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Abstract

This survey summarizes several results about quantum computing related to (mostly static)
data structures. First, we describe classical data structures for the set membership and the
predecessor search problems: Perfect Hash tables for set membership from the paper [8] by
Fredman, Komlós and Szemerédi and a data structure by Beame and Fich for predecessor
search presented in [3]. We also prove results about their space complexity (how many bits are
required) and time complexity (how many bits have to be read to answer a query).

After that, we turn our attention to classical data structures with quantum access. In the
quantum access model, data is stored in classical bits, but they can be accessed in a quantum
way: We may read several bits in superposition for unit cost. We give proofs for lower bounds
in this setting that show that the classical data structures from the first section are, in some
sense, asymptotically optimal - even in the quantum model. In fact, these proofs are simpler
and give stronger results than previous proofs for the classical model of computation. The lower
bound for set membership was proved by Radhakrishnan, Sen and Venkatesh in [19] and the
result for the predecessor problem by Sen and Venkatesh in [20].

Finally, we examine fully quantum data structures. Instead of encoding the data in classical
bits, we now encode it in qubits. We allow any unitary operation or measurement in order
to answer queries. We describe one data structure by de Wolf in [25] for the set membership
problem and also a general framework using fully quantum data structures in quantum walks
by Jeffery, Kothari and Magniez in [11].

1 Introduction

1.1 Data Structures

Data structures are a fundamental area of study in computer science since efficient storage and
retrieval of data is an important task. In a data structure problem, we want to encode objects from
some universe U into bit strings so that certain queries about the stored object can be answered
efficiently. The study of data structures is to find and analyse trade-offs between the length of the
bit string and the time it takes to answer queries. The time is measured in terms of the number
of bits or blocks of memory that we must read to answer a query. Data structure problems can be
static or dynamic. For static problems, we are content with having queries answered. For dynamic
problems, we also want the data structure to efficiently support some operations that change the
stored object. This survey is mostly about static problems.

Examples of data structure problems are the set membership problem and its close relative, the
dictionary problem. In the set membership problem, we want to store a set of integers S so that we
can efficiently find out whether some number x is contained in S or not. The set S has size ≤ n and
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the numbers it contains are all < m for some integers n≪ m. The dictionary problem is the same
except that each number in the set S is associated with some additional data. Given an integer k,
we want to be able to find out whether k is in the set and if yes, what data it is associated with.
For example, we might think of a phone book: The integers would be representations of names
and the associated data would be phone numbers. How would we store such a phone book on a
computer in a way that is both efficient in terms of memory and allows us to quickly retrieve the
phone number of any given person?

A simple solution to the set membership problem is the bit vector method. We encode our set
as an m-bit string where the ith bit (counting from 0 to m − 1) is set to 1 if and only if i ∈ S.
This allows us to answer set membership queries by reading a single bit, but it uses a lot of space.
When n≪ m, only a small fraction of bits is set to 1, so it seems like we are wasting a lot of space.

Hash tables offer a practical solution to the set membership problem. We take a “random
looking” hash function h : {0, . . . ,m− 1} → {0, . . . , n− 1}. We would like to store a set S of size n
in n blocks of memory by storing each i ∈ S in block h(i). However, since m is larger than n, our
set may contain numbers i, j such that h(i) = h(j). We call such pairs collisions of h. If the set S
we want to store contains a collision, we need to resolve it in some way. The easiest approach is to
store in slot k a pointer to the head of a linked list that contains all the i ∈ S with h(i) = k. See
Figure 1 for an illustration.

Hash Table Linked Lists

Figure 1: The ith cell in the hash table contains a pointer to the head of a linked list which contains the
stored integers j ∈ S with h(j) = i.

This translates easily into a solution for the dictionary problem: Instead of integers, we store
pairs (k, p) where k is an integer and p is a pointer to the data associated with k.

When the set S that we store is selected at random, there is a high probability that we can
quickly find out whether any given integer k is in S or not. However, in the worst case we must
read a lot of memory blocks: If n ≤ √

m then there exists a set S with at most n elements such
that all elements of S have the same hash value. In that case, our encoding of S is clearly not
better than a simple linked list. Thus, we must read n blocks of memory in the worst case.

In Section 3.1, we describe the Perfect Hashing scheme by Fredman, Komlós and Szemerédi
which works efficiently for every set S. The downside of this method is that, while ordinary
hash tables also allow to add and remove elements of the set easily, there is no straightforward
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way to do so in the Perfect Hashing scheme (other than encoding the changed set “from scratch”).
Nevertheless, if we are only concerned with the static set membership problem, the Perfect Hashing
scheme is asymptotically optimal when we require that our queries are answered correctly with
probability 1, as we will see in Sections 3.1 and 4.1.

Another problem that we study in this survey is the predecessor problem. Again, we encode sets
S ⊆ {0, . . . ,m− 1} of integers, but this time, the data structure should allow us to quickly find the
predecessor of any integer i < m in S. That is, we want to find out if S contains an element smaller
than i, and if yes, we want to find the largest j ∈ S such that j < i. Examples of data structures for
the predecessor problem are Fusion Trees by Fredman and Willard in [9] and X-fast Tries byWillard
in [23]. Fusion Trees need O(n) blocks of logm bits of memory and support predecessor queries
that read O(log n/ log logm) blocks. X-fast Tries use O(n logm) blocks of size logm and support
queries reading O(log logm) blocks. Combining these two data structures with a contribution of
their own, Beame and Fich describe a data structure in [3] that uses O(n2 log n/ log log n) blocks
of size logm and answers predecessor queries reading

O

(

min

(

log logm

log log logm
,

√

log n

log log n

))

blocks.

1.2 Quantum Computing – Informal

A quantum computer is a mostly hypothetical computing device that operates on the basis of
quantum mechanics, unlike classical computers.1 Actual quantum computers have only been built
on a very small scale of a few qubits (quantum bits). While there does not seem to be any physical
law preventing the construction of large-scale quantum computers, it is a hard engineering problem.
This does not prevent theorists from inventing algorithms for quantum computers. The most famous
example is Shor’s factoring algorithm presented in [21] which efficiently computes the prime factors
of a given number and could be used to break the widely-used RSA encryption scheme. Another
important algorithm is Grover’s search algorithm described in [10] which can search a list of length
N in the order of

√
N computational steps.

It is a natural question to ask what quantum computers could do for data structures. We
examine two different models for the interaction of quantum computers and data structures. The
first one is the quantum access model where the data is still encoded into a classical bit string but
is accessed in a quantum way.

However, it turns out that for the data structure problems that we study in this survey, the
quantum access model of computation has no advantage over the classical model, at least in asymp-
totic terms. Nevertheless, the theory of quantum computing is a useful mathematical tool: The
proofs of lower bounds for these problems in the quantum access model are easier to understand and
yield stronger results than earlier proofs given for the classical model. Since a quantum computer
can do anything that a classical computer can do, this also gives us classical lower bounds. There
are many more areas of computer science where results from quantum computing are relevant for

1It is not quite true that actual classical computers are based on classical physics. Quantum effects have to be

taken into account in the construction of classical computer hardware since the transistors used for this are now so

small that quantum effects cannot be ignored anymore. However, they are designed to behave classically.
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classical computing. Unlike quantum algorithms, these results are useful even if large-scale quan-
tum computers are never built and even if quantum mechanics turns out not to be an accurate
description of reality. For a survey of such results, see [7].

The second model can be called fully quantum data structures. We encode our data not in bits,
but in qubits. To answer queries, we may use all the operations available in quantum computing.

2 Preliminaries

2.1 Notation

For every positive integer n, we let [n] denote the set {0, . . . , n−1}. The base-2 logarithm is written
as log and the natural logarithm as ln. When an integer n is not a power of 2, we implicitly round
up log n so that log n is the minimum number of bits required to denote any number from [n]. The
symbol a⊕ b stands for the bit-wise XOR of two bit strings a and b and a◦b is the concatenation of
two strings. We identify non-negative integers with their binary representation and in this sense,
we may talk about a bit string being larger or smaller than another one, or about a bit string being
a prefix of some number.

2.2 Quantum Computing – Formal

Let us now make the idea of quantum computing a little more precise. A k-qubit quantum memory
register is modeled as a unit-length vector in the complex vector space C2k with the standard scalar
product and norm.2 We also call this vector space the state space of our system. The vectors of the
standard basis of this space are denoted as |b〉 for b ∈ {0, 1}k or, using the convention of identifying
non-negative integers with their binary representation, b ∈ [2k]. Thus, every possible state of the
quantum memory can be written as

∑

b∈{0,1}k

αb |b〉

where
∑

b |αb|2 = 1. The complex number αb is called the amplitude of basis state |b〉. When we
read the quantum memory or measure it, we will get result b with probability |αb|2 and the state
will collapse to |b〉. We can operate on a quantum register by applying unitary transforms on it. A
unitary transform is a length-preserving isomorphism, i.e., it is linear, bijective and the length of a
vector does not change when the transform is applied to it.

An easy, yet important example of a unitary transform is the Hadamard transform H. It
operates on a single qubit and maps |0〉 7→ (|0〉 + |1〉)/

√
2 and |1〉 7→ (|0〉 − |1〉)/

√
2. This already

determines its behaviour on the whole vector space C2 since it must be linear. Written as a matrix,
the Hadamard transform looks as follows:

H =
1√
2

(
1 1
1 −1

)

By a simple computation, one can verify that H is its own inverse and hence bijective. It is also
easy to see that it is length-preserving. We write |+〉 = H |0〉 and |−〉 = H |1〉.

2Such vector spaces are examples of Hilbert spaces. A Hilbert space is a complex vector space with a scalar

product. In general, Hilbert spaces may be of infinite dimension, but we only consider finite spaces in this survey.
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Sometimes, we need to model uncertainty about a quantum state. As an example, imagine
that we measure a qubit in state |+〉 in the computational basis, but forget the result of the
measurement. Then we do not know whether our qubit is in state |0〉 or |1〉, but we know that
the probability of either state is 1/2. If we now measure the qubit again, we will see outcome 0
or 1 with probability 1/2 each, just as if it still were in state |+〉. But we know that our qubit
is not in that state anymore. Density matrices capture the distinction between these cases. Let
|ψ1〉 , . . . , |ψn〉 be quantum states and p1, . . . , pn positive real numbers that sum to 1. A system
that is in state |ψi〉 with probability pi is modeled as a matrix ρ =

∑

i pi |ψi〉 〈ψi|. If n = 1, we say
that our system is in a pure state and it can be described by a state vector. If n > 1, we speak of a
mixed state. Every density matrix ρ has trace Tr(ρ) =

∑

i ρii = 1 and is positive semi-definite, i.e.,
〈φ| ρ |φ〉 ≥ 0 for every vector |φ〉 in the state space. Conversely, one can show that every matrix
with these properties can be expressed as a sum

∑

i pi |ψi〉 〈ψi| for appropriate probabilities and
quantum states. When we measure a qubit that is described by ρ in the computational basis, with
probability ρii we will see outcome i and the system will collapse to pure state |i〉 〈i|. When we
apply a unitary U to a system described by ρ, the result is UρU∗.

Let us now apply the density matrix formalism to our example. The density matrix of |+〉 is

|+〉 〈+| = 1

2

(
1 1
1 1

)

whereas the state after the measurement, when we forget the result, is

1

2
|0〉 〈0|+ 1

2
|1〉 〈1| = 1

2

(
1 0
0 0

)

+
1

2

(
0 0
0 1

)

=
1

2

(
1 0
0 1

)

.

An introduction to quantum computing can be found in the book “Quantum Computation
and Quantum Information” by Michael A. Nielsen and Isaac L. Chuang [18]. We will assume some
familiarity with the basics of quantum computing, but give a short review of the quantum cell-probe
model of computation in Section 2.3.

2.3 Bit-Probe and Cell-Probe Algorithms

We now describe the computational models which we use for the algorithms that answer data
structure queries. In the bit-probe model, any computation is for free, but reading a bit from the
input bit string x = x0 . . . xn−1 ∈ {0, 1}n carries unit cost. Which bits are read may depend on
the results of previous bit-probes. In the cell-probe model, we fix some cell-size or block-size w and
view our input bit string x as a sequence of cells or blocks of length w. That is, the first block is
x0 . . . xw−1, the second is xw . . . x2w−1 and so on. Instead of single bits, we may read a whole block
at once for unit cost and computation is still for free. We assume that the length of x is a multiple
of w which can always be achieved by appending some padding. Obviously, the bit-probe model is
the cell-probe model with cell-size w = 1.

We can formalize algorithms in this model as decision trees. In a decision tree, each non-leaf
node u is labeled with an integer iu ∈ [n/w] and each leaf is labeled with a possible output of the
algorithm. A non-leaf node u in a decision tree has exactly 2w children and every edge leading to
a child of u is labeled with a unique number from [2w]. A decision tree is evaluated on input x by
starting at the root r and proceeding along the edge labeled with xir to a child u of r. We then
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proceed along the edge labeled xiu and so on, until we reach a leaf. The label of the leaf is the
output of the algorithm. The cell-probe complexity is the depth of the tree.

Probabilistic cell-probe algorithms are modeled as probability distributions over finite sets of
decision trees and are evaluated by randomly selecting a decision tree according to the distribution
and evaluating it. The complexity is the maximal depth among all the trees that have positive
probability. Cell probe algorithms with auxiliary input from finite domain Q map every q ∈ Q
to some decision tree or probability distribution over decision trees. The auxiliary input does not
count towards the complexity of the algorithm.

Quantum cell-probe algorithms have classical input x = x0 . . . xn−1 and classical output, but
compute on qubits instead of classical bits. Furthermore, they are allowed to read several bits/blocks
at once in superposition for unit cost. The state space that a quantum algorithm operates on is
given as H = HL ⊗HB ⊗HZ . The Hilbert space HL consists of the address qubits and is used for
denoting which blocks of x are to be read next. It consists of log(n/w) qubits. The state space HB

describes w qubits which are called the data qubits. They store the result when blocks of x are
read. Finally, HZ consists of an arbitrary number of qubits which are used as workspace for the
algorithm.

A quantum cell-probe algorithm of complexity t is given by a sequence U0, . . . , Ut of unitary
transforms on H which are independent of the input x. The input is accessed by a unitary oracle
transform Ox that depends on x. For computational basis states |l〉L ∈ HL, |b〉B ∈ HB and
|z〉Z ∈ HZ , the action of Ox is given by

|l〉L |b〉B |z〉Z 7→ |l〉L
∣
∣b⊕ xlw . . . x(l+1)w−1

〉

B
|z〉Z .

The algorithm is evaluated as follows: The state space is initialized to some state |φ〉 which may
encode some auxiliary input. Then, we apply the unitary transform

UtOxUt−1Ox . . . U1OxU0

to |φ〉. The output of the algorithm is obtained by measuring the rightmost qubits of the work
space. Quantum cell probe algorithms can simulate both deterministic and probabilistic classical
cell-probe algorithms.

If the block-size is 1, we can alternatively define the oracle transform by

Ox,± : |l〉L |b〉B |z〉Z 7→ (−1)b·xl |l〉L |b〉B |z〉Z
which is equivalent to Ox in the sense that one can be used to implement the other with the help of
the Hadamard transform H : |b〉 7→ (1/

√
2)(|0〉+(−1)b |1〉) which can be included in the transforms

before and after the query. We have

|l〉L |0〉B |z〉Z
HB7−→ 1√

2
|l〉L (|0〉B + |1〉B) |z〉Z

Ox7−→ 1√
2
|l〉L (|0〉B + |1〉B) |z〉Z

HB7−→ |l〉L |0〉B |z〉Z

|l〉L |1〉B |z〉Z
HB7−→ 1√

2
|l〉L (|0〉B − |1〉B) |z〉Z

Ox7−→ (−1)xl
1√
2
|l〉L (|0〉B − |1〉B) |z〉Z

HB7−→ (−1)xl |l〉L |1〉B |z〉Z
|l〉L |b〉B |z〉Z

HB7−→ 1√
2
|l〉L

(

|0〉B + (−1)b |1〉B
)

|z〉Z
Ox,±7−→ 1√

2
|l〉L

(

|0〉B + (−1)b⊕xl |1〉B
)

|z〉Z
HB7−→ |l〉L |b⊕ xl〉B |z〉Z
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The ±-type oracle transform is represented by a diagonal matrix where the entries on the diagonal
are either −1 or 1 which is helpful in a proof presented in Section 4.1.

2.4 Data Structure Problems and Solutions

A static data structure problem is given by a finite universe U , a finite set of queries Q, a finite
set of answers A and a function f : U × Q → A. A classical data structure for such a problem is
given by a function φ that encodes elements of U as bit strings and a classical cell-probe algorithm
with auxiliary input domain Q that computes f(u, q) on input φ(u) and auxiliary input q. This
algorithm is called the query algorithm3 of that data structure. The space complexity of the data
structure is the maximal number of blocks/bits in φ(u) and the time complexity is the maximal
number of blocks/bits read by the query algorithm. We can either consider deterministic algorithms
or we can use probabilistic algorithms and allow some error probability.

A classical data structure with quantum access is defined similarly, except that instead of
classical algorithms, we have a quantum cell-probe algorithm that, given the initial state |q〉 |0〉 and
oracle transform Oφ(u), computes f(u, q). As for classical data structures, we can consider either
exact quantum algorithms which always have to return the correct answer or we can allow some
error probability.

Every data structure problem has two trivial solutions: The first one minimizes time complexity
by listing the answers to all queries. This, in general, requires a lot of space. The bit vector scheme
mentioned in Section 1.1 is an application of this type of solution to the set membership problem.
The second one minimizes space complexity by encoding elements of U using the information
theoretic minimum of bits, log |U|. This usually causes a large time complexity. In studying data
structures, we look for interesting trade-offs between these extremes.

Every data structure that uses block-size w and has space complexity s and time complexity t
can be converted to a data structure with block-size 1, space complexity ws and time complexity
wt. The converse is not necessarily true. For a survey on classical data structures and the classical
cell-probe model see [15].

2.5 Set Membership and Predecessor Search

The two problems that we focus on in this survey are set membership and predecessor search. These
problems are parametrized by positive integers m and n with m ≥ n. The universe U in both cases
consists of the sets S ⊆ [m] such that |S| ≤ n. In the set membership problem, we want to store a
set S so that we can answer for every i ∈ [m] the question “Is i ∈ S?”. In the predecessor search
problem, we want to store S so that we can answer for every i ∈ [m] the question “Is there some
j ∈ S with j < i and if yes, which is the greatest j with that property?”. The block-sizes we
consider are 1 and logm.

