205 research outputs found

    Tight Size-Degree Bounds for Sums-of-Squares Proofs

    Full text link
    We exhibit families of 44-CNF formulas over nn variables that have sums-of-squares (SOS) proofs of unsatisfiability of degree (a.k.a. rank) dd but require SOS proofs of size nΩ(d)n^{\Omega(d)} for values of d=d(n)d = d(n) from constant all the way up to nδn^{\delta} for some universal constantδ\delta. This shows that the nO(d)n^{O(d)} running time obtained by using the Lasserre semidefinite programming relaxations to find degree-dd SOS proofs is optimal up to constant factors in the exponent. We establish this result by combining NP\mathsf{NP}-reductions expressible as low-degree SOS derivations with the idea of relativizing CNF formulas in [Kraj\'i\v{c}ek '04] and [Dantchev and Riis'03], and then applying a restriction argument as in [Atserias, M\"uller, and Oliva '13] and [Atserias, Lauria, and Nordstr\"om '14]. This yields a generic method of amplifying SOS degree lower bounds to size lower bounds, and also generalizes the approach in [ALN14] to obtain size lower bounds for the proof systems resolution, polynomial calculus, and Sherali-Adams from lower bounds on width, degree, and rank, respectively

    Partial Quantifier Elimination By Certificate Clauses

    Full text link
    We study partial quantifier elimination (PQE) for propositional CNF formulas. In contrast to full quantifier elimination, in PQE, one can limit the set of clauses taken out of the scope of quantifiers to a small subset of target clauses. The appeal of PQE is twofold. First, PQE can be dramatically simpler than full quantifier elimination. Second, it provides a language for performing incremental computations. Many verification problems (e.g. equivalence checking and model checking) are inherently incremental and so can be solved in terms of PQE. Our approach is based on deriving clauses depending only on unquantified variables that make the target clauses redundant\mathit{redundant}. Proving redundancy of a target clause is done by construction of a ``certificate'' clause implying the former. We describe a PQE algorithm called START\mathit{START} that employs the approach above. We apply START\mathit{START} to generating properties of a design implementation that are not implied by specification. The existence of an unwanted\mathit{unwanted} property means that this implementation is buggy. Our experiments with HWMCC-13 benchmarks suggest that START\mathit{START} can be used for generating properties of real-life designs

    Strong ETH Breaks With Merlin and Arthur: Short Non-Interactive Proofs of Batch Evaluation

    Get PDF
    We present an efficient proof system for Multipoint Arithmetic Circuit Evaluation: for every arithmetic circuit C(x1,,xn)C(x_1,\ldots,x_n) of size ss and degree dd over a field F{\mathbb F}, and any inputs a1,,aKFna_1,\ldots,a_K \in {\mathbb F}^n, \bullet the Prover sends the Verifier the values C(a1),,C(aK)FC(a_1), \ldots, C(a_K) \in {\mathbb F} and a proof of O~(Kd)\tilde{O}(K \cdot d) length, and \bullet the Verifier tosses poly(log(dKF/ε))\textrm{poly}(\log(dK|{\mathbb F}|/\varepsilon)) coins and can check the proof in about O~(K(n+d)+s)\tilde{O}(K \cdot(n + d) + s) time, with probability of error less than ε\varepsilon. For small degree dd, this "Merlin-Arthur" proof system (a.k.a. MA-proof system) runs in nearly-linear time, and has many applications. For example, we obtain MA-proof systems that run in cnc^{n} time (for various c<2c < 2) for the Permanent, #\#Circuit-SAT for all sublinear-depth circuits, counting Hamiltonian cycles, and infeasibility of 00-11 linear programs. In general, the value of any polynomial in Valiant's class VP{\sf VP} can be certified faster than "exhaustive summation" over all possible assignments. These results strongly refute a Merlin-Arthur Strong ETH and Arthur-Merlin Strong ETH posed by Russell Impagliazzo and others. We also give a three-round (AMA) proof system for quantified Boolean formulas running in 22n/3+o(n)2^{2n/3+o(n)} time, nearly-linear time MA-proof systems for counting orthogonal vectors in a collection and finding Closest Pairs in the Hamming metric, and a MA-proof system running in nk/2+O(1)n^{k/2+O(1)}-time for counting kk-cliques in graphs. We point to some potential future directions for refuting the Nondeterministic Strong ETH.Comment: 17 page

