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n-Channel Asymmetric Entropy-Constrained
Multiple-Description Lattice Vector

Quantization

Jan @stergaardiember, IEEE Richard Heusdens, and Jesper Jensen

Abstract

This paper is about the design and analysis of an index+assigt (IA) based multiple-description
coding scheme for the-channel asymmetric case. We use entropy constrainecdattictor quantization
and restrict attention to simple reconstruction functjamsich are given by the inverse IA function when
all descriptions are received or otherwise by a weightedagesof the received descriptions. We consider
smooth sources with finite differential entropy rate and MigElity criterion. As in previous designs, our
construction is based on nested lattices which are comliimedgh a single 1A function. The results are
exact under high-resolution conditions and asymptoticadl the nesting ratios of the lattices approach
infinity. For anyn, the design is asymptotically optimal. Moreover, in theeca$ two descriptions and
finite lattice vector dimensions greater than one, the pevdmce is strictly better than that of existing
designs. In the case of three descriptions, we show thateidirthit of large lattice vector dimensions,
points on the inner bound of Pradhan et al. can be achievathdfmore, for three descriptions and
finite lattice vector dimensions, we show that the IA-basppraach yields a smaller rate loss than the

recently proposed source-splitting approach.

Index Terms

distributed source coding, high-rate quantization, dattquantization, multiple description coding,

random binning, vector quantization.
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. INTRODUCTION

Multiple-description coding (MDC) is about (lossy) encogliof information for transmission over an
unreliable n-channel communication system. The channels may break desuiting in erasures and
a loss of information at the receiving side. The receiverwsavhich subset of the: channels that
are working; the transmitter does not. The problem is thedesign an MDC system which, for given
channel rates, minimizes the distortions due to reconstmof the source using information from any
subsets of the channels.

The achievable multiple-description (MD) rate-distomtifunction is completely known for the case of
two channels, squared-error fidelity criterion and the mgtess Gaussian source [1], [2]. An extension
to colored Gaussian sources was provided in [3]-[5]. Inmer @uter bounds to the-channel quadratic
Gaussian rate-distortion region for memoryless sourcespeesented in [6]-[11].

Practical symmetric multiple-description lattice vectprantization (MD-LVQ) based schemes for two
descriptions have been introduced in [12], which in the tliofiinfinite-dimensional source vectors and
under high-resolution assumptions, approach the symeniéiii rate-distortion bound.An extension to
n > 2 descriptions was presented in [13]. Asymmetric MD-LVQ wassidered in [14] for the case of
two descriptions. Common for all of the designs [12]-[14}hat a central quantizer is first applied on
the source after which aindex-assignmer{tA) algorithm (also known as a labeling function) maps the
reconstruction points of the central quantizer to recamsion points of the side quantizers, which is an
idea that was first presented in [15]. These designs arelygse&trred to as IA based designs.

There also exists non IA basedchannel schemes, which are proven optimal in the two-ablann
qguadratic Gaussian case. In particular, the sourceisglitpproach of Chen et al. [16] and the delta-
sigma quantization approach of @stergaard et al. [17],.[18]

While the different designs mentioned above are able toeaehthe rate-distortion bounds in the
asymptotical limit as the lattice vector quantizer dimensiL) gets arbitrarily large, there is an inherent
rate losswhen finite dimensional vector quantizers are empldy&dr example, in the two-channel
symmetric case and at high resolutions, the rate loss (fperigéon) of the IA based schemes is given by

Tlogy(G(AD)G(SL)(2me)?) whereG(AP)) is the dimensionless normalized second moment ofithe

The term symmetric relates to the situation where all chiarates (description rates) are equal and the distortioreiigs
only upon the number of working channels (received dedoripj and as such not on which of the channels that are warking

In the asymmetric case, the description rates and sidertiists are allowed to be unequal.

2The termrate lossrefers to the excess rate due to using a suboptimal impletiemt
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dimensional lattice\®) andG(Sy,) is the dimensionless normalized second moment df-alimensional
hypersphere [19]. For the source-splitting approach the lass is 1 log,(G(AF)3(2me)®) whereas
for the delta-sigma quantization approach the rate los$ ligg,(G(AD))?(2me)?). Since G(S.) <
G(A), VL > 0, it follows that the IA based approaches yield the smallagt foss of all existing
asymptotically optimal desigrs.

We will like to point out that there exist a substantial ampoifndifferent practical approaches to MDC.
For example, the work of [20] on asymmetric vector quanitratthe work of [21], [22] onn-channel
scalar quantization and the transform based MDC approguesgnted in [23]-[26].

In this paper, we are interested in 1A based MDC. Specifically propose a design of an asymmetric
IA based MD-LVQ scheme for the case of> 2 descriptions. The design uses a single labeling function
and simple reconstruction functions, which are given byitirerse IA function when all descriptions are
received or otherwise by a weighted average of the receiesdriptions. We consider the case of MSE
distortion and smooth sources with finite differential epir rate* To the best of the authors knowledge,
the above restrictions (or even less general restrictimmabso necessary for the existing 1A-based designs
proposed in the literature.

The contributions of the paper are summarized below and @ié under high-resolution conditions
and asymptotically large nesting ratios:

« We provide a simple construction of the labeling functiontfee asymmetric case which is optimal

for any numbem > 2 of descriptions.
o Forn =3 and anyL > 1, we provide closed-form rate-distortion expressions.
o Forn = 3 and in the limit asL. — oo, the distortion points of our scheme lie on the inner bound
provided by Pradhan et al. [7], [8].

o Forn =2 and anyl < L < oo, we strictly improve the side distortions over that of thgrametric
design by Diggavi et al. [14].

e Forn =3 and1 < L < oo, we show that our construction yields a smaller rate losa that of
source-splitting [16].

This paper is organized as follows. In Section Il we brieflyi@a/ some lattice properties, describe

the required asymptotical conditions which we will be asmgihrough-out the work, and introduce the

3By use of time-sharing, the rate loss of the source-spijtdinheme can be reduced to that of the delta-sigma quaatizati

scheme. Moreover, in the scalar case, the rate loss can therfueduced, see [16] for details.

“For each side description, we assume that the sequencermdfapghsource vectors is jointly entropy coded using artiantiy

complex entropy coder.
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concept of an IA function. The actual design of the MD-LVQ teys, which is the main contribution of
the paper, is presented in Section Ill. In Section IV, we carepthe proposed design to known inner
bounds and existing MD schemes. The conclusion follows icti&e V and appendices are reserved for

lengthy proofs.

