225 research outputs found

    Space proof complexity for random 3-CNFs

    Get PDF
    We investigate the space complexity of refuting 3-CNFs in Resolution and algebraic systems. We prove that every Polynomial Calculus with Resolution refutation of a random 3-CNF φ in n variables requires, with high probability, distinct monomials to be kept simultaneously in memory. The same construction also proves that every Resolution refutation of φ requires, with high probability, clauses each of width to be kept at the same time in memory. This gives a lower bound for the total space needed in Resolution to refute φ. These results are best possible (up to a constant factor) and answer questions about space complexity of 3-CNFs

    A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds

    Full text link
    We study the problem of obtaining lower bounds for polynomial calculus (PC) and polynomial calculus resolution (PCR) on proof degree, and hence by [Impagliazzo et al. '99] also on proof size. [Alekhnovich and Razborov '03] established that if the clause-variable incidence graph of a CNF formula F is a good enough expander, then proving that F is unsatisfiable requires high PC/PCR degree. We further develop the techniques in [AR03] to show that if one can "cluster" clauses and variables in a way that "respects the structure" of the formula in a certain sense, then it is sufficient that the incidence graph of this clustered version is an expander. As a corollary of this, we prove that the functional pigeonhole principle (FPHP) formulas require high PC/PCR degree when restricted to constant-degree expander graphs. This answers an open question in [Razborov '02], and also implies that the standard CNF encoding of the FPHP formulas require exponential proof size in polynomial calculus resolution. Thus, while Onto-FPHP formulas are easy for polynomial calculus, as shown in [Riis '93], both FPHP and Onto-PHP formulas are hard even when restricted to bounded-degree expanders.Comment: Full-length version of paper to appear in Proceedings of the 30th Annual Computational Complexity Conference (CCC '15), June 201

    The combinatorics of minimal unsatisfiability: connecting to graph theory

    Get PDF
    Minimally Unsatisfiable CNFs (MUs) are unsatisfiable CNFs where removing any clause destroys unsatisfiability. MUs are the building blocks of unsatisfia-bility, and our understanding of them can be very helpful in answering various algorithmic and structural questions relating to unsatisfiability. In this thesis we study MUs from a combinatorial point of view, with the aim of extending the understanding of the structure of MUs. We show that some important classes of MUs are very closely related to known classes of digraphs, and using arguments from logic and graph theory we characterise these MUs.Two main concepts in this thesis are isomorphism of CNFs and the implica-tion digraph of 2-CNFs (at most two literals per disjunction). Isomorphism of CNFs involves renaming the variables, and flipping the literals. The implication digraph of a 2-CNF F has both arcs (¬a → b) and (¬b → a) for every binary clause (a ∨ b) in F .In the first part we introduce a novel connection between MUs and Minimal Strong Digraphs (MSDs), strongly connected digraphs, where removing any arc destroys the strong connectedness. We introduce the new class DFM of special MUs, which are in close correspondence to MSDs. The known relation between 2-CNFs and implication digraphs is used, but in a simpler and more direct way, namely that we have a canonical choice of one of the two arcs. As an application of this new framework we provide short and intuitive new proofs for two im-portant but isolated characterisations for nonsingular MUs (every literal occurs at least twice), both with ingenious but complicated proofs: Characterising 2-MUs (minimally unsatisfiable 2-CNFs), and characterising MUs with deficiency 2 (two more clauses than variables).In the second part, we provide a fundamental addition to the study of 2-CNFs which have efficient algorithms for many interesting problems, namely that we provide a full classification of 2-MUs and a polytime isomorphism de-cision of this class. We show that implication digraphs of 2-MUs are “Weak Double Cycles” (WDCs), big cycles of small cycles (with possible overlaps). Combining logical and graph-theoretical methods, we prove that WDCs have at most one skew-symmetry (a self-inverse fixed-point free anti-symmetry, re-versing the direction of arcs). It follows that the isomorphisms between 2-MUs are exactly the isomorphisms between their implication digraphs (since digraphs with given skew-symmetry are the same as 2-CNFs). This reduces the classifi-cation of 2-MUs to the classification of a nice class of digraphs.Finally in the outlook we discuss further applications, including an alter-native framework for enumerating some special Minimally Unsatisfiable Sub-clause-sets (MUSs)

    Space complexity in polynomial calculus

    Get PDF
    During the last decade, an active line of research in proof complexity has been to study space complexity and time-space trade-offs for proofs. Besides being a natural complexity measure of intrinsic interest, space is also an important issue in SAT solving, and so research has mostly focused on weak systems that are used by SAT solvers. There has been a relatively long sequence of papers on space in resolution, which is now reasonably well understood from this point of view. For other natural candidates to study, however, such as polynomial calculus or cutting planes, very little has been known. We are not aware of any nontrivial space lower bounds for cutting planes, and for polynomial calculus the only lower bound has been for CNF formulas of unbounded width in [Alekhnovich et al. ’02], where the space lower bound is smaller than the initial width of the clauses in the formulas. Thus, in particular, it has been consistent with current knowledge that polynomial calculus could be able to refute any k-CNF formula in constant space. In this paper, we prove several new results on space in polynomial calculus (PC), and in the extended proof system polynomial calculus resolution (PCR) studied in [Alekhnovich et al. ’02]: 1. We prove an Ω(n) space lower bound in PC for the canonical 3-CNF version of the pigeonhole principle formulas PHPm n with m pigeons and n holes, and show that this is tight. 2. For PCR, we prove an Ω(n) space lower bound for a bitwise encoding of the functional pigeonhole principle. These formulas have width O(log n), and hence this is an exponential improvement over [Alekhnovich et al. ’02] measured in the width of the formulas. 3. We then present another encoding of the pigeonhole principle that has constant width, and prove an Ω(n) space lower bound in PCR for these formulas as well. 4. Finally, we prove that any k-CNF formula can be refuted in PC in simultaneous exponential size and linear space (which holds for resolution and thus for PCR, but was not obviously the case for PC). We also characterize a natural class of CNF formulas for which the space complexity in resolution and PCR does not change when the formula is transformed into 3-CNF in the canonical way, something that we believe can be useful when proving PCR space lower bounds for other well-studied formula families in proof complexity
    corecore