    A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds

    Full text link
    We study the problem of obtaining lower bounds for polynomial calculus (PC) and polynomial calculus resolution (PCR) on proof degree, and hence by [Impagliazzo et al. '99] also on proof size. [Alekhnovich and Razborov '03] established that if the clause-variable incidence graph of a CNF formula F is a good enough expander, then proving that F is unsatisfiable requires high PC/PCR degree. We further develop the techniques in [AR03] to show that if one can "cluster" clauses and variables in a way that "respects the structure" of the formula in a certain sense, then it is sufficient that the incidence graph of this clustered version is an expander. As a corollary of this, we prove that the functional pigeonhole principle (FPHP) formulas require high PC/PCR degree when restricted to constant-degree expander graphs. This answers an open question in [Razborov '02], and also implies that the standard CNF encoding of the FPHP formulas require exponential proof size in polynomial calculus resolution. Thus, while Onto-FPHP formulas are easy for polynomial calculus, as shown in [Riis '93], both FPHP and Onto-PHP formulas are hard even when restricted to bounded-degree expanders.Comment: Full-length version of paper to appear in Proceedings of the 30th Annual Computational Complexity Conference (CCC '15), June 201

    Strongly Refuting Random CSPs Below the Spectral Threshold

    Full text link
    Random constraint satisfaction problems (CSPs) are known to exhibit threshold phenomena: given a uniformly random instance of a CSP with nn variables and mm clauses, there is a value of m=Ω(n)m = \Omega(n) beyond which the CSP will be unsatisfiable with high probability. Strong refutation is the problem of certifying that no variable assignment satisfies more than a constant fraction of clauses; this is the natural algorithmic problem in the unsatisfiable regime (when m/n=ω(1)m/n = \omega(1)). Intuitively, strong refutation should become easier as the clause density m/nm/n grows, because the contradictions introduced by the random clauses become more locally apparent. For CSPs such as kk-SAT and kk-XOR, there is a long-standing gap between the clause density at which efficient strong refutation algorithms are known, m/nO~(nk/21)m/n \ge \widetilde O(n^{k/2-1}), and the clause density at which instances become unsatisfiable with high probability, m/n=ω(1)m/n = \omega (1). In this paper, we give spectral and sum-of-squares algorithms for strongly refuting random kk-XOR instances with clause density m/nO~(n(k/21)(1δ))m/n \ge \widetilde O(n^{(k/2-1)(1-\delta)}) in time exp(O~(nδ))\exp(\widetilde O(n^{\delta})) or in O~(nδ)\widetilde O(n^{\delta}) rounds of the sum-of-squares hierarchy, for any δ[0,1)\delta \in [0,1) and any integer k3k \ge 3. Our algorithms provide a smooth transition between the clause density at which polynomial-time algorithms are known at δ=0\delta = 0, and brute-force refutation at the satisfiability threshold when δ=1\delta = 1. We also leverage our kk-XOR results to obtain strong refutation algorithms for SAT (or any other Boolean CSP) at similar clause densities. Our algorithms match the known sum-of-squares lower bounds due to Grigoriev and Schonebeck, up to logarithmic factors. Additionally, we extend our techniques to give new results for certifying upper bounds on the injective tensor norm of random tensors

    Complexity of Propositional Proofs Under a Promise

    Get PDF
    Abstract. We study – within the framework of propositional proof complexity – the problem of certifying unsatisfiability of CNF formulas under the promise that any satisfiable formula has many satisfying assignments, where “many ” stands for an explicitly specified function Λ in the number of variables n. To this end, we develop propositional proof systems under different measures of promises (that is, different Λ) as extensions of resolution. This is done by augmenting resolution with axioms that, roughly, can eliminate sets of truth assignments defined by Boolean circuits. We then investigate the complexity of such systems, obtaining an exponential separation in the average-case between resolution under different size promises: (1) Resolution has polynomial-size refutations for all unsatisfiable 3CNF formulas when the promise is ε·2n, for any constant 0 &lt; ε &lt; 1. (2) There are no sub-exponential size resolution refutations for random 3CNF formulas, when the promise is 2δn (and the number of clauses is o(n3/2)), for any constan
    corecore