[l. PRELIMINARIES
A. Lattice Properties

Let the L-dimensional real lattice\ ¢ RZ form the codewords of the lattice vector quantize(-)
having Voronoi cells. Thus@x(z) = X if z € V() whereV(\) £ {z € RL : [z — A|? < |z —
a1

N|[2, VX € A} is a Voronoi cell. We definéz, z) £ +2'z and use||z||? = (z,z). The dimensionless

normalized second-moment of inertia A) of A is defined as [19]

1
G(A éi/ 2d 1
W2 o | el @

whereV(0) is the Voronoi cell around the origin anddenotes the volume df (0). Recall that% >
G(A) > G(S1) > 5= whereG(Sy) =

2me

TRl (5 + 1)2/L is the dimensionless normalized second
moment of anL-dimensional hypersphere amd-) is the Gamma function [19].

Let A be a lattice, then a sublattice, C A is a subset of the elements Afthat is itself a lattice. We
say thatA, is a coarse lattice nested within the fine lattiteLet » andvs be the volumes o¥/(0) and
Vs(0), respectively, where the subscriptindicates the sublattice. Then the index valNig of A with
respect toA is Ny = v,/v and the nesting ratidv, is given by N! = {/N;.

Let {A(”)} be a sequence of lattices indexed by their dimendiohen, A(") is said to be asymp-

totically good for quantization (under MSE) if and only ifrfany e > 0 and sufficiently largel. [27]

log, (2meG(A))) < €. 2)

B. The Existence of Lattices and Sublattices for MD coding

We need a central lattice (central quantiz&r)with Voronoi cell V,(0) of volumer, andn sublattices
(side quantizers)\; C A. with Voronoi cellsV;(0) of volumesy;, wherei = 0,...,n — 1. Finally, we
need a sublatticd, C A; which we will refer to as a product lattice. The Voronoi cgll(0) of A, has
volume v, = N,v. where N, is the index value of\; with respect toA..

Previous work on two-description |IA based MD coding focusadthe existence and construction of
nested lattices for a few low dimensional (root) lattices[tR], [14]. The techniques of [12], [14] was

extended to the case af descriptions for the symmetric case in [13]. While some @ tbot lattices
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are considered to be among the best of all lattices (of theesdimensions) for quantization, they are
not good for quantization in the sense of (2). Furthermdreijrtindex values belong to some discrete
sets of integers and since they are finite dimensional,rarpinesting ratios cannot be achieved.

Let us first clarify the requirements of the lattices to bedugethis work:

1) The central lattice\. € R”, is asymptotically good for quantization &s— occ.

2) The central lattice\, € R admits sublattices; C A. of arbitrary nesting ratiog < N/ € R.

3) There exists a product lattick, C A;,i = 0,...,n — 1, with arbitrary nesting ratiaV,. (with

respect toA.) whereN/ < N. e Rforalli=0,...,n — 1.

That there exists a sequence of lattices which are asyrogligtgood for quantization was established
in [28]. It is also known that there exists nested lattic€d) c A" where the coarse latticeA (D))
is asymptotically good for quantization and the fine Iatt(ﬂéL)) is asymptotically good for channel
coding [29]. Moreover, in recent work [30], it has been ebshled that there exists a sequence of nested
lattices where the coarse lattice as well as the fine lattieesenultaneously good for quantization.

Interestingly, we do not requiréA; ;’:‘01 nor A to be good for quantization. This is because we are
able to construct a labeling function which, asymptoticas N; — oo, Vi, results in a distortion that
becomes independent of the type of sublattices being usethagfmore A, is used to provide a simple
construction of a shift invariant regiovi; (0) and its quantization performance is therefore irrelevant.

We have yet to show the existenceztog;” C AEL) fori =0,...,n — 1. Towards that end, we refer
to the construction of nested lattices provided in [30]. éHarcoarse Iattice&gL) is first fixed and then
a fine IatticeAﬁL) is constructed such thatgL) - AﬁL) with an arbitrary nesting ratio. Without loss
of generality, letN) < N < --- < N/,_, < NL. Moreover, let the set of intege®” form a product
lattice A%, Now let A" be the coarse lattice and construct a fine |am<§1é_)1 so that the nesting
ratio is N./N/ _, by using the method of [30]. Next, Ie‘tff_)l be the coarse lattice and construct a fine

lattice A, with a nesting ratio ofV,,_,/N/ _,. This procedure is repeated until the sublattzké’é) IS

n—2
constructed as the fine lattice mﬁL). At this point, the central IatticAﬁL) is finally constructed by using
A(()L) as the coarse lattice and making sure that the nesting safi§.ilt should be clear that we end up
with a sequence of nested lattices, iAé.L) - Aff_)l c...C AEJL) - A((;L) with the desired nesting ratios
with respect toA, i.e. N,, N/ _,,---, N}. Without loss of generality, we can také, = H;‘:_(]l N!.5

n—1s

In the limit as . — oo it is guaranteed thaAﬁL) becomes asymptotically good for quantization.

°If 1 < m < n nesting ratios are identical, we keep only one of them whemifig the product lattice. If all nesting ratios

are identical, we form the product lattice based on the pbdtiany two of them, see [13] for details.
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Furthermore, the sublattice&g(L) can be shaped so that they are also good for quantizatioregrctm,

for example, be shaped like the cubic lattice. This is notdrtgnt for the design proposed in this work.

C. Lattice Asymptotics

As is common in |A based MD-LVQ, we will in this work require ammber of asymptotical conditions
to be satisfied in order to guarantee the prescribed ratertiis performance. Specifically, we require
high-resolution conditions, i.e. we will be working nearethimit where the rates of the central and
side quantizers diverge towards infinity, or equivaleritlythe limit where the volumes of the Voronoi
cells of the lattices in question become asymptoticallylsriiis condition makes it possible to assume
an approximately uniform source distribution over smafjioes so that standard high-resolution lattice
quantization results become valid [31]. L&tC R” be a real lattice and let = det(A) be the volume
of a fundamental region ol. Moreover, letV ¢ RL be a connected region of volume Then, the
high-resolution assumption makes it possible to approténttae number of lattice points i by 7/v,
which is an approximation that becomes exact as the numbattioe shells withinl” goes to infinity. To
be more specific, le§(c,r) be a sphere iiR" of radiusr and center: € R-. Then, according to Gauss’
counting principle, the numbety, of integer lattice points in a convex bodyin R” equals the volume
Vol(C) of C with a small error term [32]. In fact i = S(c, ) then by use of a theorem due to Minkowski
it can be shown that, for any € R* and asymptotically as — oo, Az(r) = Vol(S(c,7)) = wrrt,
wherewy, is the volume of theL-dimensional unit sphere [33]. It is also known that the nambf
lattice pointsAx(j) in the first;j shells (i.e., thej shells nearest the origin) of the lattice satisfies,
asymptotically ag — oo, Ax(j) = wrj™/? /v [12].

