3,375 research outputs found

    ANALYSIS AND ASSESSMENT OF LETHALITY AND SURVIVABILITY FOR THE MARINE LITTORAL REGIMENT

    Get PDF
    As the Marine Corps activates the Marine Littoral Regiment (MLR) to serve as the joint force’s reconnaissance and counter-reconnaissance effort, questions abound regarding the MLR’s ability to provide a persistent and lethal presence well inside the reach of our adversaries’ advanced long-range precision fires. In this study, the author uses agent-based combat simulations to inform future force design decisions, live-force experimentation, and tactics. The simulated scenario imagines a future MLR conducting sea control operations in the littorals of the Western Pacific against a peer naval threat. This research investigates the effect that a guard force of autonomous and/or semi-autonomous surface vessels, operating as the guard force of the MLR’s defense in depth, has on the survivability and lethality of the MLR’s land-based anti-ship missile platforms. Summary statistics generated by the simulation indicate that the future battlefield will see high losses on both sides. However, based on the results of 27,200 simulated engagements, this study finds that an MLR using a guard force of armed and unarmed “scouts” as described above can inflict a prohibitively high and unsustainable cost on an enemy naval force.Outstanding ThesisMajor, United States Marine CorpsApproved for public release. Distribution is unlimited

    Autonomous Systems Matrix Wargame Final Report

    Full text link

    USMC VERTICAL TAKEOFF AND LANDING AIRCRAFT: HUMAN–MACHINE TEAMING FOR CONTROLLING UNMANNED AERIAL SYSTEMS

    Get PDF
    The United States Marine Corps (USMC) is investing in aviation technologies through its Vertical Takeoff and Landing (VTOL) aircraft program that will enhance mission superiority and warfare dominance against both conventional and asymmetric threats. One of the USMC program initiatives is to launch unmanned aerial systems (UAS) from future human-piloted VTOL aircraft for collaborative hybrid (manned and unmanned) missions. This hybrid VTOL-UAS capability will support USMC intelligence, surveillance, and reconnaissance (ISR), electronic warfare (EW), communications relay, and kinetic strike air to ground missions. This capstone project studied the complex human-machine interactions involved in the future hybrid VTOL-UAS capability through model-based systems engineering analysis, coactive design interdependence analysis, and modeling and simulation experimentation. The capstone focused on a strike coordination and reconnaissance (SCAR) mission involving a manned VTOL platform, a VTOL-launched UAS, and a ground control station (GCS). The project produced system requirements, a system architecture, a conceptual design, and insights into the human-machine teaming aspects of this future VTOL capability.Major, United States ArmyMajor, United States ArmyMajor, United States ArmyMajor, United States ArmyMajor, United States ArmyApproved for public release. Distribution is unlimited

    A COST-EFFECTIVENESS ANALYSIS OF C-12 VARIANT AIRBORNE ISR CAPABILITIES IN THE MARINE CORPS

    Get PDF
    Military strategists and technologists have welcomed the rise of remotely piloted aircraft (RPAs) in intelligence, surveillance, and reconnaissance (ISR) roles because of their persistence and expendability which provide operational flexibility to commanders and decision makers. Furthermore, RPAs generally cost less to operate than manned systems. However, some small manned ISR aircraft have low operating costs, have been proven in operations around the world, and do not require any new spending to develop. While pursuing RPAs to gain the benefits identified, the Marine Corps may incur costs that reduce overall value to the service. In this study, I conduct a cost-effectiveness analysis of two ISR systems to determine the alternative with the best value. The representative platforms analyzed are the unmanned RQ-21A and the manned MC-12W, to determine if the Marine Corps can realize greater value from a small manned aircraft than small RPAs for ISR missions. I find that the RQ-21A is a more effective platform based on the objective hierarchy established, with a measure of overall effectiveness (MOE) score of .721. However, it is more costly than the MC-12W on a cost per flight hour (CPFH) basis with a CPFH of 18,223.TheMC12Wisalesseffectiveplatformbasedontheobjectivehierarchyestablished,withanMOEscoreof.497.However,itislesscostlythantheRQ21AonaperflighthourbasiswithaCPFHof18,223. The MC-12W is a less effective platform based on the objective hierarchy established, with an MOE score of .497. However, it is less costly than the RQ-21A on a per flight hour basis with a CPFH of 6,079.Major, United States Marine CorpsApproved for public release. Distribution is unlimited