2.6 Outline

In Section 3, we present a data structure for each of the problems we just described: The Perfect
Hashing scheme for set membership and a data structure given by Beame and Fich for predecessor
search. Section 4 explains proofs for lower bounds in the quantum access model which show that the

3Sometimes, algorithms in the bit-probe and cell-probe model are called query algorithms and the bit-probes or

cell-probes are called queries. We do not use this terminology here to avoid confusion with data structure queries.
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data structures given in the previous section are optimal in the sense that faster query algorithms
would require more space. Finally, Section 5 describes some “fully quantum” data structures that
encode the data not in classical bits but in qubits and shows an application of such data structures
in quantum random walk algorithms.

3 Classical Data Structures

3.1 Static Set Membership: Hash Tables

Suppose that we want to store a subset S ⊆ [m] = {0, . . . ,m − 1} for m ∈ N and we want to be
able to answer membership queries “Is i ∈ S?” for every i ∈ [m].

The most straightforward way is to store such a set S as a bit vector φ(S) with φ(S)[i] = 1 if
and only if i ∈ S. This allows to answer membership queries reading exactly one cell: We just have
to read the cell that contains the ith bit of φ(S) and output the value of that bit. However, this
structure always uses m bits of space or ⌈m/ logm⌉ blocks for block-size logm, so if the size n of
S is small compared to m, this method wastes a lot of space. In this subsection, we will see the
Perfect Hashing scheme developed by Fredman, Komlós and Szemerédi in [8] that stores a set S of
size n using O(n) blocks of size logm while answering set membership queries requires only O(1)
cell-probes. Our presentation follows [6, Section 11].

Recall the hash table method of storing a set from Section 1.1. Given the name, it is not
surprising that the Perfect Hashing scheme is similar to this method. While hash tables are quite
fast in practice, we saw that they have a worst-case time complexity of Ω(n). To avoid this, we are
going to make the following changes: First, we do not rely on a single hash function but we use a
universal class of hash functions, i.e., a class of hash functions with the property that, for any two
given integers i, j ∈ [n] and h randomly selected from that class, it is unlikely that i and j collide.
Second, we expand the size of our table to O(n2) and show that a universal class of hash functions
for that table size contains some function that has no collision on S of size n. Third, to reduce
the size back to O(n), we use a hash table of size n and resolve collisions by storing the set Si of
elements of S that collide in slot i (here, Si is a random variable depending on the selected hash
function h) in a hash table of size O(|Si|2). We show that we can choose a hash function from a
universal class such that

∑

i |Si|2 < 2n.

Definition 3.1. A universal class of hash functions from [m] to [k] is a set H of functions h :
[m] → [k] such that, for any two distinct i, j ∈ [m], if we select h ∈ H uniformly at random, the
probability that h(i) = h(j) is at most 1/k.

The following lemma gives an upper bound on the probability that a hash function selected
uniformly at random from a universal class of hash functions from [m] to [n2] has a collision on a
fixed set S of size n.

Lemma 3.2. Let H be a universal class of hash functions from [m] to [n2] and S ⊆ [m] of size
≤ n. The probability that a randomly selected hash function h ∈ H has a collision in S is less than
1/2.

Proof. Let C be the random variable that counts the collisions on S for h ∈ H selected uniformly
at random. That is, C = |{(i, j) ∈ S2 | i < j, h(i) = h(j)}|. If we let Ci,j be the indicator random
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variable for h(i) = h(j), we have

C =
∑

i,j∈S,i<j

Ci,j

and since H is universal, E[Ci,j] ≤ 1/n2. By linearity of expectation we have

E[C] =
∑

i,j∈S,i<j

E[Ci,j] ≤
∑

i,j∈S,i<j

1

n2
=

(
n

2

)
1

n2
=
n2 − n

2
· 1

n2
=

1

2
− 1

2n
<

1

2

Since we have Pr[C ≥ 1] ≤ E[C] by Markov’s inequality, we can conclude that h ∈ H selected
uniformly at random has a collision on S with probability less than 1/2.

To construct the O(n2)-size data structure, we still need something more than that: We need,
for every m and n, a universal class of hash functions such that each function can be uniquely
identified by O(logm) bits. We will now give a construction for classes of hash functions that we
later show to be universal and that can fulfill this size requirement.

Definition 3.3. For m ∈ N and k ≤ m and a prime number p ≥ m, define the class of hash
functions Hp,m,k from [m] to [k] in the following way: For a ∈ Z

∗
p, let

hp,m,k,a : [m] → [k], x 7→ (ax mod p) mod k

and let
Hp,m,k = {hp,m,k,a | a ∈ Z

∗
p}

If m is known, hp,m,k,a can be easily computed given p, k, a. Clearly, k can be stored in one
logm-bit block since k ≤ m. We can also choose p ≥ m such that p and a can be represented in a
constant number of blocks, as follows:

By [13, Theorem 7.32], there exists a constant c so that for any r ≥ 1, the number of primes
that require exactly r + 1 bits to be represented4 is at least c · 2r/(k + 1). Substituting logm for
k, we see that there are at least c ·m/(logm+ 1) primes p such that m ≤ p < 2 ·m. Hence, there
is a prime p ≥ m that can be represented with at most 2 logm bits. Thus, p and a can both be
stored in two logm-blocks each. The total number of logm-blocks to store p, k and a is therefore
l = 5. We can probabilistically find such a prime p in time polynomial in m by randomly checking
numbers in the appropriate range for primality (see [13, Sections 7.2.1 and 7.2.2]).

Let us now prove that the classes in Definition 3.3 are indeed universal.

Theorem 3.4. The classes Hp,m,k from Definition 3.3 are universal classes of hash functions.

Proof. Consider any two distinct natural numbers y, z < p. Let h̃a(x) = ax mod p. We first show
that for a ∈ Z

∗
p selected uniformly at random, h̃a(y)− h̃a(z) is a uniformly random element of Z∗

p.

Indeed, h̃a(y) − h̃a(z) = a(y − z) mod p. We have y − z mod p 6= 0 since y 6= z and y, z < p. For
any b ∈ Z

∗
p, the probability that a = b(y − z)−1 is 1/(p − 1).

We have hp,m,k,a(y) = hp,m,k,a(z) if and only if h̃a(y) − h̃a(z) mod k = 0. Since for any given
l ∈ [n] there are at most ⌈p/k⌉ − 1 elements b of Z∗

p such that b ≡ l mod k, it follows that the

probability of h̃a(y)− h̃a(z) ≡ 0 mod k is at most

⌈p/k⌉ − 1

p− 1
.

4I.e., the number of primes p with 2r ≤ p < 2r+1
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We have

⌈p/k⌉ − 1 ≤ p+ k − 1

k
− 1 =

p− 1

k
.

and therefore, the probability that hp,m,k,a(y) = hp,m,k,a(z) is

⌈p/k⌉ − 1

p− 1
≤ p− 1

k(p− 1)
=

1

k

and thus, the definition of a universal class is satisfied.

Theorem 3.5 (Quadratic Hash Table). There is a data structure with block-size logm that stores
subsets of [m] of size n ≤ √

m in O(n2) blocks such that the membership query algorithm needs to
make a constant number of cell-probes.

Proof. We store S ⊆ [m] of size ≤ n in the following way: Let p be a prime number larger than
m. By Lemma 3.2 and since Hp,m,n2 is universal, there exists some hp,m,n2,a ∈ Hp,m,n2 that has no
collision on S. Let a be a number such that h = hp,m,n2,a has that property. We set aside the first
l = 5 blocks to store p, a and n. Then, we append an array A of n2 blocks that we fill in as follows:

1. For i ∈ S, we store i in A[h(i)].

2. For every j ∈ [n2] such that A[j] has not been filled in step 1, we indicate that no element of
S has hash value j by storing in A[j] some k ∈ [m] with h(k) 6= j.

By our choice of a, no collisions can occur in step 1. Thus, for every i ∈ S, A[h(i)] contains i. Step
2 makes sure that A[h(i)] contains i only if i ∈ S.

The query algorithm to determine whether i ∈ S works as follows: We read the first l blocks to
determine the hash function h = hp,n2,a that was used for storing the data. We then read A[h(i)].
If A[h(i)] = i, we output “Yes” and otherwise “No”. This query algorithm reads l + 1 = O(1)
blocks.

This data structure already improves on the space complexity O(m) of the bit vector method for
n ≤ √

m. But, as promised, we can do better. The Perfect Hashing method by Fredman, Komlós
and Szemerédi uses two layers of hashing. The first hash table has size O(n) and each cell i holds
a pointer to a quadratic hash table from the proof of Theorem 3.5. The elements j ∈ S that collide
in slot i are stored in that quadratic hash table. We show that a universal class of hash functions
contains a function h for the first layer such that the sizes of the tables in the second layer add up
to no more than O(n).

Theorem 3.6. Let H be a universal class of hash functions from [m] to [n] and let S ⊆ [m] be a
set of size n. Let Ni be the random variable that for h ∈ H selected uniformly at random counts
the elements j ∈ S such that h(j) = i. Then,

E




∑

i∈[n]

N2
i



 < 2n
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Proof. For any integer a it holds that

a2 = a+ 2 · a
2 − a

2
= a+ 2 ·

(
a

2

)

and thus, by linearity of expectation,

E




∑

i∈[n]

N2
i



 = E




∑

i∈[n]

Ni +
∑

i∈[n]

2 ·
(
Ni

2

)




= E




∑

i∈[n]

Ni



+ 2 · E




∑

i∈[n]

(
Ni

2

)




Since every element of S hashes to exactly one value in [n], we have
∑

i∈[n]Ni = n. Now, we show

that the second term is upper bounded by n. Note that
(Ni

2

)
is the number of pairs (j, k) ∈ S2

with j < k such that h(j) = h(k) = i. Thus,
∑

i

(Ni

2

)
is the number of collisions of h on S, i.e., the

number of pairs (j, k) with j < k such that h(j) = h(k). Analogous to the proof of Lemma 3.2, we
can use the universality of H to conclude that

E




∑

i∈[n]

(
Ni

2

)


 ≤
(
n

2

)

· 1
n
=
n− 1

2

and hence,

E




∑

i∈[n]

N2
i



 ≤ E[n] + 2 · n− 1

2
= n+ n− 1 < 2n

as claimed.

Corollary 3.7 (Perfect Hashing). There is a data structure for storing subsets of [m] with size n
using O(n) blocks of size logm such that set membership queries can be answered by reading O(1)
cells.

Proof. Without loss of generality, we assume that m = ω(n), for otherwise the bit vector method
already has a space requirement of only O(n). We let p be a prime that is greater than m. Let
S ⊆ [m] with |S| ≤ n be the set we wish to store. For h ∈ Hp,m,n, let Sh,i = {j ∈ S | h(j) = i}
and nh,i = max (|Sh,i|, 1). By Theorem 3.6, there is some h ∈ Hp,m,n such that

∑n−1
i=0 (|Sh,i|)2 < 2n.

Let a be an element of Z∗
p such that h = ha has that property and let ni = nh,i. For every i ∈ [n],

select ai ∈ Z
∗
p such that the function hi : x 7→ (aix mod p) mod n2i has no collisions on Si = Sh,i.

The existence of these ai follows from Lemma 3.2.
Now, we store a, p and n in the first l blocks. We append an array A with n entries such that,

for every i ∈ [n], A[i] = (ai, ni), and an array P of the same size with P [i] =
∑i−1

j=0 |Sj|2. The array
A stores n entries consisting of 3 blocks each, so it uses O(n) blocks. Since

∑n−1
i=0 |Si|2 < 2n, the

array P requires O(n · logm) bits or O(n) blocks.
We construct for each i a quadratic hash table for Si as in the proof of Theorem 3.5 and

concatenate all the hash tables in ascending order for i (we leave out the first l blocks of each table
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containing the information about the hash function, since that is already stored in array A). The
entries in array P were selected so that P [i] is the starting position of the ith hash table in this
concatenation. We call the concatenated table T and append it to the data structure. That table

requires O
(
∑n−1

i=0 |Si|2
)

= O(n) blocks of space. Thus, we use O(n) blocks in total. See Figure 2

for an illustration of this data structure.
Now, queries whether j ∈ S are answered in the following way:

1. Read the first l blocks to find out which hash function h = hp,m,n,a was used for the primary
hash table.

2. Compute i = h(j) and retrieve the parameters (ai, ni) = A[i] of the secondary hash table we
need to access and its starting point si = P [i].

3. Read j′ = T [((ai · j mod p) mod n2i ) + si]. If j = j′, answer “Yes” and otherwise “No”.

This algorithm requires reading l + log(2n)/ logm+ 4 = O(1) blocks.

Primary hash function 

parameters

Secondary hash function 

parameters

Starting points of 

secondary hash tables

Secondary hash tables

A[0]

A[1]

A[2]

A[3]

A[4]

A[5]

P[0]

P[1]

P[2]

P[3]

P[4]

P[5]

Figure 2: A Perfect Hash table with n = 6. The ith entry of the table labeled “Starting points of secondary
hash tables” stores the beginning of the table that stores the elements of P with hash value i. The ith entry
of the table labeled “Secondary hash function parameters” stores the parameters for that table. From the
sizes of the secondary tables, we can see that two elements collide at hash value 0 and at hash value 4 and
that no other collisions occur.

Remark 3.8. The Perfect Hashing scheme also helps us solve the dictionary problem. If the data
associated with each integer fits in O(1) blocks, we can simply store this data next to the integer
in the hash table without affecting the asymptotic time and space complexity. We will make use
of this fact in Section 4.2 to prove a lower bound on the time complexity of data structures for
the predecessor search problem, given a certain upper limit for the space, by storing the following
information in the dictionary.
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Let the rank of some i ∈ [m] in S be defined by rankS(i) = |{j ∈ S | j ≤ i}|, the number of
elements in S that are not greater than i. If we allow two cells for each entry in the hash table,
we can store in addition to each i ∈ S its rank rankS(i). Note that this is not an efficient data
structure for the rank problem where we want to store a set S such that we can determine the rank
in S of any i ∈ [m].

The following lemma shows that (for n small enough) the Perfect Hashing scheme is asymptoti-
cally optimal in the classical (logm)-bit cell-probe model. That is, its space complexity differs from
the information-theoretic minimum only by a constant factor while its time complexity is constant.

Lemma 3.9. Let n ≤ md for some constant d with 0 < d < 1. Then, the minimum number of bits
required for storing subsets of [m] with size at most n is

log

n∑

i=0

(
m

i

)

≥ n(1− d) logm = Ω(n logm)

and the minimum number of (logm)-cells is therefore Ω(n).

Proof. Since the number of sets S ⊆ [m] with |S| ≤ n is
∑n

i=0

(m
i

)
, the minimum number of bits

required for a data structure that stores such sets is log
∑n

i=0

(m
i

)
. If n ≤ md, we have

log

n∑

i=0

(
m

i

)

≥ log

(
m

n

)

≥ log
((m

n

)n)

= n(logm− log n)

≥ n(logm− d logm)

= n(1− d) logm

= Ω(n logm)

as claimed.

However, this result does not show that the Perfect Hashing scheme is asymptotically optimal
in the bit-probe model. In the bit-probe model, the Perfect Hashing scheme has a time complexity
of O(logm) bit-probes and a space complexity of O(n logm) bits. The space complexity is asymp-
totically optimal. But can we reduce the time complexity without increasing the space complexity?
In Section 4.1, we will see that the answer is “no” as long as we do not allow two-sided error.
The Perfect Hashing scheme is even asymptotically optimal in the quantum bit-probe model, both
exact and with one-sided error. However, if we allow two-sided error, we can be faster: In [5],
Buhrman, Miltersen, Radhakrishnan and Venkatesh describe a classical data structure that uses
space O((n/ǫ2) logm) and answers membership queries with two-sided error probability at most
ǫ using only one bit-probe. By setting ǫ to some small constant, we get a data structure for the
set membership problem with time complexity 1 and (up to a constant factor) minimal space
complexity.

3.2 Predecessor Search: Beame & Fich

If we want to be able to quickly find the predecessor of x ∈ [m] in a stored set S ⊆ [m], i.e., the
largest y ∈ S such that y < x, the data structures described in Section 3.1 are not very helpful. A
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better solution was found by Beame and Fich in [3]. Their data structure can store sets S ⊆ [m]
with |S| ≤ n in O(n2 log n/ log log n) blocks of size logm bits and answers predecessor queries with

O

(

min

(

log logm

log log logm
,

√

log n

log log n

))

cell-probes. In the same paper, they also proved a matching lower bound in the classical deter-
ministic cell-probe model for the time complexity under the condition that the space complexity
is O(n2 log n/ log log n). A simpler proof was given by Sen and Venkatesh in [20] for a restricted
version of quantum cell-probe algorithms. This restricted model still encompasses the classical
probabilistic and deterministic cell-probe model. The proof by Sen and Venkatesh is described in
Section 4.2 of this survey.

The data structure invented by Beame and Fich needs to be combined with other data structures
to be efficient, namely, X-fast Tries and Fusion Trees. But first we will focus on the contributions
by Beame and Fich. One building block for their data structure is the parallel hash table which,
given a large enough block-size, supports membership queries to multiple sets with a constant
number of queries.

Lemma 3.10 (Parallel Hash Table). Let q be a positive integer and w = q logm. There is a
data structure that stores q sets S0, S1, . . . , Sq−1 ⊆ [m] each of size at most n using O((2n)q) =
O(2(log n+1)q) blocks of size w such that every q-tuple of queries of the form queries (x0 ∈ S0?, x1 ∈
S1?, . . . , xq−1 ∈ Sq−1?) can be answered with a constant number of cell-probes, independent of q.5

Proof. To represent a collection S0, S1, . . . , Sq−1 of sets, we first create for every i the arrays A, P
and T from the proof of Corollary 3.7 (with block-size logm). Let pi, ai and ni be the parameters
of the primary hash function hi used in storing Si and let Ai and Pi be the first two arrays in the
resulting Perfect Hash table for Si. Let Ti be the concatenation of the secondary tables of the ith
Perfect Hash table.

The first things that we store are pi, ai, ni for every i. Using (q logm)-size blocks, this requires
O(1) blocks. Let j0, . . . , jq−1 ∈ [n] and j = j0 ◦ · · · ◦ jq−1 be the concatenation of the binary
representations of these numbers. We construct arrays A′ and P ′ of size nq such that for each such
j,

A′[j] = (A0[j0], A1[j1], . . . , Aq−i[jq−1])

P ′[j] = (P0[j0], P1[j1], . . . , Pq−i[jq−1])

Each entry in these arrays can be stored in a constant number of (q logm)-blocks, so the total size
of each of these tables is O(nq). Furthermore, we construct an array T ′ of size (2n)q such that for
j0, . . . , jq−1 ∈ [2n] and j their concatenation

T ′[j] = (T0[j0], . . . , Tq−1[jq−1]).

Again, each entry in the table can be stored in a constant number of (q logm)-blocks. The size of
the whole table is thus O((2n)q). The data structure consists of the arrays A′, P ′ and T ′ and thus
requires O((2n)q) blocks of size q logm.