In addition to the high-resolution assumption, we also megthat the index values of the sublattices
become asymptotically large. With this, it follows that thamber of central lattice points within a
Voronoi cell of a sublattice becomes arbitrarily large. thermore, to guarantee that the sublattices
satisfy the high-resolution quantization properties, westrforce the volume of their Voronoi cells to
be small. In other words, we require that — oo andy; — 0 wherey; = vNN; is the volume of a
Voronoi cell of theith sublattice. We also note that, in order to avoid that sonfxset of the sublattices
asymptotically dominate the overall distortion, we willquére that their index values grow at the same
rate, i.e.N;/N; = ¢; ; for some constant; ; € R.

Finally, as mentioned in the previous section, we requieeetkistence of good lattices for quantization.
We therefore require that the lattice vector dimensiotends towards infinity.

We note that the above asymptotical conditions are onlyireduo guarantee exact results. In fact,
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at some point, we relax the requirement brand provide exact results for arfy > 1. Moreover, the
proof technique is constructive in the sense that in nomsgs$gtical situations, i.e. for finitév; and R;,
the results are approximately true. This is interestingnfie practical perspective, since, in practice, the

asymptotical conditions will never be truly satisfied.

D. Index Assignments

In the MDC scheme considered in this paper, a source vedtoguantized to the nearest reconstruction
point A, in the central latticeA.. Hereafter follows IAs (mappings), which uniquely map alis to
reproduction points in each of the sublatticks This mapping is done through a labeling functian
and we denote the individual component functionsxdfy «;. In other words, the function: that maps
Acinto Ag x -+ x A1, is given bya(X.) = (ag(Ae), a1 (Ae)s- -y @n—1(Ae)) = Aoy A1yeeoy A1),
wherea;(A\.) = \; € A; andi = 0,...,n — 1. Eachn-tuple (\g,...,\,—1) iSs used only once when
labeling points inA. so that). can be recovered unambiguously whenrallescriptions are received.

Since lattices are infinite arrays of points, we adopt thec@dare first used in [12] and construct
a shift invariant labeling function, so we only need to lahefinite number of points. We generalize
the approach of [14] and construct a product latticewhich hasN, central lattice points andV,./N;
sublattice points from théth sublattice in each of its Voronoi cells. The Voronoi célis(\;) of the
product latticeA,; are all similar so by concentrating on labeling only centadice points within one
Voronoi cell of A, the rest of the central lattice points may be labeled sirbglyranslating this Voronoi
cell throughoutR”. We will therefore only label central lattice points withif (0), which is the Voronoi

cell of A; around the origin. With this we get
a()‘c + )‘ﬂ) = a()‘c) + Ax (3)

forall A\, € A, and all)\. € A..

[1l. CONSTRUCTION OF THELABELING FUNCTION

This section focuses on the labeling problem and is split 8@veral subsections. We begin by Sec-
tion 11I-A which shows how to guarantee shift invariance log tabeling function. Then, in Section III-B,
we define the cost function to be minimized by an optimal l@gefunction. In Section IlI-C we show
how to construct an optimal set aftuples and the assignment of thetuples to central lattice points
follows Section IlI-D. We end by assessing the rate and disto performances of the labeling function

in Section IlI-E and Section llI-F, respectively.
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A. Guaranteeing Shift Invariance of the Labeling Function

In order to ensure that is shift-invariant, we must make sure thatauple is not assigned to more
than one central lattice point, € A.. Notice that twon-tuples which are translates of each other by
some\, € A, must not both be assigned to central lattice points locaiddmthe same regiofr, (\;),
since this causes assignment ofratuple to multiple central lattice points.

The regionV,(0) will be translated through-o®” and centered ak, € A,. Let us for now assume
that A, is clea® with respect toAq. Then no points of\y will be inside more than on&; (\,) region.
This is the key insight required to guarantee shift invar@anLet us now construct an-tuple, say
(Mo A1y .-y Ap—1), Where the first element is insidé; (0), i.e. A\g € V(0). Once we shift the:-tuple
by a multiple of A, the first element of the shifted-tuple will never be insidé’;(0) and then-tuple
is therefore shift invariant. In other word&\o + Ar) ¢ V(0) for 0 # A\, € A.

If A is notclean, itis still fairly simple to guarantee shiftamance. Let £ {\g € Ag : A\g € V,(0)},
i.e., the set of points ok which are insidé/;;(0). Moreover, letC; andCp denote the set of interior and
boundary points of’, respectively. ThusC; £ {X\g € C: (Ao + M) € C,0 # A\ € A} andCp = C\C;.

If Cp # (0 then it contains subsets of points which are multipleef each other for some non-zeiq.

We will identify such subsets of points by their cosgts] = {(Ao + A\x) € Cs : Ax € A },V)o € Cp,
where )\, is said to be the coset leader pfy]. We say that the cosef3,] and [)\;] are identical if

Ay € [Xo] which implies that\y € [X{]. Only one of each set of identical cosets should be used. With
this, we defin&’, to be a set of distinct coset leaders, whose cosets do ndapuaut covelCg. Thus,

for any pair Ao, \{, € C% where Xy # X it holds that\y ¢ [A\j] and X ¢ [Xo], i.e., [Ao] N [Xg] = 0.
Moreover,, ccy [Ao] = Cp. Finally, let C* £ C; U C%. Now when we construct the-tuples to be
assigned to the central lattice points witHiR(0) we simply have to make sure that the first coordinate
of the n-tuples belongs t@“. Clearly, this guarantees shift invariance.

In the above design we restricted to be in V;(0) so that the mapy is shift-invariant. However,
this also means that all-tuples (for A\. € V;(0)) have their first element (i.e\o) inside V,;(0). This
restriction is easily removed by considering all cosets arfhe:-tuple. This is completely analogous to

the coset construction defined above for the boundary points,. Specifically, let us define the coset

®A sublattice A, C A is said to be clean with respect foif no points of A falls on the boundary of the Voronoi cells of
As. In other words, the seth € A : A € Vo(\s) NVs(AL)} is empty for allxs # A, € A;. We note that it is an open problem

to construct a sequence of nested lattices which are asyiogitp good for quantization and where the coarse latticeléan.
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of an n-tuple moduloA,: to be

CAW()\O7---7)\n—1)é{( 6, ! )GA()X---XAn_lt)\;:)\i—l-)\m)\WEAw}. 4)

» n—1

Then-tuples in a coset are equivalent modulp. So since that only one member from each coset is used

when assigning:-tuples to central lattice points withiVi; (0), the shift-invariance property is preserved.
To summarize, ifA, is clean, we first construct a set of shift invariantuples by making sure that

Ao € V;(0) for all n-tuples. Then, we extend the set of possikiauples by allowing one member from

each coset (as given by (4)) to be used when labeling ceattadd points inV;(0). If A, is not clean,

then as before we first construct a set of shift invariasitiples by making sure that, € V;(0) for

all n-tuples. Then we resolve the conflicting boundary pointsipsy by reducing the set of candidate

n-tuples. Specifically, we make sure that only one member ol easet ofC* is used as first element

in the n-tuples’ Finally, we extend the set of candidaietuples by allowing any one member of each

coset as given by (4) to be used.

