2,156 research outputs found

    Dynamic Dictionary with Subconstant Wasted Bits per Key

    Full text link
    Dictionaries have been one of the central questions in data structures. A dictionary data structure maintains a set of key-value pairs under insertions and deletions such that given a query key, the data structure efficiently returns its value. The state-of-the-art dictionaries [Bender, Farach-Colton, Kuszmaul, Kuszmaul, Liu 2022] store nn key-value pairs with only O(nlog⁑(k)n)O(n \log^{(k)} n) bits of redundancy, and support all operations in O(k)O(k) time, for k≀logβ‘βˆ—nk \leq \log^* n. It was recently shown to be optimal [Li, Liang, Yu, Zhou 2023b]. In this paper, we study the regime where the redundant bits is R=o(n)R=o(n), and show that when RR is at least n/polylog⁑nn/\text{poly}\log n, all operations can be supported in O(logβ‘βˆ—n+log⁑(n/R))O(\log^* n + \log (n/R)) time, matching the lower bound in this regime [Li, Liang, Yu, Zhou 2023b]. We present two data structures based on which range RR is in. The data structure for R<n/log⁑0.1nR<n/\log^{0.1} n utilizes a generalization of adapters studied in [Berger, Kuszmaul, Polak, Tidor, Wein 2022] and [Li, Liang, Yu, Zhou 2023a]. The data structure for Rβ‰₯n/log⁑0.1nR \geq n/\log^{0.1} n is based on recursively hashing into buckets with logarithmic sizes.Comment: 46 pages; SODA 202

    Data Structures in Classical and Quantum Computing

    Get PDF
    This survey summarizes several results about quantum computing related to (mostly static) data structures. First, we describe classical data structures for the set membership and the predecessor search problems: Perfect Hash tables for set membership by Fredman, Koml\'{o}s and Szemer\'{e}di and a data structure by Beame and Fich for predecessor search. We also prove results about their space complexity (how many bits are required) and time complexity (how many bits have to be read to answer a query). After that, we turn our attention to classical data structures with quantum access. In the quantum access model, data is stored in classical bits, but they can be accessed in a quantum way: We may read several bits in superposition for unit cost. We give proofs for lower bounds in this setting that show that the classical data structures from the first section are, in some sense, asymptotically optimal - even in the quantum model. In fact, these proofs are simpler and give stronger results than previous proofs for the classical model of computation. The lower bound for set membership was proved by Radhakrishnan, Sen and Venkatesh and the result for the predecessor problem by Sen and Venkatesh. Finally, we examine fully quantum data structures. Instead of encoding the data in classical bits, we now encode it in qubits. We allow any unitary operation or measurement in order to answer queries. We describe one data structure by de Wolf for the set membership problem and also a general framework using fully quantum data structures in quantum walks by Jeffery, Kothari and Magniez
    • …
    corecore