5This is possible since q is absorbed into the block-size.
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Let us now see how we answer q parallel queries: We have x0, x1, . . . , xq−1 ∈ [m] and we
want to answer the questions xi ∈ Si? for every i = 0, . . . , q − 1. We read a constant number
of blocks to find pi, ai and ni for i = 0, . . . , q − 1 and can now compute the hash functions
hi : x 7→ (aix mod pi) mod ni that were used in the Perfect Hashing tables. We let ji = hi(xi) and
j = j0 ◦ · · · ◦ jq−1. We read A′[j]; let (a′0, n

′
0), (a

′
1, n

′
1), . . . , (a

′
q−1, n

′
q−1) denote the content. We also

read P ′[j] and let s0, s1, . . . , sq−1 be the values stored there. Now let ki = (a′ix mod p) mod n′2i + s′i
and k = k0 ◦ k1 ◦ · · · ◦ kq−1. Finally, we read T ′[k]. Thus, we get for each i = 0, . . . , q − 1 the
value Ti[ki] where ki is the position of Ti that we would read when we search for xi in the Perfect
Hash table of Si. Hence, we can answer all the queries. We have to read a constant number of
(q logm)-blocks for this algorithm.

We also need the concept of tries.

Definition 3.11. Let Σ be some alphabet. A trie over Σ is a tree where each node is some word
from Σ∗ and each edge is labeled with a letter from Σ such that the following conditions are satisfied:

• The root is the empty word.

• If u is a non-root node and v its parent, then there is some σ ∈ Σ such that σ is the label of
the edge between u and its parent and u = vσ.

We say that a trie stores a word δ if it is one of the trie’s leaves. Similarly, we say that it stores a
set of words if it stores exactly those words that are in the set.

If we think of a trie as a deterministic automaton where the leaves are the accepting states and
the root is the starting state, the set of words that the trie stores is the language accepted by it.
The Beame & Fich data structure uses tries to store sets S ⊆ [m] where we view elements of S as
words over the alphabet [m/2c] for some c. At a certain subset of the nodes we store information
that helps in finding predecessors. The nodes that we select for this are determined by a property
that is called heaviness which is defined as follows:

Definition 3.12. Let S be a set of s strings of length L over the alphabet [m] with 0 < s ≤ n. Let
T be the trie of depth L that stores S. A node u in T is called n-heavy, or simply heavy since n is
always understood from the context, if the subtree rooted at u has at least max(s/n1/L, 2) leaves.

The root is always heavy and a parent of a heavy node is heavy as well. See Figure 3 for an illus-
tration. The depicted trie over the alphabet {0, 1} stores S = {0010, 0011, 0100, 1101, 1110, 1111},
so we have s = 6 and L = 4. The black nodes are n-heavy for n = 16, since we have s/n1/L =
6/161/4 = 6/2 = 3 and thus, a node is n-heavy if and only if its subtree has at least 3 leaves. For
n < 16, a node needs more than 3 leaves in its subtree to be heavy. For such n, only the root is
n-heavy in our illustration.

Using parallel hashing, we can construct a data structure to store a trie that allows to search
for the longest heavy prefix of a string with a constant number of cell-probes.

Lemma 3.13. Let T be a trie over the alphabet [2k] of depth L with at most n leaves such that
2L(L − 1) ≤ log n. There is a data structure with block-size b = Θ(kL) that can store T in O(n)
blocks such that, given a string x = x1x2 . . . xk with xi ∈ [2k], the longest proper prefix x′ of x such
that x′ is a heavy node can be found with O(1) cell-probes.
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0

0

0 0

1

1

1 1

1

0 0 01 1 1

0010 0011 0100 1101 1110 1111
Figure 3: A trie over the alphabet {0, 1} storing a set S of s = 6 strings of length L = 4. For n = 16, the
n-heavy nodes are colored black.

Proof. For d = 1, . . . , L− 2 let Sd be defined as

Sd = {z ∈ [2k] | yz is a heavy node at depth d for some y.}.

Since there are at most n1/L heavy nodes at each depth, we have |Sd| ≤ n1/L. We store S1, . . . , SL−2

in a parallel hash table, as in Lemma 3.10. The block-size is qk = (L − 1)k and we need
O
(
2((log(n)/L)+1)(L−2)

)
blocks to store the parallel hash table. We have

(
log n

L
+ 1

)

(L− 2) <

(
log n

L
+ 2

)

(L− 1) =
log(n)(L− 1) + 2L(L− 1)

L

≤ log(n)(L− 1) + log n

L
= log n

and hence we need O(2log n) = O(n) blocks of memory.
To find the longest heavy proper prefix of x = x1x2 . . . xk, we evaluate the queries x1 ∈ S1?, x2 ∈

S2?, . . . , xk−1 ∈ Sk−1? in parallel. This requires only O(1) cell-probes. Since the predecessor of a
heavy node is a heavy node as well, there must be some index i with 0 ≤ i ≤ k − 1 such that, for
all j ≤ i, we have xj ∈ Sj and for j > i, xj 6∈ Sj . If i = 0, the longest heavy prefix of x is the
empty string. Otherwise, the string x′ = x1 . . . xi is the correct answer.

The data structure by Beame and Fich is constructed recursively; in the proof of the following
lemma we describe that construction.

Lemma 3.14. Let a, c, u, L, n, s be integers such that a, c ∈ [u + 1], n ≥ uu, 1 ≤ L ≤ u and
s ≤ na/u. For any b ≥

(
2(u− 1)2 − 1

)
Luc there is a data structure using block-size b that allows to

store a set of s integers from
[
2Lu

c]
in O(sn/u2) blocks and allows to answer predecessor queries

with O(a+ c) cell-probes.
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Proof. There are two different base cases for the data structure: The first base case is a = 0. We
then have s ≤ 1, so the sets that we store are singletons or empty. We can store the single element
in such a set using one block of space. The second base case is L = 1 and c = 0. Then, the integers
in the set that we store come from the universe {0, 1}, so we can store it as a 2-bit characteristic
vector.

If L = 1 and c ≥ 1, we replace L by L′ = Lu and c by c′ = c−1. This change does not affect the
value of Luc and thus it does not affect the universe size, block-size or any of the other parameters.
In the recursive instances, either L will be set to 1 (and we apply the substitution just described,
if c ≥ 1), or a is reduced by one, until we reach one of the base cases.

Now we assume that a > 0, L > 1 and c ≥ 0 and let S be a subset of
[
2Lu

c]
of size at most

s. Let T0 be the binary trie of depth Luc that stores the set S. For j such that 0 < j ≤ c, let Tj
be the trie of depth Luc−j that consists of the nodes in T0 at all levels divisible by uj ; the parent
relation in Tj is defined as follows: For a node v at level k in Tj (and hence at level ujk in Tj−1),
we let the parent of v be the ancestor of v in Tj−1 at level uj(k−1). The trie Tj encodes the set S if
we view it as a set of strings over

[
uj
]
of length Luc−j. For j = c, we have a trie Tc of depth L that

stores S as a set of length-L strings over [uc]. Figure 4 illustrates the construction of T0 and T1 for
L = u = 2 and c = 1. Both tries store the set S = {1, 2, 9, 13} ⊆ [16]. In T0, these numbers are
encoded in their binary representations as bit strings of length 4, in T1 they are encoded in their
base-4 representation as strings of length 2 over the alphabet [4].

0

0

0

0

0

0 0

1

1

11

1

1

0001 0010 1001 1101

1 1 12

20 3

01 02 21 31

T
0 T

1

Figure 4: An illustration of the construction of the tries T0 and T1.

For every node v ∈ Tc, we let minS(v) denote the minimal element of S with prefix v and
maxS(v) the maximal element with prefix v. Every recursive instance of the data structure will be
associated with a node of one of the tries T0, . . . , Tc for analysis purposes.

Our data structure consists of the following parts:

1. An instance of the data structure from Lemma 3.13 storing Tc.

2. For every heavy node v in Tc and every node v that has a heavy parent, we store minS(v),
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maxS(v) and pred(minS(v), S), the predecessor of minS(v) in S.

3. For every heavy node v that has at least two children, we store the labels of edges that
lead to the non-heavy children of v in a Perfect Hash table. We also store the set Sv =
{
w ∈

[
2u

c] | vw is a child of v in Tc
}
in a recursive instance of our data structure (with L = 1

and the other parameters as before). That instance will be associated with the node v in the
trie Tc−1.

4. For every non-heavy node v at depth d with 0 < d < L in Tc that has a heavy parent and at

least two leaves in its subtree, we store the set S′
v =

{

w ∈
[
2u

c]L−d
∣
∣
∣ vw ∈ S

}

in a recursive

instance of our data structure. The set S′
u has size at most s/n1/L ≤ s/n1/u ≤ n(a−1)/u. We

associate this instance with node v in Tc if d < L− 1 and with node v in Tc−1 if d = L− 1.

Let us illustrate this by continuing the example from Figure 4. Let L = u = 2, n = 4 and
S = {1, 3, 9, 13}. Since u/n1/L = 2/

√
4 = 1, a node is heavy if and only if its subtree contains at

least two leafs (recall that a node needs at least 2 leaves in its subtree to be heavy, regardless of
the parameters). Thus, in the trie T1, the heavy nodes are the root and the node 0. For the root
node r, we store minS(r) = 1, maxS(r) = 13 and pred(minS(r), S) = ⊥. We create a Perfect Hash
table storing the labels of the edges to non-heavy children of r, i.e., 2 and 3 and we store the set
Sr = {0, 2, 3} in a recursive instance of the data structure with parameters L = 1 and u and c as
before (these parameters are then transformed to L = 2 and c = 1). Since the node 0 is heavy too, we
store minS(0) = 1, maxS(0) = 2 and pred(minS(0), S) = ⊥. We store the labels of the edges to its
non-heavy children in a Perfect Hash table. That is, we store the set {1, 2}. We also store this set in
a recursive instance of our data structure with parameters L = 1 and u and c as before. The leaf 01
has a heavy parent, so we store minS(01) = 1, maxS(01) = 1 and pred(minS(01), S) = ⊥. Likewise,
we store minS(02) = 2, maxS(02) = 2 and pred(minS(02), S) = 1. The node 2 has a heavy parent,
but only one leaf in its subtree, so we store minS(2) = 9, maxS(2) = 9 and pred(minS(2), S) = 2.
For the node 3, we store minS(3) = 13, maxS(3) = 13 and pred(minS(3), S) = 9.

The algorithm for finding the predecessor of some number x in S goes as follows: We view x as
a string of length L over the alphabet

[
2u

c]
. First, we find the longest prefix x′ of x such that x′ is

a heavy node in Tc. Since we store Tc using the data structure from Lemma 3.10, we can find this
prefix by making O(1) cell-probes. We now have to consider several cases.

If x′ has exactly one child, then either min{y ∈ S | y ≥ x} = minS(x
′) or max{y ∈ S | y < x} =

maxS(x
′). This holds because if x′ is heavy then its child x′σ is heavy too. Then, x′σ is a prefix of

all elements of S that have x′ as prefix, so minS(x
′) = minS(x

′σ) and maxS(x
′) = maxS(x

′σ). But
it is not a prefix of x, for otherwise, x would have a heavy prefix that is longer than x′. Therefore,
either x is smaller than all elements of S with x′ as prefix or it is larger than all of them. Suppose
that there is some y ∈ S with maxS(x

′σ) < y < x or minS(x
′σ) > y > x. Since x, minS(x

′σ) and
maxS(x

′σ) have the prefix x′ in common, it follows that y must have prefix x′ too. But since it is
in S, it must also have the prefix x′σ, contradicting minS(x

′σ) > y and maxS(x
′σ) < y.

Hence,

pred(x, S) =

{

maxS(x
′) if x > minS(x

′)

pred(minS(x
′), S) if x ≤ minS(x

′)

which we can compute reading O(1) blocks in our data structure.
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Suppose that x′ has at least two children. In our data structure, we have a hash table that
stores the labels on the edges that lead to non-heavy children of x′. We use this table to find out
whether any of the non-heavy children is a prefix of x which can be done by checking whether xd+1,
the (d+ 1)st letter of x, is in the table. This takes O(1) cell-probes.

If there is no such child, then for each child x′σ of x′ it holds that the leaves of the subtree at
x′σ are either all larger or all smaller than x. Thus, either x is smaller than all leaves of the subtree
rooted at x′ or there is some child x′σ of x′ such that all leaves of the tree rooted at x′σ are smaller
than x. The largest σ with that property is the predecessor of xd+1 in Sx′ . Thus, we have

pred(x, S) =

{

pred(minS(x
′), S) if x ≤ minS(x

′)

maxS(x
′ ◦ pred(xd+1, Sx′)) if x > minS(x

′)

where xd+1 is the (d+1)th letter of x. We can decide with O(1) cell-probes whether x ≤ minS(x
′).

We also can find pred(minS(x
′)) with O(1) cell-probes. We find σ = pred(xd+1, Sx′) using the

recursive instance of our data structure. Since x′σ is the child of a heavy node, we can read off
maxS(x

′σ) with O(1) cell-probes once we found σ.
If x′ has a non-heavy child y that is a prefix of x and if that child has exactly one leaf in its

subtree, we have

pred(x, S) =

{

pred(minS(y), S) if x ≤ minS(y)

minS(y) if x > minS(y)

which we can compute making O(1) cell-probes. Finally, if x′ has a non-heavy child y that is a
prefix of x and has at least two leaves in its subtree, we have

pred(x, S) =

{

pred(minS(y), S) if x ≤ minS(x
′)

y ◦ pred(xd+1 . . . xL, S
′
y) if x > minS(x

′)

which can be computed readingO(1) blocks, except for the recursive call to find pred(xd+1 . . . xL, S
′
y).

We show that this algorithm uses O(a+ c) cell-probes by induction. In the base cases, we can
read the whole data using O(1) cell-probes. Let T (a, c) be the worst-case number of cell-probes
to answer a query for the given parameter values a and c. Since in a recursive call, a is reduced
by one, c is reduced by one, or both and any computation outside of recursive calls requires O(1)
cell-probes, we have

T (a, c) ≤ max{T (a− 1, c), T (a, c − 1), T (a − 1, c − 1)}+ k with k = O(1).

We show that T (a, c) = O(a+ c) by proving that T (a, c) ≤ k(a+ c). As induction hypothesis, we
assume that the inequality T (a, c) ≤ k(a+ c) holds for all a, c such that a+ c < n. We prove that
it then also holds when a+ c = n. By induction hypothesis, we have

max{T (a− 1, c), T (a, c − 1), T (a− 1, c − 1)} ≤ k(a+ c− 1).

Thus, T (a, c) ≤ k(a+ c− 1) + k = k(a+ c). Therefore, it holds that T (a, c) = O(a+ c).
As an example, we show how to find the predecessors of 8 and 3, continuing from the example

given in Figure 4. We find the predecessor of 8 as follows: In base-4, we write 8 as 20. We first
find the longest heavy prefix of 20 in T1 which is the root r of the trie. There is a hash table that
stores the labels of edges from r to its non-heavy children. We check if this table contains 2, which
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it does. The node 2 has exactly one leaf in its subtree. We read minS(2) = 9. We now know that
among all the leaves in T1, the leaf 9 (21 in base-4) has the longest common prefix with 8 (20).
Thus, the predecessor of 8 in S is also the predecessor of 9 in S. We have stored the predecessor of
9 in our data structure, so we simply need to read it to answer the query. Thus, we learn that 2 is
the predecessor of 8 in S.

Let us now find the predecessor of 3. We find that the longest heavy prefix is 0. Checking the
hash table, we see that no element stored in the trie has 03 as prefix. We have 3 > minS(0) = 1, so
we look for the predecessor of 3 in S0 = {1, 2} which we have stored in a recursive instance. This
predecessor is 2. Now we know that the maximal element stored in the subtree rooted at 02 is the
predecessor of 3. We read maxS(02) = 2 and find that 2 is the predecessor of 3 in S.

It remains to check how much space our data structure requires. We first count the space
required for part 2 of our data structure, including the part 2 of the recursive instances (and their
recursive instances, etc.). The trie Tj contains at most sLuc−j + 1 nodes. Each recursive instance
is associated with a subtree of some Tj and for some of the nodes in these trees, we store a constant
number of memory words of length Luj ≤ uj+1. In total, we store

O





c∑

j=0

(
sLuc−j + 1

)
uj+1



 = O
(
scLuc+1

)

bits.
We now count the bits for the hash tables in part 3 (over all recursive instances). Every trie Tj

has s leaves and thus at most 2(s− 1) nodes that have siblings. Each of those nodes contributes a
constant number of uj-bit entries to its parent’s hash table. The hash tables must therefore have

O





c∑

j=0

suj



 = O (scuc)

bits.
Now for part 1: There are at most 2(s − 1) nodes in addition to the root in Tc that have a

recursive instance associated with them since these nodes are non-heavy children of heavy nodes, so
they must have siblings (see part 4). For each such node, we store an instance of the data structure
of Lemma 3.13. This requires O(sLucn) bits in total. For j < c, each node in Tj for which we
store a recursive instance either has a sibling or is a node in Tj+1 with at least two children. Each
tree has s leaves and therefore contains at most s− 1 nodes with at least two children and 2(s− 1)
nodes with siblings. For all Tj with j < c taken together, we need

O





c−1∑

j=0

suj+1n



 = O (scucn)

bits.
Taking all this together, our data structure consists of

O
(
scLuc+1

)
+O (scuc) +O (sLucn) +O (scucn) = O

(
sLuc+2−un

)
+O (sLucn) = O (sLucn)

bits or O
(
sn/u2

)
blocks of size b.
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Setting the parameters to L = 1, a = u and s = n, we obtain the following lemma:

Lemma 3.15. Let m, n, u and c be integers such that n ≥ uu, c ≤ u and m ≤ 2u
c

. Let b ≥ 2uc+2.
Then, there is a data structure using block-size b that stores subsets S of [m] of size at most n in
O(n2/u2) blocks such that predecessor queries can be answered with O(u+ c) = O(u) cell-probes.

The block-size for this data structure is not logm and there is a lower bound on the values
for n we can choose. To compensate for this, we combine this data structures with other data
structures for the predecessor problem. If n is small enough, we store the data in a fusion tree, a
data structure by Fredman and Willard which they described in [9]. We will not describe this data
structure here, but summarize its properties.

Lemma 3.16 (Fusion Trees). Let b, n and m be positive integers such that n < m < 2b. There
exists a data structure for the predecessor problem with block-size b, space complexity O(n) and time
complexity O(logb n) = O(log n/ log b).

If n is larger, we need x-fast tries, a data structure invented by Willard. Since this data structure
will be connected more closely with the structure from Lemma 3.15 than the fusion trees, let us
have a closer look at it.

Theorem 3.17 (X-fast Tries, [23]). Let n < m. There exists a data structure for the predecessor
problem with block-size logm, space complexity O(n logm) and time complexity O(log logm).