B. Defining the Cost Function for the Labeling Problem

We will treat the asymmetric problem where the individuadagptions are weighted and the distortions
due to reception of subsets of descriptions are also weilghiteere are in general several ways of
receivingx out of n descriptions. LetZ(™*) denote an index set consisting of all possibleombinations
out of {0,...,n — 1} so that|£(™®)| = (). For example, form = 3 andx = 2 we have£®?) =
{{0,1},{0,2},{1,2}}. Furthermore, led < u; € R be the weight for théth description.

Recall thata takes a single vectak. and maps it to a set of vectofs\;},i = 0,...,n — 1, where
\; € A;. The mapping is invertible so that we havg= o~ (\g,..., \,_1). Thus, if alln descriptions
are received we reconstruct using the inverse mapand obtain)\.. If no descriptions are received, we
reconstruct using the statistical mean of the source. lothkr cases, we reconstruct using a weighted
average of the received elements.

We define the reconstruction formula when receiving the $et out of n descriptions indexed by
¢ € £ to be

1
B2 =) pai(Ae) (5)

i€l

"Similar approach is used to reduce the set of central laptigets in the case wher&, is not clean with respect ta..
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wherel < k < n and where\. = Q,_(z), i.e. z is quantized to\. € A.. The distortiond, due to

approximatinge by z, is then given by

o= S i) ©

1l

and the expected distortion with respectXois given by D, = Ed,.

Lemma 1 ( [12]): For anyl < k < n, £ € L"), asymptotically as,. — 0 and independently of

Z/ 21X = Al* dar + Z/ X) A == 3 maan(x 2

de. (7)
Ac€EA, Ac€EA, icl
Proof: The lemma was proved in [12] for the symmetric case and twarg#®ons. The extension

to the asymmetric case amddescriptions is straight forward. See [34] for details. [ |
Notice that only the second term of (7) is affected by the liagefunction. We will make use of this

fact and therefore define )

Ac — % > pici(A

it
The cost function to be minimized by the labeling functionsitake into account the entire set of

(8)

distortions due to reconstructing from different subsédtsl@scriptions. With this in mind, we combine
the distortions through a set of scalar (Lagrangian) weigBpecifically, lety, € R, ¢ € £ be the
weight for the distortionD, due to reconstructing using the set of descriptions inddwed With this,

we define the cost functiogy™ for the n-description labeling problem to be:

n—2 n—1 2
n pici(Ae) £ pjor(Ac
2 5 [ o Sl + 55 - e et
AcEAC =0 j=i+1 (9)
n—3 n—2 n—1 2
At )\c j g )\c )\c
DIP IS PRI T >+w3< el e
i=0 j=i+1k=j+1

which can be written more compactly as

JrE Z/ Z Z YeDy dz. (10)

AcEA. k=1 e L(n.x)
For example, using the fact that = ozi(/\c) we can write 7" for then = 3 case as

s [ 93

AcEA. =0 j=i+1

Ao i\ + /‘j/\

Ac ,U% i dl‘

AcEA, Ve(A 1=0
(11)
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Since we are considering the high-resolution regime, wersake the following simplifications

n—1
J=>33 3 4 /V( x)Dy dz (12)

A€EA. k=1 e L(nm)

= Y P(XeV(x Z > Dy (13)

AcEA. k=1 gcL(n~)
n—1
P(X € V(A
~ D Or) Y D> wub (14)
Ar€AL N A€V (Ar) K=1LELR)

> Z > ub (15)

A€V, (0) k=1 LeLln.m)

whereP(X € V.()\.)) is the probablllty( t)hatX will be mapped (or quantized) td.. The approximation
follows by substitutingP (X € V.(\.)) = P(X € Vi(\:))/N, for Ar € A; which becomes exact as
v; — 0. In (14), we also exploited that is shift invariant in order to decompose the sy ., into
the double sund_, .y >°y cv.(n,) as follows from (3).

We would like to simplify 7™ even further. In order to do so, we introduce the followingation.
Let 5(”’“) indicate the set of alt € £(™*) that contains the index, i.e., EE"”’”) = {t e £ .
i € £}. Similarly, L — {L e L7 i j € ¢}. Moreover, lety(LO™)) = 37, i e, (L) =
D pectmm Ve andv(ﬁﬁf}” )= degggm ~e. Thus 7(£32)) = yg 147024712 andY (L) = 401 +71.9.
Theorem 1:Let 1 < k < n < oo. Given a set of distortion weightgy, e R : ¢ € LR 1 < g <

n — 1}, a set of description weight®) < u; e R: ¢ =0,...,n — 1} and any\. € A. we have

n—2 n—1 2 — 2
Z ’YZDZ Z Z A(nﬁ N])‘ +,7(£(n,n)) £(nn Z Nz)\z (16)
LeLnr) =0 j=i+1 i=0
where\; = «;(\.) and
— p(nyg)\ =/ p(nyK)

N i (L )7(£j ) ()

Wi R2 ( S(L0) VL) ) (17)

Proof: See Appendix A. [ |

From (16) we make the observation that wheneveappears, it is multiplied by:;. Without loss of
generality, we can therefore scale the latticeby ;; and consider the scaled lattide = y;A; instead.

This simplifies the notation. For example, = % > Ai where); = p;)\; fori =0,...,n—1. Clearly,

ict
scaling the sublattices affects the side description ratessaddress this issue in Section IlI-E.

By use of Theorem 1 we can rewrite the cost function to be mirg@dh by the labeling function as

n—1 | n—2 n-—1 1 n—1 (

Z Z Z Z Ac = H:},(ﬁ(n,n)) Z;fy(ﬁ

)\GV(Onl =0 j=i+1 i—

2
+ (L)

2

(18)
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Where‘yi(;‘.’“) is given by (17).
The following theorem allows us to simplify the construatiof the labeling function:
Theorem 2:Let 1 < n € N. The cost function7” is asymptotically separable in the sense that, as

N; — oo andy; — 0,Vi, an optimal setZ * of N, distinct and shift invariant.-tuples satisfies

n—1ln—2 n—1

’T*:arngin Z ZZ Z A(nﬁ

(XosesAn_1)ET £=11=0 j=i+1
whereT = {(Ao,..., Adu-1) € Ao x -+ X A1 : (Ao, Au_1) IS shift invariany, |7| = N, and where

2
(19)

fyl(’; ") is given by (17).

Proof: See Appendix B. |
Theorem 2 provides a guideline for the constructiometuples. One should first find a set of;
distinct and shift invariant:-tuples which satisfies (19). Thesetuples (or members of their cosets)

should then be assigned to central lattice point¥7if0) such that

S oo gy S

A€V (0) k=1

2
(20)

iS minimized.

