70 research outputs found

    Universality in polytope phase transitions and message passing algorithms

    Full text link
    We consider a class of nonlinear mappings FA,N\mathsf{F}_{A,N} in RN\mathbb{R}^N indexed by symmetric random matrices ARN×NA\in\mathbb{R}^{N\times N} with independent entries. Within spin glass theory, special cases of these mappings correspond to iterating the TAP equations and were studied by Bolthausen [Comm. Math. Phys. 325 (2014) 333-366]. Within information theory, they are known as "approximate message passing" algorithms. We study the high-dimensional (large NN) behavior of the iterates of F\mathsf{F} for polynomial functions F\mathsf{F}, and prove that it is universal; that is, it depends only on the first two moments of the entries of AA, under a sub-Gaussian tail condition. As an application, we prove the universality of a certain phase transition arising in polytope geometry and compressed sensing. This solves, for a broad class of random projections, a conjecture by David Donoho and Jared Tanner.Comment: Published in at http://dx.doi.org/10.1214/14-AAP1010 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Dynamical Functional Theory for Compressed Sensing

    Get PDF
    We introduce a theoretical approach for designing generalizations of the approximate message passing (AMP) algorithm for compressed sensing which are valid for large observation matrices that are drawn from an invariant random matrix ensemble. By design, the fixed points of the algorithm obey the Thouless-Anderson-Palmer (TAP) equations corresponding to the ensemble. Using a dynamical functional approach we are able to derive an effective stochastic process for the marginal statistics of a single component of the dynamics. This allows us to design memory terms in the algorithm in such a way that the resulting fields become Gaussian random variables allowing for an explicit analysis. The asymptotic statistics of these fields are consistent with the replica ansatz of the compressed sensing problem.Comment: 5 pages, accepted for ISIT 201

    Properties of spatial coupling in compressed sensing

    Full text link
    In this paper we address a series of open questions about the construction of spatially coupled measurement matrices in compressed sensing. For hardware implementations one is forced to depart from the limiting regime of parameters in which the proofs of the so-called threshold saturation work. We investigate quantitatively the behavior under finite coupling range, the dependence on the shape of the coupling interaction, and optimization of the so-called seed to minimize distance from optimality. Our analysis explains some of the properties observed empirically in previous works and provides new insight on spatially coupled compressed sensing.Comment: 5 pages, 6 figure

    On Convergence of Approximate Message Passing

    Full text link
    Approximate message passing is an iterative algorithm for compressed sensing and related applications. A solid theory about the performance and convergence of the algorithm exists for measurement matrices having iid entries of zero mean. However, it was observed by several authors that for more general matrices the algorithm often encounters convergence problems. In this paper we identify the reason of the non-convergence for measurement matrices with iid entries and non-zero mean in the context of Bayes optimal inference. Finally we demonstrate numerically that when the iterative update is changed from parallel to sequential the convergence is restored.Comment: 5 pages, 3 figure

    An Approximate Message Passing Algorithm for Rapid Parameter-Free Compressed Sensing MRI

    Get PDF
    For certain sensing matrices, the Approximate Message Passing (AMP) algorithm efficiently reconstructs undersampled signals. However, in Magnetic Resonance Imaging (MRI), where Fourier coefficients of a natural image are sampled with variable density, AMP encounters convergence problems. In response we present an algorithm based on Orthogonal AMP constructed specifically for variable density partial Fourier sensing matrices. For the first time in this setting a state evolution has been observed. A practical advantage of state evolution is that Stein's Unbiased Risk Estimate (SURE) can be effectively implemented, yielding an algorithm with no free parameters. We empirically evaluate the effectiveness of the parameter-free algorithm on simulated data and find that it converges over 5x faster and to a lower mean-squared error solution than Fast Iterative Shrinkage-Thresholding (FISTA).Comment: 5 pages, 5 figures, IEEE International Conference on Image Processing (ICIP) 202

    Convexity in source separation: Models, geometry, and algorithms

    Get PDF
    Source separation or demixing is the process of extracting multiple components entangled within a signal. Contemporary signal processing presents a host of difficult source separation problems, from interference cancellation to background subtraction, blind deconvolution, and even dictionary learning. Despite the recent progress in each of these applications, advances in high-throughput sensor technology place demixing algorithms under pressure to accommodate extremely high-dimensional signals, separate an ever larger number of sources, and cope with more sophisticated signal and mixing models. These difficulties are exacerbated by the need for real-time action in automated decision-making systems. Recent advances in convex optimization provide a simple framework for efficiently solving numerous difficult demixing problems. This article provides an overview of the emerging field, explains the theory that governs the underlying procedures, and surveys algorithms that solve them efficiently. We aim to equip practitioners with a toolkit for constructing their own demixing algorithms that work, as well as concrete intuition for why they work
    corecore