Proof. We interpret the numbers in S as bit strings and store them in a binary trie of depth logm
with the following augmentations: Every node u that has no right child additionally stores a pointer
to the maximal element of the subtree rooted at u. Similarly, every node without a left child stores
a pointer to the minimal element of the subtree. For every level j of the trie, we store all the
nodes at that level together with a pointer to their position in the trie in a Perfect Hash table.
Furthermore, the leaves in the trie form a sorted, doubly linked list. The trie has at most n logm
nodes, so it uses O(n logm) blocks. Since every node is stored in only one of the hash tables, the
hash tables taken together also use O(n logm) blocks. This shows that the whole data structure
has space complexity O(n logm).

We now show how to implement predecessor queries. Let x ∈ [m]. To find its predecessor, we
first find a node u in the trie such that u is the longest prefix of x contained in the trie. We do this
by binary search on the prefix length and by using the hash tables to find out whether a prefix of
some given length is contained in the trie.

Having found this prefix u, there are three possible situations.

• u = x: We use the list structure of the leaves to find the predecessor of u.

• u has no left child: Then, every leaf in the subtrie rooted at u is larger than x. We follow
the pointer to the minimum of that subtrie to the successor of x. Using the linked list of the
leaves, we find the predecessor of x.

• u has no right child: Every leaf in the subtrie rooted at u is smaller than x. Following the
pointer at u leads us to the predecessor of x.

The node u cannot have two children because in that case one of them would have to be a prefix
of x.
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Since x consist of logm bits, the binary search requires O(log logm) lookups in the Perfect
Hash tables, each of which can be done with O(1) cell-probes. After we have found the longest
prefix, only a constant number of cell-probes are required. This shows that the time complexity is
O(log logm).

Now, everything is in place for proving the main result of this section.

Theorem 3.18. There is a data structure for the static predecessor problem that stores S ⊆ [m]
with |S| ≤ n in O(n2 log n/ log log n) blocks of size logm. Predecessor queries are answered with

O

(

min

(

log logm

log log logm
,

√

log n

log log n

))

cell-probes.

Proof. Let b = logm be the block-size. We distinguish two cases, depending on n.
Case 1: Suppose that n < 24(log logm)2/ log log logm. In that case, we store S in a fusion tree. For m
large enough,

log log n < 2 + 2 log log logm− log log log logm ≤ 2 log log logm

and it follows that

log logm =
2 log logm√
log log logm

·
√
log log logm

2
>

√

log n log log n

8

which gives us

log n

log b
=

log n

log logm
<

√

8 log n

log log n
.

We also have
log n

log b
=

log n

log logm
<

4 log logm

log log logm

and thus, by Lemma 3.16, we can store S in a fusion tree that uses O(n) blocks of space and
supports predecessor queries with

O

(
log n

log b

)

= O

(

min

(

log logm

log log logm
,

√

log n

log log n

))

cell-probes.

Case 2: If n ≥ 24(log logm)2/ log log logm, we have
√

log n

log log n
≥
√

4(log logm)2

log log logm(2 + 2 log log logm− log log log logm)
≥ log logm

log log logm

for large enough m. In that case, we combine the data structure by Beame and Fich with x-fast
tries. Let u be the smallest integer such that uu ≥ logm. Then,

log logm

log log logm
≤ u log u

log u+ log log u
≤ u ≤ 2 log logm

log log logm
≤ 2

√

log n

log log n
(1)
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where the inequality u ≤ 2(log logm)/(log log logm) can be seen as follows: Since u is the least
integer with uu ≥ logm, we have (u− 1)u−1 < logm and this implies

2 log logm

log log logm
>

2 log
(
(u− 1)u−1

)

log log ((u− 1)u−1)

=
2(u− 1) log(u− 1)

log(u− 1) + log log(u− 1)

=
2(u− 1)

1 + (log log(u− 1))/ log(u− 1)

≥ u for m large enough.

The remaining inequalities in Statement (1) are easy to see. Another inequality we need for in the
proof is 2uu−2 ≤ logm. Since (u− 1)u−1 < logm, it follows that

uu

logm
≤ uu

(u− 1)u−1
≤ u

(

1 +
1

u− 1

)u−1

≤ ue

and multiplying each side of this inequality with 2(logm)/u2 gives

2uu−2 ≤ 2e logm

u
≤ logm (2)

for m large enough so that u ≥ 2e.
Let S′ = {x ∈ [24 log u] | x is a prefix of some element of S}. Let k = logm/24 log u ≤ uu/u4 =

uu−4. For every x ∈ S′, let Sx = {y ∈ [2k] | x ◦ y ∈ S}. We store S′ in an x-fast trie. For each
x ∈ S′, we store Sx in an instance of the data structure from Lemma 3.15 with c = u − 4 and
b = logm which is a large enough block-size for this data structure since 2uc+2 = 2uu−2 ≤ logm
by Inequality (2). Also, the size of the universe is 2k ≤ 2u

u−4

= 2u
c

and thus, all premises of the
lemma are satisfied. At each leaf x of the x-fast trie, we also store a pointer to the data structure
storing Sx.

The x-fast trie uses space O(n log u). Each instance of the data structure of Lemma 3.15
uses O(n2/u2) blocks. There are u4 leaves in the trie, so all these instances take up space
O(n2u2) = O(n(log n)/ log log n) in total. Thus, the complete data structure has space complexity
O(n2(log n)/ log log n), as claimed.

We find the predecessor of x ∈ [m] as follows: First, we partition x in a prefix x1 of length
4 log u and a suffix x2 of length k. We search the x-fast trie to find out whether x1 ∈ S′ which takes
O(log u) cell-probes. If yes, we search Sx1

for the predecessor of x2 which requires O(u) cell-probes.
If we find a predecessor x′2 in that set, we output x1 ◦ x′2. If x1 is not in S′ or if Sx1

contains no
predecessor of x2, we find the predecessor x′1 of x1 in S′ and return x′1 ◦x′2 where x′2 is the maximal
element of Sx′

1
. If x1 has no predecessor in S′, we conclude that x has no predecessor in S.

In total, this algorithm makes O(u) cell-probes and by Inequality (1), we have

O(u) = O

(
log logm

log log logm

)

≤ O

(√

log n

log log n

)

.
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4 Classical Data Structures with Quantum Access

4.1 Lower Bounds for Set Membership

Radhakrishnan, Sen and Venkatesh proved the following result from which lower bounds for data
structures for the set membership problem can be derived:

Theorem 4.1 ( [19, Theorem 1]). Suppose there is a scheme for storing sets S ⊆ [m] with |S| ≤ n
in s bits so that membership queries can be answered by an exact quantum algorithm that makes at
most t bit-probes. Then, the following inequality must hold:

n∑

i=0

(
m

i

)

≤
n·t∑

i=0

(
s

i

)

This inequality also holds if the query algorithm is probabilistic with one-sided error, i.e., if the
algorithm always returns “No” when i 6∈ S but gives the wrong answer when i ∈ S with probability
at most ǫ for some ǫ < 1.

This result improves upon a result by Buhrman et al. in [5] who show that
(
m
n

)
≤
(
s
nt

)
2nt. The

proof of Theorem 4.1 is based on linear algebra. Before going into the details of that proof, let us
see how this result allows us to establish lower bounds. We either fix t to some value and see how
large s must be to satisfy the inequality or vice versa.

Corollary 4.2. If the query algorithm of a data structure for the set membership problem only
makes one bit-probe, the data structure must use space s ≥ m. Thus, the bit vector data structure
described at the beginning of 3.1 is optimal even in the setting of exact quantum computation.

Proof. When we set t = 1, then we must have s ≥ m in order to satisfy the inequality in Theorem
4.1.

Corollary 4.3. Suppose that n ≤ md for some constant d with 0 < d < 1. In a data structure for
the set membership problem that uses O(n logm) bits for storage, the query algorithm must make
Ω(logm) bit-probes. It follows that the Perfect Hashing scheme is asymptotically optimal even in
the quantum bit-probe model with one-sided error.

Proof. Suppose that s = O(n logm) and let c be such that s ≤ c · n logm. We then have

n∑

i=0

(
m

i

)

≤
nt∑

i=0

(
s

i

)

≤
nt∑

i=0

(
cn logm

i

)

≤
(
ecn logm

nt

)nt

=

(
ec logm

t

)nt

Taking logarithms on both sides of the inequality and using Lemma 3.9, we can conclude that

n(1− d) logm ≤ nt log

(
ec logm

t

)

.
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Let b be such that t = (logm)/b. If we can prove that b = O(1), it follows that t = Ω(logm). From
the inequality above, it follows that

n(1− d) logm ≤ n

b
logm log

(
ebc logm

logm

)

⇒ 1− d ≤ 1

b
(log(ec) + log b)

⇒ b ≤ 1

1− d
(log(ec) + log b) = O(log b)

which shows that b = O(1) because O(log b) cannot grow faster than b. It follows that t =
Ω(logm).

Let us now prove Theorem 4.1.

Proof. Let s be the number of bits required for the data structure and let t be the maximal number
of cell-probes by the query algorithm. Let U0, U1, . . . , Ut be the unitary transforms that form the
quantum algorithm and φ the function that encodes sets S into bit strings. For every set S ⊆ [m]
with |S| ≤ n, we define

WS = UtOφ(S)Ut−1 . . . U1Oφ(S)U0

where Oφ(S) is a quantum bit-probe oracle of the ±-type.
We prove the result for exact algorithms (ǫ = 0) and then indicate how it follows for prob-

abilistic algorithms with one-sided error. We first show that the unitary transforms in W =
{W⊗n

S }S⊆[m],|S|≤n are linearly independent. Then, we prove that they are contained in a vector

space of dimension at most
∑nt

i=0

(s
i

)
. Since {W⊗n

S }S⊆[m],|S|≤n has
∑n

i=0

(m
i

)
elements, this proves

the inequality of Theorem 4.1,
n∑

i=0

(
m

i

)

≤
nt∑

i=0

(
s

i

)

.

Let H be the Hilbert space that the algorithm operates on. Let d denote its dimension. We
let A1 denote the subspace of H that contains those states that result with probability 1 in answer
“Yes” when measured and we let A0 denote the space where the answer is “No”. The subspaces
A0 and A1 are orthogonal.

Suppose that there is a nontrivial linear combination

∑

S⊆[m],|S|≤n

αSW
⊗n
S = 0.

Let T = {i1, . . . , ik} be a maximal set such that αT 6= 0. Define

|ψT 〉 = |i1〉⊗n−k+1 ⊗ |i2〉 ⊗ · · · ⊗ |ik〉

where |ij〉 is the starting state encoding the query “ij ∈ S?”. For any S, we have W⊗n
S |ψT 〉 =

W⊗n−k+1
S |i1〉⊗n−k+1 ⊗WS |i2〉 ⊗ · · · ⊗WS |ik〉. Since ij ∈ T for every j, WT |ij〉 ∈ A1 and thus,

W⊗n
T |ψT 〉 ∈ A⊗n

1 . For S 6= T with αS 6= 0 on the other hand, there is some j such that ij 6∈ S since
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T is maximal. Thus WS |ij〉 ∈ A0 and it follows that W⊗n
S |ψT 〉 is orthogonal to A⊗n

1 . If we let P1

be the projection on A⊗n
1 , we have

∑

S⊆[m],|S|≤n

αSW
⊗n
S = 0 ⇒ P1




∑

S⊆[m],|S|≤n

αSW
⊗n
S |ψT 〉



 = 0

and since W⊗n
S |ψT 〉 for S 6= T is orthogonal to A⊗n

1 and W⊗n
T |ψT 〉 is contained in A⊗n

1 , the result
of the projection is

P1




∑

S⊆[m],|S|≤n

αSW
⊗n
S |ψT 〉



 = αTW
⊗n
T |φT 〉 .

It follows that αTW
⊗n
T |ψT 〉 = 0, but this contradicts our assumption that αT 6= 0. Therefore, the

elements of W are linearly independent.
We now go on to show that they are contained in a vector space of the correct size. For a set

T = {t1, . . . , tk} ⊆ [s], let [φ(S)]T be the parity of the bits at locations t1, . . . , tk in φ(S). Since
Oφ(S) is diagonal, we have

(WS)i,j =
∑

k0,...,kt−1∈[d]

(Ut)i,kt−1
(Oφ(S))kt−1,kt−1

(Ut−1)kt−1,kt−2
(Oφ(S))kt−2,kt−2

. . . (U1)k1,k0(Oφ(S))k0,k0(U0)k0,j.

We can rewrite this as follows, for appropriate sets lki ⊆ [n] where each lki is either a singleton or
empty:

(WS)i,j =
∑

k0,...,kt−1∈[d]

(Ut)i,kt−1
(−1)

[φ(S)]lkt−1 (Ut−1)kt−1,kt−2
(−1)

[φ(S)]lkt−2 . . . (U1)k1,k0(−1)
[φ(S)]lk0 (U0)k0,j.

We can simplify this term by introducing some additional notation: For ∆ the symmetric difference
between sets, we define Tk0,...,kt−1

= lk0∆ . . .∆lkt−1
. This gives us

(WS)i,j =
∑

k0,...,kt−1

(−1)
[φ(S)]Tk0,...,kt−1 (Ut)i,kt−1

(Ut−1)kt−1,kt−2
. . . (U1)k1,k0(U0)k0,j

=
∑

T⊆[s],|T |≤t

(−1)[φ(S)]T
∑

k0,...,kt−1 such that T=Tk0,...,kt−1

(Ut)i,kt−1
(Ut−1)kt−1,kt−2

. . . (U1)k1,k0(U0)k0,j

=
∑

T⊆[s],|T |≤t

(−1)[φ(S)]T (MT )i,j

where the MT are unitary transforms that only depend on U0, . . . , Ut and T , not on S. Thus, we
have

W⊗n
S =

∑

1≤i≤n,Ti∈[s],|Ti|≤t

(−1)[φ(S)]T1 . . . (−1)[φ(S)]Tn (MT1
⊗ · · · ⊗MTn)

=
∑

T⊆[s],|T |≤nt

(−1)[φ(S)]TNT
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where NT is independent of S, namely,

NT =
∑

T1,...,Tn such that T1∆...∆Tn=T

(MT1
⊗ · · · ⊗MTn).

This shows that every element of W is contained in the subspace spanned by {NT }T⊆[s],|T |≤nt which
has dimension at most

nt∑

i=0

(
s

i

)

as claimed. Thus, we proved that all
∑n

i=0

(m
i

)
elements of W are linearly independent vectors of

a subspace with dimension at most
∑nt

i=0

(s
i

)
. This proves the inequality.

To see that the result also holds if we allow one-sided error, note that the only part where
we made use of the correctness of the algorithm is the proof that the vectors in W are linearly
independent. We used that WS |i〉 ∈ A0 for i 6∈ S so that W⊗n

S |ψT 〉 is orthogonal to A⊗n
1 for S 6= T

with αS > 0 and we used thatW⊗n
T |ψT 〉 has a non-zero projection on A⊗n

1 . This is also achieved by
an algorithm that correctly answers membership queries for i 6∈ S but has some probability ǫ < 1
for making an error on i ∈ S.

In the same paper, Radhakrishnan, Sen and Venkatesh also proved a lower bound for the space
complexity of data structures for set membership that support queries which make t bit-probes and
have two-sided error probability ǫ with m/n < ǫ < 2−3t. We will not give the proof of this result
here, the main ideas are similar to that of Theorem 4.1.

Theorem 4.4 ( [19, Theorem 4]). Let t ≥ 1 and let n/m < ǫ < 2−3t. Suppose there is a quantum-
access data structure with a space complexity of s bits and a time complexity of t bit-probes for set
membership with two-sided error at most ǫ. Then, we have

s = Ω

(
nt log(m/n)

ǫ1/(6t) log(1/ǫ)

)

.

4.2 Lower Bounds for Predecessor Search

Beame and Fich gave an asymptotic lower bound on the time complexity of predecessor search data
structures given an upper bound of O(n2 log n/ log log n) (logm)-blocks for the space complexity in
the classical deterministic setting that matches the time complexity of their data structure. How-
ever, in [20] Pranab Sen and Srinivasan Venkatesh obtained a simpler proof in a computational
model that they call the address-only quantum cell-probe model. Algorithms in this model are quan-
tum cell-probe algorithms but they do not use the full power of the model of quantum computation.
The address-only model still encompasses classical deterministic and probabilistic computation and
also some famous quantum algorithms, such as Grover’s search algorithm. Therefore, their lower
bound shows that the data structure by Beame and Fich is asymptotically optimal also in the
setting of classical probabilistic computation. The restriction of address-only algorithms is that we
may use quantum parallelism only over the address lines. This is explained below in more detail.

Definition 4.5. A quantum cell-probe algorithm U0, . . . , Ut has the address-only property if, before
each query to the oracle, the state of the qubits can be written as a tensor product of two quan-
tum states where one state consists of the data qubits and the other consists of the address- and
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workspace-qubits. That is, the data qubits may not be entangled with the rest. Furthermore, the
state of the data qubits may only depend on the stage of the algorithm, but not on the input.

In order to describe this in more precise terms, let H be the Hilbert space that the algorithm
operates on. We can write H = HL⊗HZ⊗HB where HL consists of the address qubits, HZ consists
of the workspace qubits and HB of the data qubits. We require that there are |b0〉B , . . . , |bt−1〉B ∈ HB

such that for every possible data d, every query q and every integer i with 0 ≤ i < t, we can write
UiOdUi−1Od . . . OdU0 |q〉 as |φ〉 ⊗ |bi〉B for some |φ〉 ∈ HL ⊗HZ.

The proof of the lower bound uses a relation between data structures with quantum access and
quantum communication protocols. In the quantum communication model, there are two parties,
called Alice and Bob, who want to compute a function f : A×B → C where A,B,C are finite sets.
At the beginning, Alice holds an encoding |a〉 of some a ∈ A in the computational basis and some
workspace qubits initialized to |0〉. Bob holds an encoding |b〉 of b ∈ B in the computational basis
and also some workspace qubits in state |0〉. One of the two parties begins and they take turns
alternately. At each turn, they may apply a unitary transform to the qubits that they hold (but
not to qubits held by the other party) and then give some of their qubits to the other party. A
communication protocol P for the function f specifies transforms that are applied and which qubits
are sent by Alice and Bob so that they end up with a state from which one party can learn f(a, b)
after performing some measurement. We can consider exact protocols or protocols that have some
error probability.

Often, the study of communication complexity is just concerned with the total amount of
communication that occurs. For our purposes, we need to look at a more fine-grained picture. To
this end, we define secure and safe protocols.

Definition 4.6. A protocol P is called secure if the input qubits are never measured and never
sent as messages. (Since they are in the computational basis, it is possible for Alice and Bob to
make copies of their respective inputs, so every protocol can be made secure without increasing the
communication.)