Remark 1:Notice that we have not claimed th@t* is unique. Thus, there might be several sets of
n-tuples which all satisfy (19) but yield different distanis when inserted in (20). However, Theorem 2
states that the asymptotically (A8 — oo) dominating distortion is due to that of (19). Thus, any det o
n-tuples satisfying (19) will be asymptotically optimal.témestingly, we show in Section IlI-D that*

is, in certain cases, indeed asymptotically unique (updodiations by coset members).

C. Constructingn-Tuples

In order to construch-tuples which are shift invariant we extend the techniqueviously proposed
for the symmetricn-description MD problem [13].

We first center a spher& at all sublattice points\, € V,(0) and construct:-tuples by combining
sublattice points from the other sublattices (idg,i = 1,...,n — 1) within V(o) in all possible ways
and select the ones that minimize (19). For eaghke V;(0) it is possible to construdf[?:_l1 N; n-tuples,
whereN; is the number of sublattice points from tité sublattice within the regiofr. This gives a total
of (N, /No) [T/} N; n-tuples when all\ € V,(0) are used. The numbéy; of lattice points within/

may be approximated by; ~ 7/v; where? is the volume ofV 8

8This approximation becomes exact in the usual asymptasiease ofN; — co andv; — 0.
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Since N; ~ 7/(vNN;) and we needV, n-tuples for each\y € V;(0) we see that

~n—1 n—1

n—1
~ vV _1
B | )
=1 =1

so in order to obtain at leas{, n-tuples the volume of/ must satisfy (asymptotically a&; — co)
b > ycﬁN}/ (n=1), (21)
i=0
For the symmetric case, i. = N;, i =0,...,n — 1, we haver > v. N/ (=1 which is in agreement
with the results obtained in [13].
The design procedure can be outlined as follows:
1) Center a spher® at each)\ € V;(0) and construct all possibbe-tuples(Ag, A1, ..., A,_1) Where
A\ € V(X\o) andi = 1,...,n — 1. This makes sure that afli-tuples have their first elemeni)
inside V;(0) and they are therefore shift-invariant.
2) Keep onlyn-tuples whose elements satisfyx; — A;||* < r?/L,Vi,j €0,...n — 1, wherer is the
radius of V.

3) MakeV large enough so at leadf, distinct n-tuples are found for eachy.

The restriction||\; — A;[|> < r%/L in step 2 above, is imposed to to avoid bias towards any of the
sublattices. At this point, one might wonder why we wish toidwsuch bias. After all, the expression to
be minimized, i.e. (19), includes weighié’;’“) (which might not be equal) for every pair of sublattices.
In otherwords, why not use spher&s; of different sizes to guarantee thigk; — \;||?> < rﬁj/L where
the radiusr; ; now depends on the particular pair of sublattices underideretion. This is illustrated
in Fig. 3 wherer; ; denotes the radius of the sphérg;. Here we cente;; at some)y € V,(0) as
illustrated in Fig. 3 by the solid circle. Then, for amytuples having this\y point as first element, we
only include); points which are insid& ;(\). This guarantees thgt\g — A\ ||> < o,1/L. Let us now
center a spherﬁ’m at some\; which is insideffo,l()\o). This is illustrated by the dotted sphere of radius
r1,2 in the figure. We then only includg, points which are in the intersection 6172()\1) and 170,2()\0).
This guarantees thdt\; — \;||> < r; ;/L for all (i, j) pairs.

Clearly, the radius; ; must grow at the same rate for any pgirj) so that, without loss of generality,
ro,1 = agro2 = airi2 for some fixeda;, as € R. Interestingly, from Fig. 3 we see tha§» cannot be
greater thamrg; + 1,2 which effectively upper bounds,. Thus, the ratio; ;/r;; cannot be arbitrary.
Furthermore, it is important to see that the asymmetry inodisns between the descriptions, is not
dictated byr; ; but instead by how the-tuples are assigned to the central lattice points. Reaat f20)

that the assignment is such that the distances betweenritraldattice points and the weighted centroids
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of the n-tuples are minimized. In other words, if we wish to reduce tlistortion due to receiving
descriptioni we assign the:-tuples so that théth element of then-tuples is closer (on average) to the
associated central lattice points. Obviously, the remairglements of the:-tuples will then be further
away from the assigned central lattice points.

In the following we first consider the case where= r; ; for any (i, j). We later show that this is
indeed the optimal choice in the symmetric distortion cétsis. trivially also optimal in the two-channel
asymmetric case, since there is only a single Weﬁéﬁp. In general, we can always scale the radii such

that

n—1 n—1
SN I = Y e YA I - (22)
k=1

(A0seesAn—1)€7T =1 (AoyerisAn—1)ET
for any (i, 7) # (k,l) where7 indicates the set oV, n-tuples andc;; € R. The resulting distortions
weights (as given by (34) and (35)) should then include trditadhal set of scaling factor§c;, ;}. This
case is treated by Lemma 2.

We now proceed to find the optimal i.e. the smallest volume which (asymptotically for larye)
leads to exactlyV, tuples satisfying step 2. In order to do so, we adopt the ambrof [13] and introduce
a dimensionless expansion factoy, ;. The expansion factoy,, ;, describe how much’ needs to be
expanded (per dimension) from the theoretical lower boid, (to make sure that exactly, optimal
n-tuples can be constructed by combining sublattice poiritisinva regionV. With this approach, we

have that

n—1
5=k v [T N0 (23)
=0

In practice, it is straight-forward to determing, ;. One can simply start ap,, ;, = 1 and iteratively
increase, 1, in small steps until exactiyV, n-tuples are found which all satisfy\; — \;||> < r/L. For
volumes containing a large number of lattice points, i.¢ngsotically as/N; — oo, such an approach
determinesy),, 1, to arbitrary accuracy. Furthermore, in this asymptotiesey,, ;, becomes independent
of the type of lattice (and als®/;), since it then only depends on the number of lattice pointhiwia
large volume. Thus, it should be clear that for @ny. n € N and1 < L € N, and asymptotically as
N; — 00,Vi, there exist a uniqué < ¢, 1, € R.

In general, it is complicated to find an analytical expresdir «,, ;. However, we have previously
been able to do it for the symmetric MD problem in some intémgscases. It turns out that the proof
technigque and solutions provided for the symmetric casey awver to the asymmetric case. To see this,

we sketch the proof technique here for the asymmetric caderan 3.
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Recall that we seeR-tuples such that any two members of tBuple is distanced no more than
r2/L apart. Specifically, we requirg\; — \;||> < r2/L wherer is the radius ofV’. Essentially, this
is a counting problem. We first center a sph&teat some)y € V;(0) N Ag. Then we pick a single
Al E V(Ao)mAl. Finally, we center an equivalent sphéfeat this\; and count the number, s&y,,, of
A2 € V(M) NV (A1) N Ag. Thus, there is#,, 3-tuples having the same pdiky, \;) as first and second
element. The procedure is now repeatedly applied fohakt V' (\g) N A; yielding the total number of
3-tuples to beleef/(xo) #, (all having the same\, as first element).

