1,268 research outputs found

    An explicit universal cycle for the (n-1)-permutations of an n-set

    Full text link
    We show how to construct an explicit Hamilton cycle in the directed Cayley graph Cay({\sigma_n, sigma_{n-1}} : \mathbb{S}_n), where \sigma_k = (1 2 >... k). The existence of such cycles was shown by Jackson (Discrete Mathematics, 149 (1996) 123-129) but the proof only shows that a certain directed graph is Eulerian, and Knuth (Volume 4 Fascicle 2, Generating All Tuples and Permutations (2005)) asks for an explicit construction. We show that a simple recursion describes our Hamilton cycle and that the cycle can be generated by an iterative algorithm that uses O(n) space. Moreover, the algorithm produces each successive edge of the cycle in constant time; such algorithms are said to be loopless

    Universal cycles for k-subsets of an n-set

    Get PDF
    Generalized from the classic de Bruijn sequence, a universal cycle is a compact cyclic list of information. Existence of universal cycles has been established for a variety of families of combinatorial structures. These results, by encoding each object within a combinatorial family as a length-j word, employ a modified version of the de Bruijn graph to establish a correspondence between an Eulerian circuit and a universal cycle. We explore the existence of universal cycles for k-subsets of the integers {1, 2,...,n}. The fact that sets are unordered seems to prevent the use of the established encoding techniques used in proving existence. We explore this difficulty and introduce an intermediate step that may allow us to use the familiar encoding and correspondence to prove existence. Moreover, mathematicians Persi Diaconis and Ron Graham hold that the construction of universal cycles has proceeded by clever, hard, ad-hoc arguments and that no general theory exists. Accordingly, our work pushes for a more general approach that can inform other universal cycle problems

    On Universal Cycles for new Classes of Combinatorial Structures

    Full text link
    A universal cycle (u-cycle) is a compact listing of a collection of combinatorial objects. In this paper, we use natural encodings of these objects to show the existence of u-cycles for collections of subsets, matroids, restricted multisets, chains of subsets, multichains, and lattice paths. For subsets, we show that a u-cycle exists for the kk-subsets of an nn-set if we let kk vary in a non zero length interval. We use this result to construct a "covering" of length (1+o(1))(1+o(1))(nk)n \choose k for all subsets of [n][n] of size exactly kk with a specific formula for the o(1)o(1) term. We also show that u-cycles exist for all nn-length words over some alphabet Σ,\Sigma, which contain all characters from R⊂Σ.R \subset \Sigma. Using this result we provide u-cycles for encodings of Sperner families of size 2 and proper chains of subsets

    Universal Lyndon Words

    Full text link
    A word ww over an alphabet Σ\Sigma is a Lyndon word if there exists an order defined on Σ\Sigma for which ww is lexicographically smaller than all of its conjugates (other than itself). We introduce and study \emph{universal Lyndon words}, which are words over an nn-letter alphabet that have length n!n! and such that all the conjugates are Lyndon words. We show that universal Lyndon words exist for every nn and exhibit combinatorial and structural properties of these words. We then define particular prefix codes, which we call Hamiltonian lex-codes, and show that every Hamiltonian lex-code is in bijection with the set of the shortest unrepeated prefixes of the conjugates of a universal Lyndon word. This allows us to give an algorithm for constructing all the universal Lyndon words.Comment: To appear in the proceedings of MFCS 201
    • …
    corecore