    Implications for automation assistance in unmanned aerial system operator training

    Get PDF
    2012 Summer.Includes bibliographical references.The integration of automated modules into unmanned systems control has had a positive impact on operational effectiveness across a variety of challenging domains from battlefields and disaster areas to the National Airspace and distant planets. Despite the generally positive nature of such technological progress, however, concerns for complacency and other automation-induced detriments have been established in a growing body of empirical literature derived from both laboratory research and operational reviews. Given the military's demand for new Unmanned Aerial System (UAS) operators, there is a need to explore how such concerns might extend from the operational realm of experienced professionals into the novice training environment. An experiment was conducted to investigate the influence of automation on training efficiency using a Predator UAS simulator developed by the Air Force Research Laboratory (AFRL) in a modified replication of previous research. Participants were trained in a series of basic maneuvers, with half receiving automated support only on a subset of maneuvers. A subsequent novel landing test showed poorer performance for the group that received assistance from automation during training. Implications of these findings are discussed

    ENHANCING THE ENDURANCE OF THE SWITCHBLADE 300 UNMANNED AERIAL VEHICLE USING THIN-FILM PHOTOVOLTAICS

    Get PDF
    Previous research has demonstrated the operational benefits of supplementing unmanned aircraft systems (UAS) with solar power. With limits to energy storage based on aircraft cost and weight, supplementing aircraft power systems with solar technology can meet modern requirements with current technology. The focus of this research is to determine the potential increase in the range and endurance of the AeroVironment Switchblade 300 unmanned aerial vehicle (UAV) through the inclusion of advanced thin-film flexible solar cells. In lieu of a fully operational test aircraft, the research developed a prototype solar enhanced Switchblade 300 using comparable components and a production Switchblade 300 airframe to conduct real world experimentation in the feasibility of solar enhancement. The research also extrapolated empirical data to estimate the effects of solar enhancement on similar Group 1 UAS. A 23.7% increase in endurance was achieved on the prototype solar enhanced Switchblade 300 and a more than 83.3% increase is feasible using higher efficiency solar cells. More than a 108% increase is theoretically feasible for the Switchblade 600 UAV based on scaled empirical data. These findings indicate that current production small electric tube-launched UAS have significant potential for improvement and could leverage future advances in solar technology to gain significant technological advantages for the warfighter.Captain, United States Marine CorpsApproved for public release. Distribution is unlimited

    Military Innovation in the Third Age of U.S. Unmanned Aviation, 1991–2015

    Get PDF
    Military innovation studies have largely relied on monocausal accounts—rationalism, institutionalism, or culture—to explain technologically innovative and adaptive outcomes in defense organizations. None of these perspectives alone provided a compelling explanation for the adoption outcomes of unmanned aerial vehicles (UAVs) in the U.S. military from 1991 to 2015. Two questions motivated this research: Why, despite abundant material resources, mature technology, and operational need, are the most-capable UAVs not in the inventory across the services? What accounts for variations and patterns in UAV innovation adoption? The study selected ten UAV program episodes from the Air Force and Navy, categorized as high-, medium-, and low-end cases, for within-case and cross-case analysis. Primary and secondary sources, plus interviews, enabled process tracing across episodes. The results showed a pattern of adoption or rejection based on a logic-of-utility effectiveness and consistent resource availability: a military problem to solve, and a capability gap in threats or tasks and consistent monetary capacity; furthermore, ideational factors strengthened or weakened adoption. In conclusion, the study undermines single-perspective arguments as sole determinants of innovation, reveals that military culture is not monolithic in determining outcomes, and demonstrates that civil-military relationships no longer operate where civilian leaders hold inordinate sway over military institutions.Lieutenant Colonel, United States Air ForceApproved for public release; distribution is unlimited

    Contributions to deconfliction advanced U-space services for multiple unmanned aerial systems including field tests validation