For large volumes, the number of lattice points in a regfis given by Vol.S)/v, where Vol S)
is the volume ofS and v, is the volume of the Voronoi cell of the sublattice poitts € As. Thus,
given the pair(\g, A1), the number of\; sublattice points is approximately given by \8) /v, where
S =V (X\)NV(\). It follows that we need to find the radius (or actually thewoe > of V) such that
ZAlef/(Ao) #, = No, since we need exactly, 3-tuples for each\y € V;(0) N Ap. To find the optimal
v, we derive the volume of intersecting-dimensional spheres distanced b € R apart. We then let
br be a sequence of increasing distances which yields a seguénolumes{\ol(Sy)} of the partial
intersectionsS = V(0) NV (by,). We finally form the equality}__, #s,Vol(Sy)/v2 = Ny where#s,
denotes the number of times eagh occurs. By solving for, we find the unique volumé which leads
to exactly Ny n-tuples. It can be shown that this procedure yields the aitimand is asymptotically
exact for large volumes. Furthermore, it is essentiallyiejent to the symmetric case the only exception
being that the index values forming the product (23) arenadlibto be different in the asymmetric case.
We therefore refer the reader to [13], [34] for the rigorousgh and quote some results below.

In the case ofr = 2, it trivially follows that ), ;, =1 for all L. For the case ofi = 3 and L odd we
have the following theorem.

Theorem 3 ( [13, Thm. 3.2])Let n = 3. Asymptotically asN; — oo,v; — 0,Vi, 931, for L odd is

B wi, 3 L+1 3 -5
¢3,L—<WL_1> <2L> Br. (24)

given by

by
L+1 L—1
N ZS N (B (), Lk N\ Ly
= (B B () (1) () s
mZ::O m kZ:O L3y, k! JZ:% i) \2 4) L4+m+j
where(-);, is the Pochhammer symbbdl. A

®The Pochhammer symbol is defined @$o = 1 and (a)x, = a(a+1)--- (a + k — 1) for k > 1.
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Theorem 4 ( [13], [34]): Let n = 3. Asymptotically asN; — oo, v; — 0,Vi, and L — oo

Y300 = <§>i . (26)

A
Remark 2: The proposed construction also provides a shift invariait of n-tuples in the non-

asymptotical case whe®; is finite. Thus, the design is useful in practice.

D. Assigningn-Tuples to Central Lattice Points

At this point, we may assume that we have a $etontaining N, shift invariantn-tuples. These
n-tuples need to be assigned to tNg central lattice points withif/;(0). However, before doing so, we
first construct the coset of eaehtuple of 7. Recall that the coset of amtuple is given by (4).

As first observed by Diggavi et al. [14], assignmentefuples (or more correctly cosets oftuples)
to central lattice points, is a standard linear assignmeoblpm where only one member from each
coset is assigned. This guarantees that the labeling &méi shift invariant. The cost measure to be
minimized by the linear assignment problem is given by (d0jus, the sum of distances between the
weighted centroids of the-tuples and the central lattice points should be minimized.

Remark 3:Notice that we have shown that there exists a setn-tfiples and an assignment that
satisfy the desired set of distortions. However, there méagist several assignments (for the same set
of n-tuples) all yielding the same overall Lagrangian cost. §,hn practice, when solving the bipartite
matching problem one might need to search through the caenpdet of solutions (assignments) in order
to find one that leads to the desired set of distortions. Adtevely, one can pick different solutions
(assignments) and use each of them a certain amount of tinteasaon average the desired set of
distortions are satisfied.

Remark 4:1t might appear that the shift invariance restriction eoéat by using only one member
from each coset will unfairly penaliz&,. However, the following theorems prove that, asymptoljcal
as N; — oo, there is no bias towards any of the sublattices. We will @m®rshere the case of > 2 (for
n = 2 we can use similar arguments as given in [14]).

Theorem 5:Letn > 2. Asymptotically asV; — oo, Vi, the number ofh-tuples that includes sublattice
points outsideV(0) becomes negligible compared to the numbernetfuples which have all there
sublattice points insid&’(0).

Proof: See Appendix C. [ |
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Theorem 6:Let n > 2. Asymptotically asN; — oo, Vi, the set of N, n-tuples that is constructed by
centeringV at each), € V;(0) N Ay becomes identical to the set constructed by centeFingt each
Ai € V(0) N A;, wherei € {1,...,n—1}.
Proof: See Appendix D. [ |
Remark 5:Notice that the above theorems imply that the setgfiples which satisfies (19) and is
constructed so that; ; = a; ;7,V(i, j) anda; . € RL, is unique (at least up to translations by members

of their cosets). The assignment of thduples to central lattice points, however, might not bequei

E. Description Rates

The single-description rat&,, i.e. the rate of the central quantizer, is given by

1
Re=—7 > (/VC(AC) fX(a:)dx> log, </VC(/\C) fX(ﬂf)dx) :

Ac€A,
Using the fact that each Voronoi cell.(\.) has identical volumes, and assuming thafx(x) is

approximately constant over Voronoi cells of the centrétida A, it can be shown that [31]

1 1
R, ~ Zh(X) 7 logy (ve), (27)

whereh(X) is the differential entropy of a source vector and the apipmakon becomes asymptotically
exact in the high resolution limit where. — 0.

The side descriptions are based on a coarser lattice olithinecaling the Voronoi cells of the central
lattice by a factor ofiV; ;. Assuming the pdf ofX is roughly constant within a sublattice cell, the rates
of the side descriptions are given by

L

1
Ry~ h(X) — 7

I logy (Nipive) (28)

where the approximation becomes exact asymptotically,as = v; — 0 for a fixed weight0 < p; € R.

The description rates are related to the single-descriptite by
1
Ri~ R, — 17 logy (Nipt;).

It follows that, given description rateB; and description weightg; for i = 0,...,n — 1, the index

values are given by

N, = L n(x)-LR (29)
Vel

and the nesting ratios by = N*.
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F. Distortions

We now provide analytical expressions for the expecteddisns in the case ok = 2 andn = 3
descriptions.