A protocol is called [t, c, l1, . . . , lt]
A-safe ([t, c, l1, . . . , lt]

B-safe) if it is a secure protocol where
Alice (Bob) starts and which has exactly t rounds of communication such that

• the first message by Alice (Bob) consists of two parts: The first part has length c and its
density matrix must be independent of the input. It is called the safe overhead. The second
part contains the message proper. It has length l1 and its density matrix is allowed to depend
on the input. Thus, the total length of the message is l1 + c.

• for 1 < i ≤ t, the ith message in the protocol has length at most li.

We say that a protocol (t, c, la, lb)
A-safe ((t, c, la, lb)

B-safe) if and only if it is [t, c, l1, . . . , lt]
A-safe

([t, c, l1, . . . , lt]
B-safe) where li = la for odd (even) i and li = lb for even (odd) i.

The safe overhead may be used, for example, to share EPR-pairs. We also need to define public
coin-protocols.

Definition 4.7. In a public-coin communication protocol, we have at the beginning, in addition
to the inputs and workspace qubits, another quantum state of the form

∑

c
√
pc |c〉A |c〉B where the

subscripts A and B denote ownership by Alice and Bob respectively and the pc are positive real
numbers. That state is called the public coin and it is never measured and never sent as a message.
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However, Alice and Bob can make a copy of their half using a CNOT-transform (possibly entangled
with the original coin).

Here, since the pc are all positive, the quantum state
∑

c

√
pc |c〉 behaves like a classical random

variable C that takes on value c with probability pc when measured. Alternatively, we can view
a public-coin protocol as a probability distribution over coinless protocols, and safe public-coin
protocols as distributions over coinless safe protocols. The following lemma describes how data
structures and quantum communication complexity relate.

Lemma 4.8. Let f : D ×Q → A be a static data structure problem. Suppose that there is a data
structure for this problem that has block-size w, requires s blocks of space and has a quantum cell
probe algorithm that answers queries with success probability p making t probes. Then there is a
(2t, 0, w+log s,w+log s)A-safe coinless protocol that solves the communication problem where Bob
is given d ∈ D, Alice is given q ∈ Q and they want to compute f(d, q) with success probability
p. Note that, while it is usual in communication complexity that Alice has the first input for the
function that has to be computed, here, she has the second input. If the query algorithm for the data
structure is address-only, we have a (2t, 0, log s,w + log s)A-safe coinless protocol for this problem.

Proof. The communication protocol simply simulates the query algorithm of the data structure.
Instead of applying the oracle transform, Alice sends the address- and data-qubits to Bob who can
perform the oracle transform since he knows d. Bob then sends these qubits back to Alice who
continues with the algorithm. In the case that the algorithm is address-only, Alice does not need
to send the data-qubits. Since they are not entangled with any other qubits and since their state
is not affected by Alice’s input, Bob can prepare the appropriate data-qubits by himself.

This lemma can help us prove lower bounds on t for a data structure using space s for a given
problem. If we can prove a lower bound on the communication required, we also know a lower bound
on t. In many cases, we have log(s) = O(w). Recall, for example, the Perfect Hashing method.
There, we have s = O(n) while w = logm. Since n ≤ m, we have log s = O(log n) = O(logm). In
such cases, if there is an address-only query algorithm, we have a (2t, 0, log s,O(w))A-safe protocol
for the communication problem. Thus, if s is small compared to w, Alice’s messages are significantly
shorter than Bob’s. We will use this asymmetry to prove the lower bounds.

We now introduce some notions from quantum information theory. More about this subject
can be found in [18, Part III].

Definition 4.9. Let ρ be the density matrix of some quantum system A. The von Neumann entropy
of A is S(A) = S(ρ) = −Tr(ρ log ρ). The mutual information of two disjoint quantum systems A
and B is I(A : B) = S(A) + S(B)− S(AB).

We now show some properties of the von Neumann entropy function and of mutual information.

Lemma 4.10. The von Neumann entropy and mutual information have the following properties:

1. The von Neumann entropy function is subadditive, i.e., for all quantum systems A and B, we
have S(AB) ≤ S(A) + S(B). It follows that I(A : B) non-negative for all quantum systems
A and B.

2. |S(A) − S(B)| ≤ S(AB).
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3. For disjoint quantum systems A,B,C, we have I(A : BC) = I(A : B)+I(AB : C)−I(B : C).

4. 0 ≤ I(A : B) ≤ 2S(A).

5. If the Hilbert space of A has dimension d, then S(A) ≤ log d.

Proof. Properties 1 and 2 are proved in [18, Section 11.3]. Let us prove the remaining properties
here. Property 3 holds because

I(A : BC) = S(A) + S(BC)− S(ABC) = I(A : B)− S(B) + S(AB) + S(BC)− S(ABC)

= I(A : B) + (S(AB) + S(C)− S(ABC))− S(B)− S(C) + S(BC)

= I(A : B) + I(AB : C)− (S(B) + S(C)− S(BC))

= I(A : B) + I(AB : C)− I(B : C)

Property 4 holds because

0 = S(A) + S(B)− S(A)− S(B) ≤ S(A) + S(B)− S(AB) = I(A : B)

and
I(A : B) = S(A) + S(B)− S(AB) ≤ S(A) + S(B)− |S(A)− S(B)| ≤ 2S(A).

To prove that property 5 holds, we show by induction in d that the term
∑d

i=0 αi logαi with
∑

i αi = t and 0 ≤ αi ≤ 1 is minimized when all αi are equal. The base case d = 1 is trivial. Now
suppose that our claim is true for d− 1. We show that it also holds for d. We write

d∑

i=1

αi log αi = αd log αd +
d−1∑

i=1

αi logαi

and find the minimum of this expression under the condition that α1, . . . , αd ≥ 0 and
∑d

i αi = t in

two steps. First, treating αd as a variable, we minimize the term
∑d−1

i=1 αi log αi under the condition

that
∑d−1

i=1 αi = t− αd. Then, we find the value for αd that minimizes the whole term.

The solution for the first step is given by the induction hypothesis:
∑d−1

i=1 αi log αi is minimized
when α1, . . . , αd−1 are equal, i.e.,

α1, . . . , αd−1 =
t− αd

d− 1
.

Using these values for the αi, we have

d∑

i=1

αi log αi = αd logαd + (t− αd) log

(
t− αd

d− 1

)

.

Viewing the expression above as a function in αd, we can easily show that it achieves its global
minimum at αd = t/d. For this value of αd, we get

α1, . . . , αd−1 =
t− t/d

d− 1
=

(d− 1)t

(d− 1)d
=
t

d

and so the minimum is achieved when all αi are equal as we claimed.
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Now consider a quantum system A with density matrix ρA. We can choose a basis |a1〉 , . . . , |an〉
of quantum states such that ρA is a diagonal matrix with respect to that basis, i.e., ρA =
∑d

i=1 αi |ai〉 〈ai| for some αi ≥ 0 with
∑d

i=1 αi = 1. We then have S(A) = −∑d
i=1 αi · log αi

which is maximized when
∑d

i=1 αi log αi is minimized, i.e., when α1, . . . , αd = 1/d. Thus, we have

S(A) ≤ −
d∑

i=1

1

d
log

(
1

d

)

= log d.

We can encode classical random variables as quantum systems. Let H and K be disjoint finite-
dimensional Hilbert spaces, X a system in H and Q a system in K. Suppose that the density matrix
of the joint system XQ has a diagonal representation

∑

x px |x〉 〈x| ⊗ σx where px > 0,
∑

x px = 1,
the |x〉 are orthonormal vectors in H and the σx are density matrices in K. We say that X is a
classical random variable and that Q is a quantum encoding of X. The reduced density matrix of
Q is

σ = TrX

(
∑

x

px |x〉 〈x| ⊗ σx

)

=
∑

x

pxσx

so if we consider Q on its own, we can describe it as having density matrix σx with probability px.
We have S(XQ) = S(X) +

∑

x pxS(σx) and I(X : Q) = S(X) + S(Q) − S(X) −∑x pxS(σx) =
S(Q)−∑x pxS(σx).

Now, consider two classical random variables X and Y and a quantum encoding Q of the joint
random variable XY . That is, we can write the density matrix of XYQ as

∑

x,y px,y |x〉 |y〉 〈y| 〈x|⊗
σx,y for density matrices σx,y in the Hilbert space of Q and px,y ≥ 0 with

∑

x,y px,y = 1. Let
qxy = Pr(Y = y|X = x). We let Qx =

∑

y q
x
yσx,y. The conditional mutual information between Y

and Q is defined as I((Y : Q)|X = x) = I(Y : Qx).
Some properties of random variable encodings that we need are described in the following

propositions.

Proposition 4.11. Suppose M is a quantum encoding of a classical random variable X = X1 . . . Xn

where the Xi are independent classical random variables. Then, I(M : X1 . . . Xn) =
∑

i I(Xi :
MX1 . . . Xi−1).

Proof. We prove this by induction in n. For n = 1, there is nothing to prove since I(M : X1) =
I(X1 : M). Let n > 0 and suppose the statement holds for n − 1. We show that it then holds for
n. By part 3 of Lemma 4.10, we have

I(M : X1 . . . Xn) = I(M : X1) + I(MX1 : X2 . . . Xn)− I(X1 : X2 . . . Xn)

and since theXi are independent, we have I(X1 : X2 . . . Xn) = 0. Applying the induction hypothesis
to I(MX1 : X2 . . . Xn), we can conclude that I(MX1 : X2 . . . Xn) =

∑n
i=2 I(Xi : MX1 . . . Xi−1).

Hence, I(M : X1 . . . Xn) =
∑n

i=1 I(Xi :MX1 . . . Xi).

Proposition 4.12. Let X,Y be classical random variables and M an encoding of (X,Y ). Then
I(Y :MX) = I(X : Y ) + EX [I((Y :M)|X = x)].
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Proof. We have I(Y : MX) = S(Y ) + S(MX) − S(MXY ) and S(MX) = S(X) +
∑

x pxS(Q
x).

Also,

S(MXY ) = S(XY ) +
∑

x,y

px,yS(σx,y) = S(XY ) +
∑

x,y

pxq
x
yS(σx,y)

and this gives us

I(Y :MX) = S(X) + S(Y )− S(XY ) +
∑

x

pxS(Q
x)−

∑

x,y

pxq
x
yS(σx,y)

= I(X : Y ) +
∑

x

px

(

S(Qx)−
∑

y

qxyS(σx,y)

)

Furthermore, we have
∑

y q
x
yS(σx,y) = S(Y Qx)− S(Y ). Thus,

S(Qx)−
∑

y

qxyS(σx,y) = S(Qx) + S(Y )− S(Y Qx) = I(Y : Qx)

and it follows that

I(Y :MX) = I(X : Y ) +
∑

x

pxI(Y : Qx) = I(X : Y ) + EX [I((Y : Q)|X = x)]

as claimed.

We now prove a proposition that gives an upper bound for the mutual information of the first
message in a safe quantum protocol and the input that does not depend on the size of the safe
overhead.

Proposition 4.13. Let M1 and M2 be finite-dimensional disjoint quantum systems and M =
M1M2 an encoding of a classical random variable X. Suppose that the density matrix of M2 is
independent of the value x of X, i.e., TrM1

(σx) = TrM1
(σy) for all x and y in the range of X. If

M1 is supported on a qubits, we have I(X :M) ≤ 2a.

Proof. Let σ be such that TrM1
(σx) = σ for all x. First, we show that X and M2 have no mutual

information.

I(X :M2) = S(X) + S(M2)− S(XM2)

= S(X) + S

(

TrM1

(
∑

x

pxσx

))

− S

(
∑

x

px |x〉 〈x| ⊗ TrM1
(σx)

)

= S(X) + S

(
∑

x

pxTrM1
(σx)

)

− S

((
∑

x

px |x〉 〈x|
)

⊗ σ

)

= S(X) + S(σ)− (S(X) + S(σ))

= 0
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By parts 3 and 4 of Lemma 4.10,

I(X :M) = I(X :M1M2) = I(X :M2M1) =

=0
︷ ︸︸ ︷

I(X :M2)+I(XM2 :M1)−
≥0

︷ ︸︸ ︷

I(M2 :M1)

≤ I(XM2 :M1)

≤ 2S(M1)

≤ 2a

We now prove the round elimination lemma which is important for proving the lower bound.
This lemma only applies to a certain kind of communication problem.

Definition 4.14. Let f : A × B → C be a communication problem. For any natural number
n, let f (n) be the communication problem where Alice receives a1, . . . , an ∈ A, Bob receives i ∈
[n], a1, . . . , ai−1 and some b ∈ B. The goal is to compute f(ai, b).

A similar problem, which we will need later on, is (n)f . Here, Alice is given a ∈ A and
i ∈ {1, . . . , n} and Bob is given b1, . . . , bn ∈ B. The goal is to compute f(a, bi).

Consider a protocol P for problem f (n) where Alice sends the first message. Intuitively, it seems
unlikely that the first message contains a lot of useful information for Bob, unless Alice sends her
whole input, since Alice does not know i. The round elimination lemma justifies that intuition. We
can transform the protocol P to a protocol for f that uses one less round of communication. In
that protocol, Bob sends the first message. The price we have to pay for the round elimination is
an increased length of Bob’s first message and a slight increase in error probability. The increased
length of the first message is, however, limited to a safe overhead. To prove this result, we need
two lemmas that we state without proof. The first one is a version of Yao’s minimax lemma in [26].
A proof of the second one can be found in [20, Appendix B].

Lemma 4.15 (Yao’s Minimax Lemma). Fix some communication problem f : A × B → C. For
every [t, c, l1, . . . , lt]

A-safe quantum communication protocol P for computing f and every probability
distribution D on A × B, let ǫPD denote the probability that P for inputs a, b sampled according to
D does not yield the result f(a, b). Let ǫP denote the worst case probability that P does not result
in f(a, b). We have

inf
P:public coin

ǫP = sup
D

inf
P:coinless

ǫPD = sup
D

inf
P:public coin

ǫPD

Lemma 4.16. Suppose f : A × B → C is a communication problem. Let D be a probability
distribution on the input set A× B. Let P be a [t, c, l1, . . . , lt]

A-safe coinless quantum protocol for
this problem. Let X and M be classical random variables that denote Alice’s input and Alice’s first
message under distribution D. Let ǫPD be the probability that the protocol makes an error on an
input sampled according to D.

There is a [t− 1, c + l1, l2, . . . , lt]
B-safe coinless protocol Q such that

ǫQD ≤ ǫPD + ((2 ln 2)I(X :M))1/4
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This lemma shows that we can reduce the number of rounds by increasing the safe overhead at
the price of increasing the error probability by an amount that depends on the mutual information
between Alice’s input and her first message. The protocol Q is constructed in stages. The first
stage is to make Alice’s first message independent of her input by replacing it with a message that
“averages” over all possible inputs. In the second stage, Alice does not send the average message
but Bob generates it himself which is possible since it is independent of Alice’s input. Then, they
resume as in the protocol P. But to achieve the correct entanglement between Alice’s and Bob’s
state, Bob’s first message must contain a safe overhead of c+ l1 qubits.

If Alice’s input and her first message have little mutual information, we can drop the first
message with only a small increase in error probability. Let us now prove the Round Elimination
Lemma.

Lemma 4.17 (Quantum Round Elimination). Let f : A × B → C be a communication problem.
Suppose we have a [t, c, l1, . . . , lt]

A-safe public coin quantum protocol for f (n) with worst case error
< δ. Then, there also exists a [t− 1, c+ l1, l2, . . . , lt]

B-safe public coin quantum protocol that solves
f with worst case error probability less than ǫ = δ + (4l1(ln 2)/n)

1/4.

Proof. Suppose the protocol P has worst-case error δ′ < δ. Let ǫ′ = δ′+(4l1(ln 2)/n)
1/4. By Lemma

4.15, it suffices to give for each distribution D on A × B a protocol PD that solves f for inputs
sampled according to D with error probability ǫPD

D ≤ ǫ′ < ǫ. Let D be an arbitrary probability
distribution on the input set A × B. Let D∗ be the distribution on An × {1, . . . , n} × B that is
sampled by first sampling i from {1, . . . , n} uniformly at random, sampling for every j ∈ {1, . . . , n}
a pair (aj, bj) according to D and returning (a1, . . . , an, i, bi). We have, by Lemma 4.15 and the fact
that P has worst-case error δ′, a [t, c, l1, . . . , lt]

A-safe protocol P∗ for f (n) that has error probability
ǫP

∗

D∗ ≤ δ′. Let M be the random variable for Alice’s first message in the protocol and X the random
variable for her input. Her first message consists of a main partM1 of l1 qubits and a safe overhead
M2 of c qubits whose density matrix is independent of X.

Let Xj be the random variable for the jth input for Alice under distribution D∗. Then,
X1, . . . ,Xn are independent and X = X1 . . . Xn. Let Y be the random variable for Bob’s in-
put from the set B. (This random variable is the same under D and D∗.) By Proposition 4.11 and
4.13,

2l1 ≥ I(X :M) = I(M : X1 . . . Xn) =
∑

i

I(Xi :MX1 . . . Xi−1)

= n ·
(
∑

i

1

n
I(Xi :MX1 . . . Xi−1)

)

= n · Ei [I(Xi :MX1 . . . Xi−1)]

and by Proposition 4.12

I(Xi :MX1 . . . Xi−1) = I(Xi : X1 . . . Xi−1) + EX1...Xi−1
[I((Xi :M)|X1 = x1, . . . ,Xi−1 = xi−1)]

= EX1...Xi−1
[I((Xi :M)|X1 = x1, . . . ,Xi−1 = xi−1)]

where the last equality holds because the Xj are independent. This gives us

2l1
n

≥ Ei,X [I((Xi :M)|X1 = x1, . . . ,Xi−1 = xi−1)] (3)
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We define D∗
i;x1,...,xi−1

as the conditional distribution obtained from D∗ by fixing the element from
{1, . . . , n} to i and for all j < i, fixing Xj to xj . We have

δ′ ≤ ǫP
∗

D∗ = Ei,X

[

ǫP
∗

D∗
i;x1,...,xi−1

]

For each i ∈ {1, . . . , n} and x1, . . . , xi−1, we define a protocol P ′
i;x1,...,xi−1

for f as follows: Let
|ψ〉 =

∑

x

√
px |x〉 where px is the probability of x under distribution D. Let x ∈ A be the

input for Alice and y ∈ B the input for Bob. Alice and Bob run the protocol P∗ on input
|x1〉 . . . |xi−1〉 |x〉 |ψ〉⊗n−i+1 for Alice and |i〉 |x1〉 . . . |xi−1〉 |y〉 for Bob and output the result. The
error probability of P ′

i;x1,...,xi−1
is the same as that of P∗ under distribution D∗

i;x1,...,xi−1
, that is,

ǫ
P ′
i;x1,...,xi−1

D = ǫP
∗

D∗
i;x1,...,xi−1

Since P∗ is a safe coinless quantum protocol, P ′
i;x1,...,xi−1

is such a protocol too. Let X ′ be the
classical random variable denoting Alice’s input in P ′

i;x1,...,xi−1
. The density matrix M ′ of Alice’s

first message in P ′
i;x1,...,xi−1

is the same as that of the first message in P∗ when X1, . . . ,Xi−1 are set

to x1, . . . , xi−1. Thus, by Lemma 4.16, there exists a [t− 1, c+ l1, l2, . . . , lt]
B-safe coinless quantum

protocol with error probability

ǫ
Pi;x1,...,xi−1

D ≤ ǫ
P ′
i;x1,...,xi−1

D + (2(ln 2)I(X ′ :M ′))1/4

= ǫP∗
Di;x1,...,xi−1

+ (2(ln 2)I((Xi :M)|X1 = x1, . . . ,Xi−1 = xi−1))
1/4

We now define a [t− 1, c + t1, t2, . . . , tn]
B-safe public coin quantum protocol as follows: Alice and

Bob use the public coin to select i ∈ {1, . . . , n} uniformly at random and sample x1, . . . , xi−1

independently according to D. Then they run the protocol Pi;x1,...,xi−1
. The error probability is

ǫPD = Ei,X1,...,Xi−1

[

ǫ
Pi;x1,...,xi−1

D

]

≤ Ei,X1,...,Xi

[

ǫP∗
Di;x1,...,xi−1

]

+ (2(ln 2)Ei,X1,...,Xi
[I((Xi :M)|X1 = x1, . . . ,Xi−1 = xi−1))])

1/4

since the 4th root function is concave.

