95 research outputs found

    Multiple Description Quantization via Gram-Schmidt Orthogonalization

    Full text link
    The multiple description (MD) problem has received considerable attention as a model of information transmission over unreliable channels. A general framework for designing efficient multiple description quantization schemes is proposed in this paper. We provide a systematic treatment of the El Gamal-Cover (EGC) achievable MD rate-distortion region, and show that any point in the EGC region can be achieved via a successive quantization scheme along with quantization splitting. For the quadratic Gaussian case, the proposed scheme has an intrinsic connection with the Gram-Schmidt orthogonalization, which implies that the whole Gaussian MD rate-distortion region is achievable with a sequential dithered lattice-based quantization scheme as the dimension of the (optimal) lattice quantizers becomes large. Moreover, this scheme is shown to be universal for all i.i.d. smooth sources with performance no worse than that for an i.i.d. Gaussian source with the same variance and asymptotically optimal at high resolution. A class of low-complexity MD scalar quantizers in the proposed general framework also is constructed and is illustrated geometrically; the performance is analyzed in the high resolution regime, which exhibits a noticeable improvement over the existing MD scalar quantization schemes.Comment: 48 pages; submitted to IEEE Transactions on Information Theor

    Multiple-Description Coding by Dithered Delta-Sigma Quantization

    Get PDF
    We address the connection between the multiple-description (MD) problem and Delta-Sigma quantization. The inherent redundancy due to oversampling in Delta-Sigma quantization, and the simple linear-additive noise model resulting from dithered lattice quantization, allow us to construct a symmetric and time-invariant MD coding scheme. We show that the use of a noise shaping filter makes it possible to trade off central distortion for side distortion. Asymptotically as the dimension of the lattice vector quantizer and order of the noise shaping filter approach infinity, the entropy rate of the dithered Delta-Sigma quantization scheme approaches the symmetric two-channel MD rate-distortion function for a memoryless Gaussian source and MSE fidelity criterion, at any side-to-central distortion ratio and any resolution. In the optimal scheme, the infinite-order noise shaping filter must be minimum phase and have a piece-wise flat power spectrum with a single jump discontinuity. An important advantage of the proposed design is that it is symmetric in rate and distortion by construction, so the coding rates of the descriptions are identical and there is therefore no need for source splitting.Comment: Revised, restructured, significantly shortened and minor typos has been fixed. Accepted for publication in the IEEE Transactions on Information Theor

    Improved bounds for the rate loss of multiresolution source codes

    Get PDF
    We present new bounds for the rate loss of multiresolution source codes (MRSCs). Considering an M-resolution code, the rate loss at the ith resolution with distortion D/sub i/ is defined as L/sub i/=R/sub i/-R(D/sub i/), where R/sub i/ is the rate achievable by the MRSC at stage i. This rate loss describes the performance degradation of the MRSC compared to the best single-resolution code with the same distortion. For two-resolution source codes, there are three scenarios of particular interest: (i) when both resolutions are equally important; (ii) when the rate loss at the first resolution is 0 (L/sub 1/=0); (iii) when the rate loss at the second resolution is 0 (L/sub 2/=0). The work of Lastras and Berger (see ibid., vol.47, p.918-26, Mar. 2001) gives constant upper bounds for the rate loss of an arbitrary memoryless source in scenarios (i) and (ii) and an asymptotic bound for scenario (iii) as D/sub 2/ approaches 0. We focus on the squared error distortion measure and (a) prove that for scenario (iii) L/sub 1/<1.1610 for all D/sub 2/<0.7250; (c) tighten the Lastras-Berger bound for scenario (i) from L/sub i//spl les/1/2 to L/sub i/<0.3802, i/spl isin/{1,2}; and (d) generalize the bounds for scenarios (ii) and (iii) to M-resolution codes with M/spl ges/2. We also present upper bounds for the rate losses of additive MRSCs (AMRSCs). An AMRSC is a special MRSC where each resolution describes an incremental reproduction and the kth-resolution reconstruction equals the sum of the first k incremental reproductions. We obtain two bounds on the rate loss of AMRSCs: one primarily good for low-rate coding and another which depends on the source entropy