    Get PDF
    Unmanned Aerial Systems (UAS) will become commonplace, the number of UAS flying in European airspace is expected to increase from a few thousand to hundreds of thousands by 2050. To prepare for this approaching, national and international organizations involved in aerial traffic management are now developing new laws and restructuring the airspace to incorporate UAS into civil airspace. The Single European Sky ATM Research considers the development of the U-space, a crucial step to enable the safe, secure, and efficient access of a large set of UAS into airspace. The design, integration, and validation of a set of modules that contribute to our UTM architecture for advanced U-space services are described in this Thesis. With an emphasis on conflict detection and resolution features, the architecture is flexible, modular, and scalable. The UTM is designed to work without the need for human involvement, to achieve U-space required scalability due to the large number of expected operations. However, it recommends actions to the UAS operator since, under current regulations, the operator is accountable for carrying out the recommendations of the UTM. Moreover, our development is based on the Robot Operating System (ROS) and is open source. The main developments of the proposed Thesis are monitoring and tactical deconfliction services, which are in charge of identifying and resolving possible conflicts that arise in the shared airspace of several UAS. By limiting the conflict search to a local search surrounding each waypoint, the proposed conflict detection method aims to improve conflict detection. By splitting the issue down into smaller subproblems with only two waypoints, the conflict resolution method tries to decrease the deviation distance from the initial flight plan. The proposed method for resolving potential threats is based on the premise that UAS can follow trajectories in time and space properly. Therefore, another contribution of the presented Thesis is an UAS 4D trajectory follower that can correct space and temporal deviations while following a given trajectory. Currently, commercial autopilots do not offer this functionality that allows to improve the airspace occupancy using time as an additional dimension. Moreover, the integration of onboard detect and avoid capabilities, as well as the consequences for U-space services are examined in this Thesis. A module capable of detecting large static unexpected obstacles and generating an alternative route to avoid the obstacle online is presented. Finally, the presented UTM architecture has been tested in both software-in-theloop and hardware-in-the-loop development enviroments, but also in real scenarios using unmanned aircraft. These scenarios were designed by selecting the most relevant UAS operation applications, such as the inspection of wind turbines, power lines and precision agriculture, as well as event and forest monitoring. ATLAS and El Arenosillo were the locations of the tests carried out thanks to the European projects SAFEDRONE and GAUSS.Los sistemas aéreos no tripulados (UAS en inglés) se convertirán en algo habitual. Se prevé que el número de UAS que vuelen en el espacio aéreo europeo pase de unos pocos miles a cientos de miles en 2050. Para prepararse para esta aproximación, las organizaciones nacionales e internacionales dedicadas a la gestión del tráfico aéreo están elaborando nuevas leyes y reestructurando el espacio aéreo para incorporar los UAS al espacio aéreo civil. SESAR (del inglés Single European Sky ATM Research) considera el desarrollo de U-space, un paso crucial para permitir el acceso seguro y eficiente de un gran conjunto de UAS al espacio aéreo. En esta Tesis se describe el diseño, la integración y la validación de un conjunto de módulos que contribuyen a nuestra arquitectura UTM (del inglés Unmanned aerial system Traffic Management) para los servicios avanzados del U-space. Con un énfasis en las características de detección y resolución de conflictos, la arquitectura es flexible, modular y escalable. La UTM está diseñada para funcionar sin necesidad de intervención humana, para lograr la escalabilidad requerida por U-space debido al gran número de operaciones previstas. Sin embargo, la UTM únicamente recomienda acciones al operador del UAS ya que, según la normativa vigente, el operador es responsable de las operaciones realizadas. Además, nuestro desarrollo está basado en el Sistema Operativo de Robots (ROS en inglés) y es de código abierto. Los principales desarrollos de la presente Tesis son los servicios de monitorización y evitación de conflictos, que se encargan de identificar y resolver los posibles conflictos que surjan en el espacio aéreo compartido de varios UAS. Limitando la búsqueda de conflictos a una búsqueda local alrededor de cada punto de ruta, el método de detección de conflictos pretende mejorar la detección de conflictos. Al dividir el problema en subproblemas más pequeños con sólo dos puntos de ruta, el método de resolución de conflictos intenta disminuir la distancia de desviación del plan de vuelo inicial. El método de resolución de conflictos propuesto se basa en la premisa de que los UAS pueden seguir las trayectorias en el tiempo y espacio de forma adecuada. Por tanto, otra de las aportaciones de la Tesis presentada es un seguidor de trayectorias 4D de UAS que puede corregir las desviaciones espaciales y temporales mientras sigue una trayectoria determinada. Actualmente, los autopilotos comerciales no ofrecen esta funcionalidad que permite mejorar la ocupación del espacio aéreo utilizando el tiempo como una dimensión adicional. Además, en esta Tesis se examina la capacidad de integración de módulos a bordo de detección y evitación de obstáculos, así como las consecuencias para los servicios de U-space. Se presenta un módulo capaz de detectar grandes obstáculos estáticos inesperados y capaz de generar una ruta alternativa para evitar dicho obstáculo. Por último, la arquitectura UTM presentada ha sido probada en entornos de desarrollo de simulación, pero también en escenarios reales con aeronaves no tripuladas. Estos escenarios se diseñaron seleccionando las aplicaciones de operación de UAS más relevantes, como la inspección de aerogeneradores, líneas eléctricas y agricultura de precisión, así como la monitorización de eventos y bosques. ATLAS y El Arenosillo fueron las sedes de las pruebas realizadas gracias a los proyectos europeos SAFEDRONE y GAUSS