≤ δ′ +

(
4 ln 2

n

)1/4

by Equation (3).

This completes the proof.

We now show how the predecessor problem reduces to the rank parity problem.

Definition 4.18 (Rank Parity Problem). In the rank parity communication problem PARp,q, Alice
is given a number x in [2p] and Bob is given a set S ⊆ [2p] with |S| ≤ q. The rank of i ∈ [2p] in
S is defined as rankS(i) = |{j ∈ S | j ≤ i}|, i.e., the number of elements in S that are not greater
than i. The goal of the rank parity problem is to determine rankS(x) mod 2.

Proposition 4.19. Suppose that there is a data structure for the predecessor problem that has
block-size (logm)O(1), uses nO(1) blocks of space and that allows to answer predecessor queries with
an address-only quantum algorithm with worst-case time complexity t and error probability ǫ. Then,

there is a
(
2t+O(1), 0, O(log n), (logm)O(1)

)A
-safe coinless quantum protocol for PARlogm,n with

error probability at most ǫ.
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Proof. Let φ be a data structure for the predecessor problem as described in the premise of the
proposition. We will prove the proposition by describing a data structure ψ for rank parity queries
which can be converted to a safe coinless quantum protocol by Lemma 4.8.

Let S ⊆ [m]. As said in Remark 3.8, we can use a Perfect Hash table to store not only the set S
but also the rank of each element of S. The set S is encoded as ψ(S) consisting of such a hash table
together with φ(S). To find the rank parity of some x ∈ [m], we first determine the predecessor x′

of x in S for which we need to read t blocks. Then, we look up x′ in the hash table to find out its
rank, reading O(1) cells. We check whether x ∈ S which again requires O(1) cell-probes. Now we
can compute

rankS(x) =

{

rankS(x
′) + 1 if x ∈ S

rankS(x
′) otherwise

and thus rankS(x) mod 2. The total time complexity of this algorithm is t+O(1) cell probes. The
space complexity of our data structure is nO(1) + O(n) = nO(1) cells. The only possible source of
error is the predecessor query algorithm. If it returns the correct result, we obtain the correct value
for rankS(x) mod 2. Thus, the error probability for our query algorithm is at most ǫ.

By Lemma 4.8, there exists a
(
2(t+O(1)), 0, log

(
nO(1)

)
, (logm)O(1)

)A
-safe coinless quantum

protocol for PARlogm,n with error probability at most ǫ. We have 2(t + O(1)) = 2t + O(1) and
log(nO(1)) = O(1) · log n = O(log n).

The following two propositions were proved in the classical setting by Miltersen et al. in [16].

Proposition 4.20. Let k and p be integers such that k divides p. If there is a [t, c, l1, . . . , lt]
A-

safe coinless (public coin) quantum protocol for PARp,q with error probability ǫ, then there also

is a [t, c, l1, . . . , lt]
A-safe coinless (public coin) quantum protocol for PAR

(k)
p/k,q with the same error

probability.

Proof. Let P be a [t, c, l1, . . . , lt]
A-safe quantum protocol for PARp,q with error probability ǫ. We

can use it for designing a protocol for PAR
(k)
p/k,q as follows. Let x1, . . . , xk be the inputs for

Alice. Let x ∈ [2p] be the number that results from concatenating (the binary representations of)
x1, . . . , xk. Let S be the set that Bob receives as input and i the number in {1, . . . , k} he receives.
Define a set S′ ⊆ [2p] of size at most n by

S′ = {x1 ◦ · · · ◦ xi−1 ◦ y ◦ 0p−i(p/k) | y ∈ S}

where ◦ denotes concatenation. Alice computes x and Bob computes S′. Then, they run the
protocol P on inputs x and S′. We now show that if P does not make an error, this protocol
returns the correct result.

The correct result on input x1, . . . , xk, i, S is rankS(xi) mod 2. For every y ∈ S, we have

x1 ◦ · · · ◦ xi−1 ◦ y ◦ 0p−i(p/k) ≤ x1 ◦ · · · ◦ xk
if and only if y ≤ xi. Thus, rankS(xi) mod 2 = rankS′(x) mod 2 which is the value that P computes.

Proposition 4.21. Suppose k divides q and q is a power of 2. If there is a [t, c, l1, . . . , lt]
B-safe

coinless (public coin) quantum protocol P for the problem PARp,q then there also is such a protocol
for the problem (k)PARp−log k−1,q/k that has the same error probability as P.
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Proof. Given P, we can design a protocol for (k)PARp−log k−1,q/k as follows: Alice is given x ∈
[2p−log k−1] and i ∈ {1, . . . , k} and Bob receives S1, . . . , Sk ⊆ [2p−log k−1] with |Sj | ≤ q/k. First,
Alice computes x′ = (i− 1) ◦ 0 ◦ x ∈ [2p] and Bob computes for every j ∈ {1, . . . , k} the set

S′
j =

{

{(j − 1) ◦ 0 ◦ y | y ∈ Sj} if |Sj| is even
{(j − 1) ◦ 0 ◦ y | y ∈ Sj} ∪ {(j − 1) ◦ 1p−log k} if |Sj| is odd

Note that S′
j always has an even number of elements. Bob takes the union S =

⋃k
j=1 S

′
j . All

elements of S are in [2p] and the cardinality of S is at most q since the S′
j all have cardinality at

most q/k. Now, Alice and Bob execute the protocol P on x′ and S and output the result.
If P gives the correct result, this protocol returns rankSi

(x) mod 2: Let i, j ∈ {1, . . . , k}. If
i < j then we have rankS′

j
(x′) = 0. If i = j, we have rankS′

j
(x′) = rankSi

(x) because (i−1)◦0◦x ≥
(i − 1) ◦ 0 ◦ y if and only if x ≥ y. If i > j then rankS′

j
(x′) = |S′

j | = 0 mod 2. Because of this and

because the S′
j are disjoint, we have

rankS(x
′) mod 2 =

∑

j

rankS′
j
(x′) mod 2 = rankSi

(x) mod 2

as required.

Now, we finally have all the tools we need to prove the lower bound on the predecessor problem.
We start by assuming that there is some data structure that violates the lower bound. The main
idea of the proof is to reduce the predecessor problem to PARlogm,n and to apply the previous
two propositions and the Round Elimination Lemma to obtain a protocol for PARp,q without
communication which has error probability smaller than 1/2. Such a protocol is impossible, so
there can be no data structure that violates the lower bound.

Theorem 4.22. Suppose that we have a data structure for the predecessor problem for sets S ⊆ [m]
of size at most n with block-size (logm)O(1) that uses space nO(1). Suppose that there is an address-
only quantum cell-probe algorithm for determining the predecessor of any x ∈ [m] in S that makes
t cell-probes to the representation of S. Suppose further that the error probability of that algorithm
is less than 1/3. Then, it holds that:

• There is a function N : N → N such that for n = N(m), we must have

t = Ω

(
log logm

log log logm

)

.

• There is a function M : N → N such that for m =M(n), we must have

t = Ω

(√

log n

log log n

)

.

This lower bound on t also holds in the classical deterministic and probabilistic setting.
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Proof. Let c1 = (4 ln 2)124. Suppose we have a data structure for the predecessor problem that uses
at most nc2 blocks of size (logm)c3 for some constants c2, c3 ≥ 1. Let n = 2(log logm)2/ log log logm.
Suppose that the predecessor query algorithm makes at most

t =
log logm

(c1 + c2 + c3) log log logm
=

1

(c1 + c2 + c3) log logm
· (log logm)2

log log logm

≥ log n

(c1 + c2 + c3) log logm

≥ 1

c1 + c2 + c3
·
√

log n

log log n

cell-probes and has error probability δ < 1/3. We will now derive a contradiction from this
assumption.

Let a = c2 log n and b = (logm)c3 . By Proposition 4.19, there exists a (2t, 0, a, b)A-safe coinless
quantum communication protocol P that solves the problem PARlogm,n with error probability at
most δ. Let p1 = logm/(c1at

4) and q1 = n. By Proposition 4.20, there is a (2t, 0, a, b)A-safe coinless

quantum protocol that solves PAR
(c1at4)
p1,q1 with error probability at most δ.

By the Quantum Round Elimination Lemma (Lemma 4.17), it follows that there is a (2t −
1, a, a, b)B -safe public coin quantum protocol forPARp1,q1 with error probability at most δ+(12t)−1.
Let p2 = p1−log(c1bt

4)−1 and q2 = ⌊q1/(c1bt4)⌋. By Proposition 4.21, there is a (2t−1, a, a, b)B -safe
public-coin quantum protocol for the problem (c1bt4)PARp2,q2 .

We have
logm

(2c1at4)i
≥ log c1bt

4 + 1 for all i ≤ t (4)

which implies that

p2 ≥
logm

c1at4
− logm

2c1at4
=

logm

2c1at4

and thus, there is a (2t− 1, a, a, b)B-protocol for the problem (c1bt4)PARp,q with

p =
logm

2c1at4
, q =

n

c1bt4

Applying the Round Elimination Lemma again, we obtain a (2t−2, a+ b, a, b)A-safe public coin
quantum protocol for the problem PARp,q that has error probability at most δ + 2(12t)−1.

Iterating this process, we let p′1 = p/(c1at
4) and q′1 = q. Proposition 4.20 gives us a (2(t −

1), a + b, a, b)A-safe protocol for PAR
(c1at4)
p′1,q

′
1

. Applying the Round Elimination Lemma, we get a

(2t−3, 2a+b, a, b)B -safe protocol for PARp′1,q
′
1
with error probability at most δ+3(12t)−1. Now let

p′2 = p′1− log(c1bt
4)−1 and q′2 = ⌊n/(c1bt4)⌋. With Proposition 4.21, we get a (2t−3, 2a+ b, a, b)B-

safe protocol for the problem (c1bt4)PARp′2,q
′
2
. Because of Equation (4), we have

p′2 ≥
logm

2(c1bt4)2
− logm

(2c1at4)2
=

logm

(2c1at4)2

and thus, we have a protocol for (c1bt4)PARp′,q′ for

p′ =
logm

(2c1at4)2
, q′ =

n

(c1bt4)2
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Applying the Round Elimination Lemma, we obtain a (2(t − 2), 2(a + b), a, b)A-safe protocol for
PARp′,q′ that has error probability at most δ + 4(12t)−1.

We continue this process for t iterations in total. After the ith iteration, we have a (2(t −
i), i(a + b), a, b)A-safe public-coin quantum protocol for the problem PAR,p,q with

p =
logm

(2c1at4)i
, q =

n

(c1bt4)i

and error probability δ + 2i(12t)−1 and thus, after t iterations, we have a (0, t(a + b), a, b)A-safe
public-coin protocol for the problem PARp,q with

p =
logm

(2c1t4)t
≥ (logm)Ω(1), q =

n

(c1bt4)t
≥ nΩ(1)

that has error probability δ + 2t(12t)−1 = δ + 1/6 < 1/2. That means that Alice can guess
with a worst-case error probability better than one half the rank parity of her input x in Bob’s
set S without communicating with Bob and without any shared entanglement. This clearly is
impossible.

5 Fully Quantum Data Structures

5.1 Introduction

After looking at classical data structures and lower bounds in the setting of quantum access to
classical data structures, we now turn to data structures where the data is encoded not in classical
bits but in qubits. The query algorithms may use any unitary transforms and any measurements
on the data. While we may compare the size of such a fully quantum data structure to the size of
its classical counterparts, this approach is not comparable to the classical or quantum cell-probe
model in terms of time complexity. Another problem in this setting is that if a query algorithm
involves measurements then the data may be irreversibly altered. Therefore, we will also need to
consider how many times a data structure can be used.

5.2 Set Membership

Our first example of a fully quantum data structure is a data structure for the set membership
problem found by Buhrman, Cleve, Watrous and de Wolf which is described in [25, Section 8].
This data structure is based on a solution to the quantum fingerprinting problem where we want
to encode x, y ∈ [m] as quantum states |φx〉 , |φy〉 which we can use to determine whether x = y
with low error probability.

First, let us have a look at classical fingerprinting. Consider the following situation: Alice and
Bob each hold a bit string x and y in {0, 1}n respectively. They want to find out whether x = y
while keeping the amount of communication small. The trivial solution would be for one party to
send the whole bit string to the other. If they want to have certainty, this approach is actually
optimal. If they are content with a probabilistic test, there are better ways. Let ǫ be the error
probability they want to allow. Choose a prime power q ≥ (n − 1)/ǫ and let F be the finite field
with q elements. Let a = a0 . . . an−1 ∈ {0, 1}n and fa =

∑n−1
i=0 aiX

i. If x = y, then fx = fy. If
x 6= y then the polynomial f̄ = fx − fy is non-zero. We now use the following Lemma for which a
proof can be found in [12, Lemma 16.4]:
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Lemma 5.1. Let F be a field and f a non-zero polynomial of degree d over that field. Let S be a
finite, non-empty subset of F. If we select r ∈ S uniformly at random, the probability that f(r) = 0
is at most d/|S|.

Therefore, the probability that f̄(r) = 0 (and hence fx(r) = fy(r)) is at most

deg(f̄)

q
≤ n− 1

q
≤ (n− 1)ǫ

n− 1
= ǫ.

Alice and Bob could use the following protocol. Alice selects a random r ∈ F and sends r, fx(r)
to Bob. Bob computes fy(r) and compares fx(r) and fy(r). If they are equal, he sends 1 to Alice
to indicate that x = y. Otherwise, he sends 0.

If x = y, this protocol will always output the correct answer. Otherwise, there is an error
probability of at most ǫ. The communication that is required is 2 log |F| + 1. If we choose ǫ as
some small constant (or even ǫ = 1/poly(n)), we can choose q = O(n) (q ∈ poly(n)) and have
communication complexity O(log n).

This protocol depends on Alice and Bob sharing a random number. But what if they cannot
do that? Let us now consider the following scenario: Alice and Bob again have inputs x and y
respectively, but now there is a referee whose task is to decide whether x = y. Alice and Bob have
to enable the referee to do that with good probability. They may each send only one message to
the referee and cannot communicate with each other (in the quantum case, they also do not share
entanglement). It is clear that the scheme described above does not help us here since Alice and
Bob cannot share randomness. However, we can use a quantum version of our previous scheme by
putting the values fa(r) in superposition. More precisely, let

|φa〉 =
∑

r∈F

1
√

|F|
|r〉 |fa(r)〉 .

Alice sends |φx〉 to the referee and Bob sends |φy〉. If x = y, these states are identical, but if x 6= y,
they are nearly orthogonal. Two polynomials of degree ≤ n−1 can have the same value on at most
n− 1 elements of F. Thus, for distinct x and y,

0 ≤ | 〈φx | φy〉 | ≤
n− 1

q
≤ ǫ.

The referee then applies a swap test (see [25, Section 8] for details) to determine whether these
states are identical or almost orthogonal. If the states are equal, the test will always have result 1,
and if not, it has result 1 with probability below (1 + ǫ2)/2. Repeating the swap test several times
on different fingerprints, we can tell these two cases apart with good probability. We can again
choose ǫ as some small constant and q ∈ O(n) to obtain a protocol that solves the problem with
low error probability and O(log n) communication.

Let us now see how to construct a data structure for the set membership problem from these
quantum states. First, we show how to store singletons. We encode x ∈ [m] as |φx〉 where we choose
F as a field of size at least (logm − 1)/ǫ. This encoding requires 2 log |F| = O(log logm − log ǫ)
qubits. Queries “y = x?” are answered by first appending a fresh qubit initialized to |0〉 to |φx〉
and performing the unitary transform given by

|r〉 |z〉 |b〉 7→ |r〉 |z〉 |b⊕ [z = fy(r)]〉
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where [z = fy(r)] denotes 1 if z = fy(r) and 0 otherwise. The state after the transform is

|φx〉 =
∑

r∈F,fx(r)6=fy(r)

√

1

|F| |r〉 |fx(r)〉 |0〉+
∑

r∈F,fx(r)=fy(r)

√

1

|F| |r〉 |fx(r)〉 |1〉

and therefore, if x = y, we will always receive outcome 1 when measuring the last qubit. If x 6= y,
then there are less than ǫ · q elements r ∈ F such that fx(r) = fy(r). Thus, the probability of
measuring 1 is less than ǫ in this case.

If y = x, the measurement does not alter |ψx〉. If y 6= x, let Sy = {r ∈ F | fx(r) 6= fy(r)}. We
have

|Sy| ≥ |F| − (logm− 1) ≥ logm− 1

ǫ
− (logm− 1) =

1− ǫ

ǫ
(logm− 1)

If the measurement returned 0, the state after the measurement will be

∑

r∈Sy

1
√

|Sy|
|r〉 |fx(r)〉 |0〉

and if we make another query to this state, Lemma 5.1 can only guarantee an error probability
of at most ǫ/(1 − ǫ): In the worst case, the two polynomials fx and fy agree on logm − 1 values
for r and (logm − 1)/ǫ is already a prime, so |F| = (logm − 1)/ǫ. Then, our new quantum state
only contains a superposition over (1− ǫ)(logm− 1) elements r ∈ F and their corresponding values
of the polynomial. In that case, Lemma 5.1 can only guarantee a success probability of at most
ǫ/(1− ǫ) when we check whether z = x.

This means that if we originally had error probability 1/k then we can only guarantee 1/(k−1)
now. If we want to handle more queries, we can enlarge the field F.