Theorem 7:Let n = 2 and1 < L € N. Furthermore, fix the weight8 < i; € R andv; € R where
1 = 0, 1. Given an optimal labeling function, then, asymptotically ad’; — oo andy; — 0, the expected

distortion D; = E||X — X;||2 where X; = y;)\; satisfies

_ v
bi= (70 +j71)2G(SL)VE/L(NoNl)z/L(uoul)z/L (30)
2
_ 5 21 (X)o2(Re—(Ro+R1))
=———  __(G(857)2T 2 31
(70 +71)? (52) &)

wherei, j € {0,1} andi # ;.
Proof: Follows by applying the proof technique of Diggavi et al. [bfd using the fact that we are
here optimizing ovel.-dimensional spheres rather than Voronoi cells as was the ica[14]. [ |
Theorem 8:Let n = 3 and1 < L € N. Given the set of distortion weightsy, ¢ R: ¢ € E("v“), 1<
k < n — 1}, and set of description weight®) < u; e R: i =10,...,n — 1} and an optimal labeling
function o. Then, for anyl < x < n, any/ € £ and asymptotically a®&; — oo andv; — 0, the

expected distortiorD, = E||X — X,[|> where X, = 3",, :\; is given by
Dy = 4@ G(SL)v2F (popapz) ' (No Ny Ng) Y E (32)
= 4e®LG(S) 21 M)~ (RotFi b f) (33)

where the weightg, € R for k = 1 is given by

IR (34)
(Yo + 71 + 72)?

and fork = 2 by
Ao s = 1%21@ + VJZ,k + Vi, ki k
My (Y01 + 70,2 +71,2)?

(35)

wherek # i,k # j, andj # i and ®; = %g—zﬁu wheres 1, is given by (24),3r, is given by (25)

and
2_3< Yoomays GO 5 () (1) Cap (1)
m=0 = Bk m /N2 4) L+m+j+2
(36)
Proof: See Appendix E. -
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For large L, we can simplify the termb; appearing in Theorem 8, which we for later reference put
into the following corollary:

Corollary 1: Asymptotically asN; — oo and L — oo, & = (%)%. A

If we in the construction of the-tuples use the additional set of weights ;} as given by (22), then
4 is given by the following lemma:

Lemma 2:For anyn > 1,1 < k < n and/ € £ we have

_ 2 k—1
£ 1 — (n,k) (n,k) 2'%
4 = =z zzv Jog = ALIRY Y ey
Z =0 i=0 j=i+1
J

n—2 n—1
_Z Z £(nn nn))%,j) (37)

=0 j=i+1
where ifc; ; =1 andn = 3, (37) reduces to (34) and (35) far= 1 andx = 2, respectively.

Proof: Follows by inserting the additional weigh{s; ;} in (82). [ |
Notice also that, for any > 1 and asymptotically as. — 0, the expected central distortion is trivially
given by
D, =ED. =E||X — Qs.(X)|> = G(Ac)r2/". (38)

We end this section by establishing an interesting resulttfe n-channel IA based MD problem.

Corollary 2: Letn > 1 and1 < L < co. Given the set of distortion weightgy, e R : £ € L") 1 <
k < n — 1}, and set of description weight®) < u; € R: i =0,...,n — 1} and an optimal labeling
function a. Then, for anyl < k < n, any/ € £m5) and asymptotically asV; — oo andvy; — 0,
the expected distortiow, = E|| X — XZHQ where X, = Y ice HiA; 1S linearly proportional taD, where

¢ e {£Mm") 1 <k <n}. In particular
Dé = ﬁgCg2%h(X)2%(RC_Z?;01 Ri) (39)

where?, is given by (37) and) < ¢; < oo, V2.
Proof: Follows from the proof of Theorem 8. [ |
Remark 6:We have not been able to find the set of constdut$ in (39) for the case oh > 3.
However, since) < ¢; < o it follows that, for anyn > 1, the side distortions for different subsets of
descriptions are linearly related, independently of thecdption rates. This observation has an interesting
consequence. Let the growth df. = [, V; as a function of the rates be given by, = 2fa(n=1 %, R

where0 < a < 1. Moreover, sinceR; = R, — + log,(V;) we also have thatV, = 2L(nR:=2 o),
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Equating the two expressions fo¥, and solving forR,. yields R, = %Zi Ri(a(n — 1) + 1). Inserting
this into (39) and (38) leads to

- lim Dy 231X R — /97 h(X) (40)
for any ¢ € £(™*) and
- lli%m D, 25 +an=1) 3, Ri _ oFh(X) 1)

wherec € R depends or?, ¢ € R is independent of anda controls the rate trade-offs between the
central and the side descriptions. Thus, the product of éméral distortionD, (41) and an arbitrary set
of (n — 1) side distortionsD, (40) is independent ofi. This observation agrees with the symmetric

n-channel product considered in [35].

IV. COMPARISON TOEXISTING SCHEMES

We first assess the two-channel performance. This is inbtegesartly because it is the only case where
the complete achievable MD rate-distortion region is knama partly because it makes it possible to

compare the performance to that of existing schemes.

A. Two-Channel Performance

The side distortionsD), and D} of the two-channel asymmetric MD-LVQ system presented ] [1

satisfy (under identical asymptotical conditions as thathe proposed design)

2
Dim Ij g (Am) 2 (2R (42)
Y TM

wherei, j € {0,1} andi # j and the central distortion is given by’ ~ G(A.)22((X)=E) Notice that
the only difference between (42) and (31) is that the fornegrethds orG(A,) and the latter orG(Sy,).

For the two dimensional case it is known th@tS;) = 1/(47) whereas ifA, is similar to Z? we have
G(Ar) = 1/12 which is approximatelyp.2 dB worse thanG(S2). Fig. 1 shows the performance when
quantizing2-10° zero-mean unit-variance independent Gaussian vectostrooted by blocking an i.i.d.
scalar Gaussian process into two-dimensional vectors aimg) the Z? quantizer for the design of [14]
as well as for the proposed system. In this setup we have fixed 5 bit/dim. but R, is varied in the
rangeb — 5.45 bit/dim. We have fixed the ratigy/v1 = 1.55 and we keep the side distortions fixed and
change the central distortion. Since the central distortiothe same for the two schemes we have not

shown it. Notice thatD, (resp.D;) is strictly smaller (abou6.2 dB) than D} (resp.D).
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Fig. 1. The side distortions are here kept fixed as the ratecieased. Notice that the numerically obtained side distes

Dy and D are strictly smaller than the theoreticBY, and Dj.

B. Three Channel Performance

In this section we compare the rate-distortion propertiethe proposed design to the inner bound
provided in [7], [8]. In order to do this, we first define an MDstlirtion product for the three channel
case. Then, we show that by random binning one can furthercesthe description rates. Finally, we
assess the rate loss when finite-dimensional quantizerssae but no binning.

1) Three Channel Distortion ProductTo assess the performance of the three channel design it is
convenient to define the distortion produBf which in the symmetric distortion case (i.e. féry =
Dy = Dy and Doy = Dy2 = Ds5) takes the formD™ = D.D;D; ;. This is similar in spirit to
Vaishampayan’s widely used symmetric two-channel digtorproduct [36].