    Use of a Small Unmanned Aerial System for the SR-530 Mudslide Incident near Oso, Washington

    Get PDF
    The Center for Robot-Assisted Search and Rescue deployed three commercially available small unmanned aerial systems (SUASs)—an AirRobot AR100B quadrotor, an Insitu Scan Eagle, and a PrecisionHawk Lancaster—to the 2014 SR-530 Washington State mudslides. The purpose of the flights was to allow geologists and hydrologists to assess the eminent risk of loss of life to responders from further slides and flooding, as well as to gain a more comprehensive understanding of the event. The AirRobot AR100B in conjunction with PrecisionHawk postprocessing software created two-dimensional (2D) and 3D reconstructions of the inaccessible “moonscape” region of the slide and provided engineers with a real-time remote presence assessment of river mitigation activities. The AirRobot was able to cover 30–40 acres from an altitude of 42 m (140 ft) in 48 min of flight time and generate interactive 3D reconstructions in 3 h on a laptop in the field. The deployment is the 17th known use of SUAS for disasters, and it illustrates the evolution of SUASs from tactical data collection platforms to strategic data-to-decision systems. It was the first known instance in the United States in which an airspace deconfliction plan allowed a UAS to operate with manned vehicles in the same airspace during a disaster. It also describes how public concerns over SUAS safety and privacy led to the cancellation of initial flights. The deployment provides lessons on operational considerations imposed by the terrain, trees, power lines, and accessibility, and a safe human:robot ratio. The article identifies open research questions in computer vision, mission planning, and data archiving, curation, and mining

    Human Performance Modeling: Analysis of the Effects of Manned-Unmanned Teaming on Pilot Workload and Mission Performance

    Get PDF
    Due to the advent of autonomous technology coupled with the extreme expense of manned aircraft, the Department of Defense (DoD) has increased interest in developing affordable, expendable Unmanned Aerial Vehicles (UAVs) to become autonomous wingmen for jet fighters in mosaic warfare. Like a mosaic that forms a whole picture out of smaller pieces, battlefield commanders can utilize disaggregated capabilities, such as Manned-Unmanned Teaming (MUM-T), to operate in contested environments. With a single pilot controlling both the UAVs and manned aircraft, it may be challenging for pilots to manage all systems should the system design not be conducive to a steady state level of workload. To understand the potential effects of MUM-T on the pilot’s cognitive workload, an Improved Performance Research Integration Tool (IMPRINT) Pro pilot workload model was developed. The model predicts the cognitive workload of the pilot in a simulated environment when interacting with both the cockpit and multiple UAVs to provide insight into the effect of Human-Agent Interactions (HAI) and increasing autonomous control abstraction on the pilot’s cognitive workload and mission performance. This research concluded that peaks in workload occur for the pilot during periods of high communications load and this communication may be degraded or delayed during air-to-air engagements. Nonetheless, autonomous control of the UAVs through a combination of Vector Steering, Pilot Directed Engagements, and Tactical Battle Management would enable pilots to successfully command up to 3 UAVs as well as their own aircraft against 4 enemy targets, while maintaining acceptable pilot cognitive workload in an air-to-air mission scenario
    corecore