It is possible to design a data structure such that k successive queries y1 = x?, . . . , yk = x? are
all answered correctly with probability at least 2/3. Let ǫ = 1/(4k) and let F be a field of size q
with q = O((logm)/ǫ) = O(k logm) and q ≥ (logm− 1)/ǫ = 4k(logm− 1). Using this field in the
construction above yields such a data structure. After i < k queries, the quantum state of our data
structure is

∑

r∈Si

1
√

|Si|
|r〉 |φx(r)〉

with |Si| ≥ |F|− i(logm−1). Thus, the probability that each of the k queries has the correct result
is at least

k−1∏

i=1

(

1− logm− 1

4k(logm− 1)− i(logm− 1)

)

=

k−1∏

i=1

(

1− 1

4k − i

)

≥
(

1− 1

3k

)k

≥ 2

3

This proves the following theorem:

Theorem 5.2. For positive integers m,k there is a quantum data structure that encodes elements
x ∈ [m] in O(log logm+ log k) qubits such that for k successive queries of the form “y = x?”, the
probability that they are all answered correctly is at least 2/3.

We can encode a set S ⊆ [m] by simply storing a fingerprint for each element. We answer the
query y ∈ S by answering whether y = x for any x ∈ S. Note that we have to reduce the error
probability for the individual fingerprints to, say, 1/(4n).
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Theorem 5.3. There is a data structure that stores sets S ⊆ [m] of size at most n in O(n(log logm+
log k + log n)) (or O(n(log logm + log k)) for k or m large enough) qubits such that k successive
queries “y ∈ S?” are all answered correctly with probability at least 2/3.

Let us compare this result to the classical setting. The information-theoretic minimum for
storing S ⊆ [m] of size n is Ω(n logm) bits. The only way around this limitation would be to
also consider data structures that work for most queries but fail on some. We could encode single
elements x ∈ [m] by selecting r ∈ F uniformly at random and storing (r, fx(r)). Then, we could
check whether y = x by comparing fx(r) and fy(r). This method could be extended to sets by
fingerprinting each element, as in the previous theorem.

While this requires as many bits as our quantum data structure requires qubits, the downside of
the classical version is that, while for most y ∈ [m], the query “y ∈ S?” will be answered correctly,
there are some y ∈ [m], determined when the set S is encoded, such that “y ∈ S?” will always be
answered incorrectly.

A lower bound from [25] on the size of fully quantum set membership data structures is Ω(n).

Theorem 5.4. Every fully quantum data structure for the set membership problem requires Ω(n)
qubits.

Proof. We show how we can use such a data structure as a quantum random access code (QRAC)
and then apply a lower bound on such codes due to Nayak in [17]. A QRAC encodes bit strings
x ∈ {0, 1}n in l-qubit states |ψx〉 such that for each i ∈ [n], we can recover xi from |ψx〉 with
probability p. A QRAC has to guarantee that we can recover any bit of our choice with good
probability, but it does not have to guarantee that we can recover more than one bit. The lower
bound by Nayak is l ≥ (1−H(p))n where H(p) = −p log p− (1−p) log(1−p) is the binary entropy
function.

We represent x as Sx = {i | xi = 1}. Given a quantum data structure for set membership that
uses S(m,n) qubits, we can store Sx and use this as a QRAC for x by querying it on the index i
that we are interested in. Thus, if our data structure achieves a success probability greater than
1/2, we must have S(m,n) ≥ Ω(n).

5.3 Quantum Walks and Data Structures

In this section, we will present quantum walks, a framework for the construction of quantum al-
gorithms, and show how it can use fully quantum data structures. Using this framework, one can
construct algorithms that work similar to Grover’s search algorithm. This framework also makes
it easy to analyse different kinds of costs of the constructed algorithms. In contrast to the rest of
this survey, the data structures here are dynamic. That is, it also is important that they can be
updated with low cost. We will use the framework to give an algorithm for triangle finding that
was discovered by Jeffery, Kothari and Magniez in [11].

First, let us have a look at the classical counterpart of quantum walks: Random walks. We
will consider random and quantum walks on a graph G = (V, E) where each vertex has exactly d
neighbours for some d. More generally, we can consider Markov chains instead of graphs, but for
simplicity, we stick with graphs. This suffices for the application which we describe. Let I be a set
of possible inputs. With each x ∈ I, we associate a set Mx ⊆ V. Let G be the adjacency matrix of
G and δ the spectral gap of 1

dG. The spectral gap can, somewhat imprecisely, be described as the
difference between the largest and second largest eigenvector. If λ1, λ2, . . . , λn are the eigenvalues
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of 1
dG, listed with multiplicity and sorted in descending order with respect to their absolute values,

then the spectral gap is defined as δ = |λ1|− |λ2|. If G is the adjacency matrix of some graph, then
the eigenvalue of 1

dG with the largest absolute value is always 1, so we have δ = 1− |λ2|. We also
call the spectral gap of 1

dG the spectral gap of the graph G.
We want to construct an algorithm that finds an element of Mx given x. A random walk works

as follows:

1. Choose a vertex u ∈ V uniformly at random.

2. Repeat the following until a vertex v ∈Mx is found:

(a) Check if u ∈Mx, if yes, output u.

(b) Do the following ⌈1/δ⌉ times: Select a neighbour v of u uniformly at random and set
u = v.

We will analyse the expected cost of this algorithm in terms of cost vectors. A cost vector may
store several kinds of costs for one operation that are considered relevant. For example, we might
associate with some algorithm a vector that contains only the bit-probe complexity or we might
consider both the bit-probe and circuit complexity. The three operations that form the random
walk are Setup, step 1 above, Checking, step 2.(a), and Update, step 2.(b) and the associated
cost vectors are S, C and U , respectively. Then, the expected cost is roughly

T (ǫ, δ) = S +
1

ǫ

(

C +
1

δ
U

)

where ǫ = |Mx|/|V|. This holds because one can show that by making about 1/δ random steps
starting from any vertex, we sample a distribution on V that is close to uniform.

Obviously, if Mx = ∅, this algorithm can never terminate. If we know ǫ > 0 such that for all
Mx 6= ∅, ǫ ≤ |Mx|/|V| (a trivial lower bound would be 1/|V|) then we can construct a bounded-error
algorithm that determines whetherMx = ∅ and, if not, finds some u ∈Mx. This is done by running
⌈3/ǫ⌉ iterations of the loop in step 2. If we obtain some output, we have found u ∈ Mx. If not,
we conclude that Mx = ∅. This algorithm has a worst-case cost of O(T (ǫ, δ)). If Mx = ∅, the
algorithm cannot make an error. If Mx 6= ∅, it will only output a vertex u if it is indeed in Mx.
The probability that it will falsely report Mx = ∅ is less than 1/3.

To see this, let the random variable Tx be the number of iterations of the loop in step 2 to find
some u ∈Mx. Then, E[Tx] ≤ 1/ǫ. We now estimate the probability that the random walk requires
more than 3/ǫ iterations. By Markov’s inequality,

Pr

[

Tx >
3

ǫ

]

<
ǫ

3
E[Tx] ≤

1

3

Data structures can improve the efficiency of random walks as follows: With each vertex v of
the graph, we associate some data dv,x that helps us to decide whether v ∈ Mx, i.e., knowing dv,x
reduces the checking cost C. In the Setup phase, we also store some representation of dv,x for the
starting vertex v. When we move from vertex v to vertex v′, we update the representation of dv,x
to dv′,x. Thus, we can trade off an increase in the Setup cost S and Update cost U for a decrease
in C. Depending on the problem and the data, this might reduce the overall cost.
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With a quantum computer, we can reduce the factors 1/ǫ and 1/δ to their square roots, using the
quantum walk framework. To understand quantum walks, it is helpful to first know how Grover’s
search algorithm works. We will, however, not give a full proof for Grover’s algorithm. Such a
proof can be found in [18, Chapter 6], for example.

Theorem 5.5 (Grover’s Algorithm). Let x be a bit string of length N = 2n. Suppose that for
some ǫ > 0 we are guaranteed that if x has a non-zero entry then at least ǫN of its entries are 1.
(Such a guarantee is trivial for ǫ = 1/N .) There is a bounded-error quantum bit-probe algorithm
that makes O(

√

1/ǫ) bit-probes to x and outputs an i ∈ [n] such that xi = 1 or reports that x is the
all-zero string. In particular, O(

√
N) bit-probes suffice for any string x, using the trivial value for

ǫ mentioned above.

Proof sketch. We use the oracle

Ox,± : |i〉 7→
{

− |i〉 if xi = 1

|i〉 if xi = 0

for bit-probes to x. First, we show how to find an index i ∈ [n] with xi = 1 when we know that
exactly ǫN bits of x are 1. The algorithm operates on n qubits which start in the |0〉-state. First, a
Hadamard gate is applied to every qubit which creates a uniform superposition |U〉 over the states
|0〉 , . . . , |N − 1〉. Let |G〉 be the uniform superposition over all “good” states, i.e., the states |i〉
with xi = 1, and |B〉 the uniform superposition over the “bad” states, i.e., |i〉 with xi = 0. We can
write

|U〉 = 1√
N

N−1∑

i=0

|i〉 = sin(θ) |G〉+ cos(θ) |B〉 for θ = arcsin(
√
ǫ).

Each iteration of Grover’s algorithm shifts the amplitude from the “bad” states towards the “good”
ones. After k iterations, the amplitude of |G〉 is sin((2k + 1)θ). This is achieved by applying the
transform H⊗nOGH

⊗nOx,± where

OG : |i〉 7→
{

|0〉 if i = 0

− |i〉 if i 6= 0

to our working state. To see that this transform has the intended effect, notice first that for
computational basis states |i〉

Ox,± : |i〉 7→
{

− |i〉 if |i〉 is orthogonal to B
|i〉 otherwise

i.e., Ox,± is a reflection through B. The transform H⊗nOGH
⊗n implements a reflection through U .

This can be seen as follows: We can write OG = 2 |0〉 〈0| − I. This gives us

H⊗nOGH
⊗n = 2

(
H⊗n |0〉

) (
〈0|H⊗n

)
−H⊗nH⊗n = 2 |U〉 〈U| − I

which shows that H⊗nOGH
⊗n reflects through |U〉. The angle between |U〉 and |B〉 is −θ. If

the state before the iteration was sin((2k − 1)θ) |G〉 + cos((2k − 1)θ) |B〉, the angle (2k − 1)θ is
first changed to −(2k − 1)θ by the reflection through |B〉. Now the angle between |U〉 and our
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current working state is 2kθ. Thus, after the reflection through |U〉, our working state becomes
sin((2k + 1)θ) |G〉+ cos((2k + 1)θ) |B〉.

If ǫ = sin2(π/(2 · (2k+1))) for some positive integer k, then after k iterations, our working state
will be |G〉. Measuring it will give us an index i ∈ [n] such that xi = 1, by definition of |G〉. If ǫ is
not of this form, we can nevertheless bring our working state close to |G〉 so that a measurement will
have a correct result with high probability by picking an integer k such that sin2(π/(2 · (2k + 1)))
is as close as possible to ǫ.

Since sinx ≈ x for small x, we choose

k ≈ π

4
√
ǫ
− 1

2
= O

(
1√
ǫ

)

.

See Figure 5 for an illustration of the circuit. But what can we do when we do not know ǫ exactly?
If we apply too many iterations of Grover’s algorithm, we will end up decreasing the amplitude of
the “good” states again.

|q0〉 = |0〉 H

Ox,±

H

OG

H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|q1〉 = |0〉 H H H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|q2〉 = |0〉 H H H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|q3〉 = |0〉 H H H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

Figure 5: Grover’s search algorithm for input length N = 16, assuming that ǫ = 1/4 of the bits in x are 1.
In that case, we have θ = arcsin(1/2) = π/6. Thus, one iteration will bring our working state to |G〉.

The case where either x is all-zero or exactly ǫN bits are 1 is easy: We apply Grover’s algorithm
for ǫ and obtain an i ∈ [n]. If xi = 1, we output i and if xi = 0, we say that x is all-zero. If we only
know that either x is all-zero or at least ǫN bits are 1, we can use a method by Boyer, Brassard,
Høyer and Tapp in [4] which solves our problem with O(N/ǫ) bit-probes using several systematic
guesses for the actual number of indices i with xi = 1.

In this proof, we can identify the following basic ingredients:

• A uniform superposition |U〉 over the whole search space,

• A reflection through |B〉, the uniform superposition of the 0-elements,

• A reflection through |U〉.

In quantum walk algorithms, we apply these ingredients on a graph (or Markov chain) instead of a
bit string. The basic operations of quantum walk algorithms are explained below. Our presentation
here is based on lecture notes by Ronald de Wolf [24] which only treats quantum walks on graphs.
For a survey about walks on Markov chains, see [14]. Let G = (V, E) be a d-regular graph and G
its adjacency matrix. Let |V| = n. For every u ∈ V, let Vu be the set of neighbours of u. With each
x ∈ I for some set I of possible inputs, we associate a setMx ⊆ V. We want to design an algorithm
for deciding whether Mx 6= ∅ and finding a vertex v ∈ Mx if it is non-empty. For a Hilbert space
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HD, let D
x : V 7→ HD be a function that associates x and a vertex u ∈ V with some quantum state

|Dx(u)〉. We call {|Dx(u)〉}u∈V the data structure associated with x and G. Fully quantum data
structures were first used in [11] for this purpose; previously, only classical ones had been used.

Let HL ≃ HR be Hilbert spaces with orthonormal basis vectors |0〉L , |u〉L for u ∈ V and
|0〉R , |u〉R for u ∈ V, respectively. Since the basis states of HL and HR share the same set of labels,
we use L and R subscripts to specify the Hilbert space that a basis vector belongs to. The Setup

consists of constructing the quantum state

|Ux〉 = 1√
dn

∑

u∈V

∑

v∈Vu

|u〉L |v〉R |Dx(u)〉

given bit-probe access to x. We can view this state as the uniform superposition over all edges of
the graph. We denote the cost vector for this operation by S.

As the Checking operation, we compute the following transform:

|u〉L |v〉R |Dx(u)〉 7→
{

− |u〉L |v〉R |Dx(u)〉 if u ∈Mx

|u〉L |v〉R |Dx(u)〉 otherwise

and we denote the cost vector for this operation with C. The checking operation may also have
some small error probability. This operation implements the reflection through |B〉.

It now remains to implement the reflection through |U〉. For this, we use the Update operation.
The Update operation consists of the following unitary transforms, where Vu denotes the set of
neighbours of u in G

PA : |u〉L |0〉R |Dx(u)〉 7→
∑

v∈Vu

1√
d
|u〉L |v〉R |Dx(v)〉

PB : |0〉L |v〉R |Dx(v)〉 7→
∑

u∈Vu

1√
d
|u〉R |v〉L |Dx(u)〉

The cost vector for executing these two operations, plus their inverses is denoted by U . We can use
these operations to reflect through |Ux〉, but showing this is not straightforward. In the following
discussion, we will suppress the data structure in the notation to make it more readable. For every
vertex u, let

|pu〉 =
1√
d

∑

v∈Vu

|u〉L |v〉R

and for every vertex v, let

|qv〉 =
1√
d

∑

u∈Vv

|u〉L |v〉R

and let

A = span{|pu〉 | u ∈ V}
B = span{|qv〉 | v ∈ V}

Let refA and refB be the reflections through A and B and let W (G) = refB · refA. We can compute
the reflection through A by applying P ∗

A, putting a − in the amplitude if the second register is not
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in state |0〉R and then applying PA. Similarly, we compute refB. Thus, we can compute W (G). We
define matrices

A =
∑

u∈V

|pu〉 〈u|L 〈0|R , B =
∑

v∈V

|qv〉 〈v|L 〈0|R .

Define the discriminant matrix D(A,B) as A∗B.
The discriminant matrix is related to the adjacency matrix of our graph. For every u ∈ V we

have

〈pu | qv〉 =
1

d




∑

v′∈Vv

〈u|L
〈
v′
∣
∣
R








∑

u′∈Vv

∣
∣u′
〉

L
|v〉L



 =
1

d

∑

u′,v′

〈
u | u′

〉 〈
v′ | v

〉

=

{

1/d if u and v are neighbours

0 otherwise

and thus, D(A,B) = 1
dG. The operation D(A,B) = A∗B can thus be seen as an analogue of a step

in the random walk.
A theorem by Mario Szegedy relates the eigenvalues and -vectors of D(A,B) to those of W (G).

We prove a simplified version here that suffices for our purpose.

Theorem 5.6 (Spectral Lemma, [22, Theorem 1]). Let A,B ∈ C
n×m such that each column of

A and B is a vector in C
n of length 1, A∗A = B∗B = I and D(A,B) = A∗B is Hermitian,

i.e., D(A,B) = D(A,B)∗. Let A and B be the subspaces of C
n spanned by the column vectors

of A and B, respectively, and πA = AA∗ and πB = BB∗ projectors on these spaces. Let W =
(2BB∗ − I)(2AA∗ − I) = refB · refA. The following statements hold:

1. Every eigenvalue of D(A,B) is real and has absolute value at most 1.

2. For every θ ∈ [0, π], if cos θ is an eigenvalue of D(A,B) then e±iθ are eigenvalues of W . If
ei2θ or e−i2θ is an eigenvalue of W with eigenvector in

A+ B = {a+ b | a ∈ A, b ∈ B}

then cos θ is an eigenvalue of D(A,B).

3. On A∩ B and on A⊥ ∩ B⊥, W acts as the identity.

4. On A∩ B⊥ and A⊥ ∩ B, W acts as −I.

5. If v is an eigenvector of W in A+ B with eigenvalue 1, then v ∈ A ∩ B.

Proof. For point 1, note that we can interpret D(A,B) as an orthogonal projector from B to A
in the sense that for every v ∈ C

m, πABv = AA∗Bv = AD(A,B)v. Conversely, D(A,B)∗ can
be viewed as a projector from A to B since πBAv = BB∗Av = BD(A,B)∗v. Since D(A,B) is
Hermitian, its eigenvalues are real. If v is an eigenvector of D(A,B) with eigenvalue λ, we have

πABv = AD(A,B)v = λAv

πBAv = BD(A,B)∗v = BD(A,B)v = λBv
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Combining these two equations, we get πBπABv = λ2Bv. Since projectors cannot increase the
length of a vector, it follows that |λ| ≤ 1.

For point 2, let v be a unit-length eigenvector ofD(A,B) with eigenvalue cos θ. The angle θ has a
geometric meaning: It is the angle between Av and Bv since 〈Av | Bv〉 = v∗A∗Bv = v∗D(A,B)v =
cos θ. Since AA∗Bv = AD(A,B)v = cos θAv and BB∗Av = BD(A,B)∗v = cos θBv, the vector
space V spanned by Av and Bv is invariant underW . Moreover, the action ofW on V is a reflection
through Av followed by a reflection through Bv which corresponds to a rotation with angle 2θ.
Therefore, the eigenvectors in this subspace have eigenvalues e±2iθ.

