4年9月26日1: Introduction|2: Background & Theory|3: Methodology|4: Experiments and Discussion|5: Conclusions九州工業大学令和4年

    Biological and biomimetic machine learning for automatic classification of human gait

    Get PDF
    Machine learning (ML) research has benefited from a deep understanding of biological mechanisms that have evolved to perform comparable tasks. Recent successes of ML models, superseding human performance in human perception based tasks has garnered interest in improving them further. However, the approach to improving ML models tends to be unstructured, particularly for the models that aim to mimic biology. This thesis proposes and applies a bidirectional learning paradigm to streamline the process of improving ML models’ performance in classification of a task, which humans are already adept at. The approach is validated taking human gait classification as the exemplar task. This paradigm possesses the additional benefit of investigating underlying mechanisms in human perception (HP) using the ML models. Assessment of several biomimetic (BM) and non-biomimetic (NBM) machine learning models on an intrinsic feature of gait, namely the gender of the walker, establishes a functional overlap in the perception of gait between HP and BM, selecting the Long-Short-Term-Memory (LSTM) architecture as the BM of choice for this study, when compared with other models such as support vector machines, decision trees and multi-layer perceptron models. Psychophysics and computational experiments are conducted to understand the overlap between human and machine models. The BM and HP derived from psychophysics experiments, share qualitatively similar profiles of gender classification accuracy across varying stimulus exposure durations. They also share the preference for motion-based cues over structural cues (BM=H>NBM). Further evaluation reveals a human-like expression of the inversion effect, a well-studied cognitive bias in HP that reduces the gender classification accuracy to 37% (p<0.05, chance at 50%) when exposed to inverted stimulus. Its expression in the BM supports the argument for learned rather than hard-wired mechanisms in HP. Particularly given the emergence of the effect in every BM, after training multiple randomly initialised BM models without prior anthropomorphic expectations of gait. The above aspects of HP, namely the preference for motion cues over structural cues and the lack of prior anthropomorphic expectations, were selected to improve BM performance. Representing gait explicitly as motion-based cues of a non-anthropomorphic, gender-neutral skeleton not only mitigates the inversion effect in BM, but also improves significantly the classification accuracy. In the case of gender classification of upright stimuli, mean accuracy improved by 6%, from 76% to 82% (F1,18 = 16, p<0.05). For inverted stimuli, mean accuracy improved by 45%, from 37% to 82% (F1,18 = 20, p<0.05). The model was further tested on a more challenging, extrinsic feature task; the classification of the emotional state of a walker. Emotions were visually induced in subjects through exposure to emotive or neutral images from the International Affective Picture System (IAPS) database. The classification accuracy of the BM was significantly above chance at 43% accuracy (p<0.05, chance at 33.3%). However, application of the proposed paradigm in further binary emotive state classification experiments, improved mean accuracy further by 23%, from 43% to 65% (F1,18 = 7.4, p<0.05) for the positive vs. neutral task. Results validate the proposed paradigm of concurrent bidirectional investigation of HP and BM for the classification of human gait, suggesting future applications for automating perceptual tasks for which the human brain and body has evolved
    corecore