    On the rate loss and construction of source codes for broadcast channels

    Get PDF
    In this paper, we first define and bound the rate loss of source codes for broadcast channels. Our broadcast channel model comprises one transmitter and two receivers; the transmitter is connected to each receiver by a private channel and to both receivers by a common channel. The transmitter sends a description of source (X, Y) through these channels, receiver 1 reconstructs X with distortion D1, and receiver 2 reconstructs Y with distortion D2. Suppose the rates of the common channel and private channels 1 and 2 are R0, R1, and R2, respectively. The work of Gray and Wyner gives a complete characterization of all achievable rate triples (R0,R1,R2) given any distortion pair (D1,D2). In this paper, we define the rate loss as the gap between the achievable region and the outer bound composed by the rate-distortion functions, i.e., R0+R1+R2 ≥ RX,Y (D1,D2), R0 + R1 ≥ RX(D1), and R0 + R2 ≥ RY (D2). We upper bound the rate loss for general sources by functions of distortions and upper bound the rate loss for Gaussian sources by constants, which implies that though the outer bound is generally not achievable, it may be quite close to the achievable region. This also bounds the gap between the achievable region and the inner bound proposed by Gray and Wyner and bounds the performance penalty associated with using separate decoders rather than joint decoders. We then construct such source codes using entropy-constrained dithered quantizers. The resulting implementation has low complexity and performance close to the theoretical optimum. In particular, the gap between its performance and the theoretical optimum can be bounded from above by constants for Gaussian sources

    Graded quantization for multiple description coding of compressive measurements

    Get PDF
    Compressed sensing (CS) is an emerging paradigm for acquisition of compressed representations of a sparse signal. Its low complexity is appealing for resource-constrained scenarios like sensor networks. However, such scenarios are often coupled with unreliable communication channels and providing robust transmission of the acquired data to a receiver is an issue. Multiple description coding (MDC) effectively combats channel losses for systems without feedback, thus raising the interest in developing MDC methods explicitly designed for the CS framework, and exploiting its properties. We propose a method called Graded Quantization (CS-GQ) that leverages the democratic property of compressive measurements to effectively implement MDC, and we provide methods to optimize its performance. A novel decoding algorithm based on the alternating directions method of multipliers is derived to reconstruct signals from a limited number of received descriptions. Simulations are performed to assess the performance of CS-GQ against other methods in presence of packet losses. The proposed method is successful at providing robust coding of CS measurements and outperforms other schemes for the considered test metrics

    Multiuser Successive Refinement and Multiple Description Coding

    Full text link
    We consider the multiuser successive refinement (MSR) problem, where the users are connected to a central server via links with different noiseless capacities, and each user wishes to reconstruct in a successive-refinement fashion. An achievable region is given for the two-user two-layer case and it provides the complete rate-distortion region for the Gaussian source under the MSE distortion measure. The key observation is that this problem includes the multiple description (MD) problem (with two descriptions) as a subsystem, and the techniques useful in the MD problem can be extended to this case. We show that the coding scheme based on the universality of random binning is sub-optimal, because multiple Gaussian side informations only at the decoders do incur performance loss, in contrast to the case of single side information at the decoder. We further show that unlike the single user case, when there are multiple users, the loss of performance by a multistage coding approach can be unbounded for the Gaussian source. The result suggests that in such a setting, the benefit of using successive refinement is not likely to justify the accompanying performance loss. The MSR problem is also related to the source coding problem where each decoder has its individual side information, while the encoder has the complete set of the side informations. The MSR problem further includes several variations of the MD problem, for which the specialization of the general result is investigated and the implication is discussed.Comment: 10 pages, 5 figures. To appear in IEEE Transaction on Information Theory. References updated and typos correcte

    n-Channel Asymmetric Entropy-Constrained Multiple-Description Lattice Vector Quantization

    Get PDF
    This paper is about the design and analysis of an index-assignment (IA) based multiple-description coding scheme for the n-channel asymmetric case. We use entropy constrained lattice vector quantization and restrict attention to simple reconstruction functions, which are given by the inverse IA function when all descriptions are received or otherwise by a weighted average of the received descriptions. We consider smooth sources with finite differential entropy rate and MSE fidelity criterion. As in previous designs, our construction is based on nested lattices which are combined through a single IA function. The results are exact under high-resolution conditions and asymptotically as the nesting ratios of the lattices approach infinity. For any n, the design is asymptotically optimal within the class of IA-based schemes. Moreover, in the case of two descriptions and finite lattice vector dimensions greater than one, the performance is strictly better than that of existing designs. In the case of three descriptions, we show that in the limit of large lattice vector dimensions, points on the inner bound of Pradhan et al. can be achieved. Furthermore, for three descriptions and finite lattice vector dimensions, we show that the IA-based approach yields, in the symmetric case, a smaller rate loss than the recently proposed source-splitting approach.Comment: 49 pages, 4 figures. Accepted for publication in IEEE Transactions on Information Theory, 201
    • …
    corecore