Since the eigenvectors of D(A,B) form a basis of Cn, the set

{Av,Bv | v is an eigenvector of D(A,B)}

is a generating set for A + B. Thus, D(A,B) can have no other eigenvalues with eigenvectors in
the subspace A+ B.

Points 3 and 4 follow easily from the fact that refA acts as the identity on A and as −I on A⊥

while refB acts as I on B and as −I on B⊥. To see that point 5 holds, note that a vector in A+ B
can only be mapped to itself under W if it is in A∩ B.

Remark 5.7. Szegedy formulated his theorem for matrices A and B of arbitrary size, using the
singular values of D(A,B). In the case that D(A,B) is square and Hermitian, the singular values
coincide with the absolute values of the eigenvalues.

The subspace A ∩ B is spanned by |Ux〉: The projector from HL ⊗HR on A ∩ B is given by

(
∑

u∈V

|pu〉 〈pu|
)

·
(
∑

v∈V

|qv〉 〈qv|
)

=
∑

u∈V

∑

v∈V

〈pu | qv〉 |pu〉 〈qv|

=
1

d

∑

u∈V

∑

v∈Vu

|pu〉 〈qv|

and thus, if x =
∑

u λu |pu〉 is in A ∩ B, it must hold that

x =
1

d

∑

u′∈V

∑

v∈Vu

∑

u∈V

λu |pu′〉 〈qv | pu〉

and hence, for all w ∈ V,
λw =

1

d

∑

v∈V

∑

u∈Vv

λu 〈qv | pu〉 .

That is, all λw must be identical. Hence, every vector in A ∩ B can be written as

∑

u∈V

λ |pu〉 = λ
∑

u∈V

|u〉L
∑

v∈Vu

1√
d
|v〉R

and thus it must be a scalar multiple of |Ux〉.
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This allows us to distinguish |Ux〉 from other states in A + B as follows. From Theorem 5.6,
we know that |Ux〉 is an eigenvector of W (G) with eigenvalue 1. Let δ be the spectral gap of 1

dG.
Then, every other eigenvector of W (G) in A+ B must have eigenvalue e±i2θ for some θ with

δ ≤ 1− | cos(θ)| ≤ θ2/2 ⇔ |θ| ≥
√
2δ.

To distinguish |Ux〉 from other states in A+B, we use a quantum algorithm called phase estimation:
Fix some unitary U . For any quantum state |φ〉 that is an eigenvector of U with eigenvalue e2πiα,
where 0 ≤ α < 1, we can obtain an estimate of α with good probability. Let α′ be α rounded to
n binary digits. Phase estimation maps |0n〉 |φ〉 7→ |2nα′〉 |φ〉 with high probability. This requires
applying Hadamards on the first n qubits, the inverse of the quantum Fourier transform and n
times the transform U . The Fourier transform on n qubits is the unitary mapping

|j〉 7→ 1√
2n

2n−1∑

k=0

e2πi·jk/2
n |k〉 .

To give some intuition about phase estimation, we describe it for the case where α = α′ has
exactly n binary digits in which it gives the correct result with certainty. We start with state |0n〉 |φ〉.
Applying the Hadamard gates, we obtain

∑2n−1
j=0 |j〉 |φ〉. Then, we apply the transform that maps

|j〉 |φ〉 7→ |j〉U j |φ〉 = e2πijα |j〉 |φ〉. Applying this on our quantum state gives us
∑2n−1

j=0 e2πijα |j〉 |φ〉.
But this is also the state that results from applying the Fourier transform on the first n qubits
of |2nα〉 |φ〉. Therefore, computing the inverse of the Fourier transformation will give us the state
we want. The cost of this algorithm is the cost of generating the uniform superposition (n gates),
computing n times the unitary U and then computing the inverse Fourier transformation (O(n2)
gates for computing it exactly, O(n log n) for a good approximation). See [18, Chapter 5] for a
more complete description of the phase estimation algorithm.

Using phase estimation with precision O(1/
√
δ), we can distinguish with good probability the

case where a given state |φ〉 in A + B is |Ux〉 from the case where |φ〉 is an eigenvector of W with
eigenvalue 6= 1. We can then implement the reflection by performing the phase estimation, putting
a minus in the phase if the eigenvalue is not 1 and reversing the phase estimation again. Assuming
that the cost of the computation of W (G) dominates the other costs in the phase estimation, it
costs O(1/

√
δ)U to reflect through |Ux〉 and C to reflect through |B〉. As in Grover’s algorithm, we

will have to perform these two reflections O(
√

1/ǫ) times each to find a vertex u ∈Mx or determine
that Mx = ∅. Thus, we have the following theorems:

Theorem 5.8. Let G be a graph and let δ be the spectral gap. Let ǫ > 0 be such that for all Mx 6= ∅,
ǫ ≤ |Mx|/|V|. There is a bounded-error quantum algorithm that on input x, finds an element of
Mx or determines that Mx is empty with cost

O

(

S +
1√
ǫ

(

C +
1√
δ
U

))

.

Theorem 5.9 (Jeffery, Kothari, Magniez, [11]). For G, δ and ǫ as before, there is a bounded-error
quantum algorithm that implements the transform

|Ux〉 7→
{

− |Ux〉 if Mx 6= ∅
|Ux〉 otherwise
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with cost

O

(
1√
ǫ

(

C +
1√
δ
U

))

.

As a first example, let us see an algorithm for the element distinctness problem given by Am-
bainis in [2]. In this problem, we are given as input integers x1, . . . , xn and we have to determine
if there are distinct indices i and j such that xi = xj and if yes, we have to output such indices.
Assuming that we can completely read any integer in the input with O(1) cell-probes, there exists
a quantum walk algorithm that solves the element distinctness problem with O(n2/3) cell-probes.
Classically, we have to make Ω(n) cell-probes to solve the problem. The complexity for quantum
cell-probe algorithms is lower-bounded by Ω(n2/3), which is proved in [1], so Ambainis’s algorithm
is asymptotically optimal. The quantum walk takes place on a Johnson graph which we define
below.

Definition 5.10 (Johnson graph). For positive integers n and r, the vertices of the Johnson graph
J(n, r) are the subsets of [n] with exactly r elements. Two vertices are neighbours if and only if
their symmetric difference has exactly two elements. That is, we get from a vertex u to a neighbour
v by removing one element from u and adding a different one.

The spectral gap of J(n, r) is δ = n/(r(n−r)) = Ω(1/r). We will treat r as a parameter for now
and determine a suitable value for it later. For input x = x1, . . . , xn, we let Mx = {u ∈ J(n, r) |
∃i, j ∈ u : xi = xj}, the set of vertices of J(n, r) that contain colliding indices. When we have
found an element of Mx, we can find distinct i and j such that xi = xj by making O(r) cell-probes
to our input. We find such a set Mx via quantum walk. With input x and vertex u of J(n, r),
we associate a representation |Dx(u)〉 of the set {(i, xi) | i ∈ u}. In the Setup-phase, we want to
construct the state

√

1

r(n− r)
·
(
n

r

)−1 ∑

u∈J(n,r)

∑

v∈J(n,r)u

|u〉L |v〉R |Dx(u)〉

and it costs r quantum cell-probes to create |Dx(u)〉. The Update-phase requires O(1) quantum
cell-probes since neighbouring vertices u and v only differ in two elements. The Checking-step
requires no cell-probes since all the information we need to decide if u ∈Mx is contained in |Dx(u)〉.
Let us now determine ǫ. Suppose that Mx 6= ∅ and let i and j be distinct indices such that xi = xj .
If we select u ∈ J(n, r) at random, there is a probability of

ǫ =
r

n
· r − 1

n− 1

that u contains those two indices. Thus, our quantum walk algorithm makes

O

(

r +

√

n(n− 1)

r(r − 1)

√

r(n− r)

n

)

= O

(

r +
n√
r

)

cell-probes. If we set r = n2/3, the complexity becomes O(n2/3 + n1−1/3) = O(n2/3). When we
have found an element of Mx, we need to make O(r) cell-probes to actually find colliding indices.
Thus, we can solve the element distinctness problem with O(n2/3) cell-probes.
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We now describe a framework for nested quantum walks given in [11]. Such quantum walks
consist of an outer walk on a graph G where the checking step is implemented by a quantum walk
on another d′-regular graph G′ = (V ′, E ′). With each x and u, we associate a set Mu

x ⊆ V ′ such
that Mu

x 6= ∅ if and only if u ∈Mx. Let

|Ux
u 〉 =

∑

u′∈V ′

∑

v′∈V ′

u′

1
√

d′|V ′|
∣
∣u′
〉

L′

∣
∣v′
〉

R′

∣
∣Dx

u(u
′)
〉

where Dx
u is a data structure for the walk on G′. This means that |Ux

u 〉 is the initial state of the
quantum walk on G′. The Setup consists of preparing a quantum state

|Ux〉 =
∑

u∈V

∑

v∈Vu

1
√

d|V|
|u〉L |v〉R |Ux

u 〉 .

That is, the data structure for the outer walk associated with u is the initial state of the walk on
G′. The Update operation is as before. The Checking operation maps

|u〉L |v〉R |πxu〉 7→
{

− |u〉L |v〉R |Ux
u 〉 if u ∈Mx

|u〉L |v〉R |Ux
u 〉 otherwise

and since u ∈ Mx if and only if Mu
x 6= ∅, we can implement this operation with bounded error by

applying Theorem 5.9 to the inner walk.

Theorem 5.11 (Nested QuantumWalks, [11]). Let δ′ be the spectral gap of G′ and ǫ′ > 0 be a lower
bound for |Mu

x |/|V ′| with Mu
x 6= ∅. Suppose that an update of the inner walk has update cost at most

U ′ and the checking cost for u′ ∈ Mu
x is at most C ′. Then, for Õ(f(n)) = O(f(n) · polylog(f(n))),

we have a bounded-error algorithm that finds an element in Mx or determines that Mx = ∅ with
cost

Õ

(

S +
1√
ǫ

(
1√
δ
U +

1√
ǫ′

(

C ′ +
1√
δ′
U ′

)))

Proof (sketch). As discussed above, this result follows by implementing the Checking operation
via Theorem 5.9. The polylogarithmic factor hidden in the Õ-notation comes from the fact that
we need to amplify the success probability for the checking step of the inner and outer walks.

As an application of this framework, we describe a quantum walk algorithm for triangle finding
in graphs from [11]. A triangle in a graph is a set of three vertices where every two vertices in
the set are neighbours. We are given oracle access to (the adjacency matrix of) a graph G. If the
input graph G has n vertices (which translates to roughly n2 input bits), the quantum bit-probe
complexity of the algorithm is Õ(n9/7). First, we introduce some notation. If G = (V,E) is a graph
and R ⊆ V , we let GR be the restriction of G to R, i.e., (R,E|R×R). If L is a possible set of edges
on vertices V , we let G(L) = (V,E ∩ L).

Theorem 5.12. There is a quantum bit-probe algorithm with bounded error that decides whether
a graph G contains a triangle using Õ(n9/7) bit-probes.
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Proof. The outer walk is on the Johnson graph G = J(n, r1) and the inner walk on G′ = J(n, r2)
for r1 and r2 such that r1 ≤ r2 ≤ r21. We will fix values for r1 and r2 later. Let G be the input
graph. We identify the vertices of J(n, r1) and J(n, r2) with r1- or r2-size sets of vertices of G. We
define MG such that for every vertex R1 of G, we have R1 ∈MG if and only if R1 contains a vertex
of G that is part of a triangle. In the inner walk, we let R2 ∈ MR1

G if and only if R1 contains a
G-vertex v1 and R2 contains a G-vertex v2 6= v1 such that v1 and v2 are part of the same triangle
in G.

The data structure of the inner walk is given by DR1

G (R2) being the subgraph of G that contains
exactly those edges that have one endpoint in R1 and one in R2. Let R2 and R′

2 be neighbours.
Since there is exactly one vertex r in R′

2 that is not in R2, updating the data structure for operations
PA and PB requires querying for each r′ ∈ R1 whether r and r′ are neighbours. Thus, the Update

of the inner walk requires U ′ = O(r1) bit-probes.
We can compute the Checking step of the inner walk with sufficiently low error probability

using C ′ = Õ(
√
n(r1r2)

1/3) bit-probes. This is done as follows: For any vertex v of G, we can use
a subroutine from [11, Appendix A], which we will describe later on, to look for vertices v1 ∈ R1

and v2 ∈ R2 such that v, v1 and v2 form a triangle. This subroutine requires O((r1r2)
1/3) bit-

probes. We then use a variant of Grover’s algorithm to find out whether there exists a vertex v of
G that forms a triangle with one vertex from R1 and one vertex from R2. This is done by replacing
the oracle query of Grover’s algorithm with the subroutine we just mentioned. We need to make
O(

√
n(r1r2)

1/3) bit-probes to do this.
Let us now describe the subroutine; it is similar to the algorithm for element distinctness. Given

two graphs G1 = (V1, E1) and G2 = (V2, E2), let G1 ×G2 be the graph with vertices V1 × V2 where
two vertices (u1, u2) and (u′1, u

′
2) are neighbours if and only if u1 and u′1 are neighbours in G1 and

u2 and u′2 are neighbours in G2. The subroutine is again a quantum walk, this time on the graph
G′′ = J(r1, k) × J(r2, k) for k to be determined later. We assign every vertex in R1 a number in
[r1] and every vertex in R2 a number in [r2]. We then can view every vertex (U1, U2) of G′′ as a
pair that consists of a set of k vertices in R1 and a set of k vertices in R2. We say that a vertex
(U1, U2) of G′′ is marked if and only if there is a vertex v1 ∈ U1 and a vertex v2 ∈ U2 such that v,
v1 and v2 form a triangle in G. Our goal is to find a marked vertex of G′′.

During the walk we maintain a data structure that records for every vertex in U1 ∪U2 whether
it is a neighbour of v. Using this data structure and the information from DR1

G (R2), we can check
whether a vertex of G′′ is marked without any bit-probes. For the Setup, we have to make O(k) bit-
probes and for the Update we have to make O(1) bit-probes. The spectral gap of J(r1, k)×J(r2, k)
is δ′′ = Ω(1/k) and a lower bound on the fraction of marked vertices in G′′ – if there are any – is
ǫ′′ = k2/(r1r2) which can be seen as follows: Suppose there is a vertex v1 in R1 and a vertex v2 in
R2 such that v, v1, v2 form a triangle. If we select a vertex of J(r1, k) at random, the probability
that it contains v1 is k/r1 and if we select a random vertex of J(r2, k), the probability that it
contains v2 is k/r2. Thus, a random vertex of G′′ is marked with probability at least

ǫ′′ =
k

r1r2
.

The complexity of the subroutine is

O

(

k +
1√
ǫ′′

· 1√
δ′′

)

= O

(

k +

√
r1r2
k

·
√
k

)

= O

(

k +

√
r1r2√
k

)
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bit-probes. Choosing k = (r1r2)
1/3 results in a complexity of O((r1r2)

1/3) bit-probes, as claimed.
Let us now return to the inner walk on G′. The spectral gap of J(n, r2) is δ

′ = Ω(1/r2) and we
have ǫ′ = r2/n. To see this, suppose that there is a vertex v1 in R1 that is part of a triangle. Then,
a vertex R2 of G′ is in MR1

G if and only if it contains a vertex v2 6= v1 of G such that v1 and v2 are
part of the same triangle in G. Fix such a vertex v2. The probability that a random vertex in G′

contains v2 is ǫ′ = r2/n.
Thus, the Checking step for the outer walk has cost

C = Õ

(
1√
ǫ′

(
1√
δ′
U ′ + C ′

))

= Õ

(

√
nr1 +

nr
1/3
1

r
1/6
2

)

The Setup cost of the outer walk is S = r1r2 since the number of possible edges in DR1

G (R2) is
S = r1r2. The cost for the Update operation is U = O(r2) since updating the data structure from
R1 to a neighbour R′

1 requires querying for the r′ ∈ R′
1 \R1 and every r ∈ R2 whether r′ and r are

neighbours.
We have δ = Ω(1/r1). Also, similar to the inner walk, we have ǫ = r1/n. Thus, Theorem 5.12

gives us an algorithm that makes

Õ

(

r1r2 +

√
n√
r1

(

√
r1r2 +

√
nr1 +

nr
1/3
1

r
1/6
2

))

= Õ

(

r1r2 +
√
nr2 + n

√
r1 +

n3/2

(r1r2)1/6

)

bit-probes. Setting r1 = n4/7 and r2 = n5/7 gives an algorithm that makes Õ(n9/7) bit-probes.

This proof shows how we can reduce costs by putting the more expensive operations into the
outer walk: Since r2 > r1, the Update-step of the outer walk is more expensive than the Update-
step of the inner walk. A classical algorithm for triangle finding must make Ω(n2) queries: Consider
a complete bipartite graph where the sets of vertices V1 and V2 both have n/2 elements. This graph
does not contain any triangles. But if we add any edge between two vertices in V1 or two vertices in
V2, we have a triangle. Thus, it is necessary to check Ω

(
2 ·
(n
2

))
= Ω

(
n2
)
edges to distinguish the

complete bipartite graph from a graph with a triangle. It is not known whether Õ(n9/7) is optimal
in the quantum setting, but no better algorithm has been found.

6 Summary

What can quantum computing do for the data structure problems that we investigated in this
survey? If one looks at it superficially, one might say that it does not do much. For the set
membership problem, the Perfect Hash method offers a solution that achieves the information-
theoretic minimum of memory up to a constant factor and has a time complexity of logm bit-
probes. This time complexity cannot be improved in the quantum bit-probe model as long as we
require an exact query algorithm or one with one-sided error. If we allow bounded error, there
are classical data structures which need only one bit-probe. For the predecessor search problem,
we showed that the time complexity of the data structure by Beame and Fich cannot be improved
without raising the space complexity, even in the address-only quantum cell-probe model. While
this does not exclude the possibility that a quantum query algorithm exists which uses fewer cell-
probes, such an algorithm must be relatively complicated. The qubits which receive the cell-probe
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results cannot be in some simple state such as |0〉. They have to be entangled with the work-space
qubits.

While knowing that quantum computing can not help us in some given area has some value on
its own, our survey also demonstrates that the theory of quantum computing is a valuable mathe-
matical tool. Even though one might say that arguments from quantum computing are really linear
algebra arguments with odd notation, quantum computing represents a unique style of mathemat-
ical arguments that provides useful results. The lower bounds presented in this survey carry over
to classical probabilistic computing and they are stronger and easier to prove than previous lower
bounds for these problems. These are examples how the theory of quantum computing can be
relevant to classical computing (for more examples, see [7]).

Finally, we saw how fully quantum data structures allow us to beat the information-theoretic
lower bound for the set membership problem. However, in that setting, we must take into account
that accessing the data structure might disturb the quantum state which limits the number of times
that it can be used. Also, fully quantum data structures can improve quantum walk algorithms.
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