11,951 research outputs found

    Transfer Learning in Multilingual Neural Machine Translation with Dynamic Vocabulary

    Full text link
    We propose a method to transfer knowledge across neural machine translation (NMT) models by means of a shared dynamic vocabulary. Our approach allows to extend an initial model for a given language pair to cover new languages by adapting its vocabulary as long as new data become available (i.e., introducing new vocabulary items if they are not included in the initial model). The parameter transfer mechanism is evaluated in two scenarios: i) to adapt a trained single language NMT system to work with a new language pair and ii) to continuously add new language pairs to grow to a multilingual NMT system. In both the scenarios our goal is to improve the translation performance, while minimizing the training convergence time. Preliminary experiments spanning five languages with different training data sizes (i.e., 5k and 50k parallel sentences) show a significant performance gain ranging from +3.85 up to +13.63 BLEU in different language directions. Moreover, when compared with training an NMT model from scratch, our transfer-learning approach allows us to reach higher performance after training up to 4% of the total training steps.Comment: Published at the International Workshop on Spoken Language Translation (IWSLT), 201

    Zero-shot Neural Transfer for Cross-lingual Entity Linking

    Full text link
    Cross-lingual entity linking maps an entity mention in a source language to its corresponding entry in a structured knowledge base that is in a different (target) language. While previous work relies heavily on bilingual lexical resources to bridge the gap between the source and the target languages, these resources are scarce or unavailable for many low-resource languages. To address this problem, we investigate zero-shot cross-lingual entity linking, in which we assume no bilingual lexical resources are available in the source low-resource language. Specifically, we propose pivot-based entity linking, which leverages information from a high-resource "pivot" language to train character-level neural entity linking models that are transferred to the source low-resource language in a zero-shot manner. With experiments on 9 low-resource languages and transfer through a total of 54 languages, we show that our proposed pivot-based framework improves entity linking accuracy 17% (absolute) on average over the baseline systems, for the zero-shot scenario. Further, we also investigate the use of language-universal phonological representations which improves average accuracy (absolute) by 36% when transferring between languages that use different scripts.Comment: To appear in AAAI 201

    Contextual Parameter Generation for Universal Neural Machine Translation

    Full text link
    We propose a simple modification to existing neural machine translation (NMT) models that enables using a single universal model to translate between multiple languages while allowing for language specific parameterization, and that can also be used for domain adaptation. Our approach requires no changes to the model architecture of a standard NMT system, but instead introduces a new component, the contextual parameter generator (CPG), that generates the parameters of the system (e.g., weights in a neural network). This parameter generator accepts source and target language embeddings as input, and generates the parameters for the encoder and the decoder, respectively. The rest of the model remains unchanged and is shared across all languages. We show how this simple modification enables the system to use monolingual data for training and also perform zero-shot translation. We further show it is able to surpass state-of-the-art performance for both the IWSLT-15 and IWSLT-17 datasets and that the learned language embeddings are able to uncover interesting relationships between languages.Comment: Published in the proceedings of Empirical Methods in Natural Language Processing (EMNLP), 201
    • …
    corecore