Let n = 3 and consider the symmetric case whese= 1,v; = ¢; and~; ; = ¢p for i,5 = 0,1,2
wherecy, co are some constants. Moreov&®;, = R andN; = N for i = 0, 1, 2. It follows from (34) that

Y = % and from (35) thatj; ; = % so that by (33) we see that the one-channel distortion isngbye

Dy = 0,6 (528" (R 43)

and the two-channel distortion is given by

_ 1 2
Dij = 75 1G(S)2e" O, (44)

We also recall that the central distortion is given by

D = G(A.)2EMX) =28 (45)
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This leads to the following distortion product
1 6
DT = - @1 G(81) G(A)2 ") 7OR (46)

which is independent oi?. and only depends upon the description r&te
Recall that in the Gaussian ca#¢,X) = £ log,(2mes%;) and forL — co we haveG(S.) = G(A.) =
1/(2me) and (by Corollary 1)p% = % so that the distortion product reduces to

1
D™ = —o%27%%. (47)

The following lemma shows that the proposed design is ab&ctoeve a distortion product based on
the inner bound of [7], [8].

Lemma 3: The high-resolution distortion produ@™ of the three-channel achievable quadratic Gaus-
sian rate-distortion region of Pradhan et al. [7], [8] isnteal to (47).

Proof: See Appendix F. [ |

Remark 7:Thus, for any rate trade-offs between central and side iidisers, the distortion product
of the proposed MDLVQ achieves a distortion product basetheninner bound of [7], [8]. This inner
bound is not always tight as shown in [37]. However, in theecadere we are only interested in
the one-channel distortio; and the central distortio®,, optimality was recently proven in [35]. In
particular, independently of our work, Zhang et al. progbsedistortion product based on the outer
bound of [6]. Moreover, Zhang et al. showed that in the trokannel case, the produtt? D, of our
MDLVQ construction achieves their distortion product. Wew next that in the case where we are only
interested in the two-channel distortidp, ; and the central distortiod)., we are in fact also optimal.

2) Random Binning on the Labeling Functioh:was shown in [7], [8] that the achievable rate region
can be enlarged by using random binning arguments on theomarmbdebooks. Interestingly, we can
show that it also makes sense to apply random binning on beditg function proposed in this work. For
example, in the case of three descriptions, we can utilizeutiiversality of random binning so that one
can faithfully decode on reception of e.g. at least two ofttiree descriptions. With such a strategy, it is
then possible to reduce the effective description rateesihe binning rate is smaller than the codebook
rate. The price to pay is that one cannot faithfully decode.df only a single description is received.

In order to understand how we apply random binning on thelilzdpéunction, recall that every; € A;
is combined with the set of;’s given by 7;(A\;) £ {)\; € Aj : A = a;(Ae), Aj = a;(Ae), Ae € Ac}. The
trick is now to randomly assign membersBf()\;) to a set of bins in such a way that it is very unlikely

that two or more members d&f;(\;) fall into the same bin. When encoding, we first apply the @ntr
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quantizer@,, on the source variabl& in order to obtain the central lattice point = Qx, (X). We
then map the given\, to the triplet(\p, A1, A2) = a(\;). We finally find and transmit the bin indices
of \;,i = 0, 1,2, rather than their codebook indices. On reception of att l&asy) two bin indices, we
search through all the elements in the two bins in order to &inghir of sublattice points which are
elements of the same-tuple. If the binning rate is large enough, there will (whigh probability) be
only one such pair of sublattice points for any two bin indice

Theorem 9:Let n = 3 and leta be an optimal labeling function. Moreover, assume we apgfylom
binning on the labeling function such that one can faitlyffind uniquely) decode on reception of any

two descriptions. Then, asymptotically, 8 — oo,v; — 0, and L — oo, the binning rateR;, must

satisfy
1 1
Ry > SR+ 5 logy(s,LVN') (48)
where R is the description rate.
Proof: The proof is essentially similar to the technique preseimdd].'® [ |

We can further show that the binning rate, as given by (48haite with that of [7] for this particular
case where we can only decode on reception of at least twofdbte® descriptions. To show this, note

that when we get arbitrarily close to the binning rate in (48jollows that
1 1
R =2R, — S logy(v5 ) — 5 loga(N). (49)

In this case, the two-channel distortidh ;, as given by (44), can be written as

1 2 -
= E¢LG(SL)2LFL(X)2RC 3R

1 9 _Re-3R
= Ew3,oo2 ¢

N’ _
= Ewg,oo2 2R

2
e (50)

where (a) is valid for (unit-variance) Gaussian sources, in the liggtL — oo so that®., = w%m and

21 MX) = G(SL)~L. (b) follows sinceR. = R + log,(N’) and (c) follows by inserting (49). Similarly,
in the limit asL — oo, the three-channel distortion (central distortibr) is given by
D, =2 Fe (51)

1

= Y3271 (52)

10The complete proof for the asymmetric case can be found ih [34
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On the other hand, from [7], see also Appendix F, it followattthe two-channel distortioﬂ)g’j of

Pradhan et al., is given by
D, =1 2(1+ p) (53)
ij 2% P
wherep is defined in Appendix F and
02 =2(1— p) "3 (1 4 2p) 27, (54)
Moreover, the three-channel distortidy ; , is given by

1
Dijg. = 5041+ 2p). (55)

Let us equate the pair of two-channel distortions, De; = D ., from which we obtain

Z?j’

1 -1/2 o
(1+2)"° = (ﬁqﬁioo(N’)Z) (1+ ) /2(1 = p)~1, (56)
Inserting (56) and (54) into (55) yields
/ 2 1 4 1\2 172 1/2 —1/26—4R,
Di k= 3 Ews,oo(N) (1+p)7°(1—p) 2 (57)
1 [4\?
=N (5) 2 (58)

where the last equality follows by insertin@OO = (%)5 and lettingp — —%, which corresponds to

the asymptotical case whefé’ — oo. It follows that the resulting two and three-channel distors are
identical (the ratio of (52) and (58) is one) for the the preg®d design and the bounds of Pradhan et
al. [7].

3) Rate Loss:A rate lossRjoss = R — R°P! (per description) in finite dimensions and based on the
inner bound of Pradhan et al., can easily be derived from istertion product by isolating the rates in

(46) and (47) and forming their difference, that is

1 1 3 1
Russ= g louy(8) + g 1ogs () + 5 08a(GSL P GAD (250)") 59)

which clearly goes to zero for large since®?, = % With this definition of rate loss, the scalar rate loss
(i.e. for L = 1) is Rjpss = 0.2358 bit/dim. whereas for, = 3 and using the BCC lattice, the rate loss is
0.1681 bit/dim. Furthermore, we have numerically evaluated thengdog, (G (S )2me) andlog, (% 2)

for 1 < L <21 (and L odd) as shown in Fig. 2. It may be noticed tﬂ]@z@%%) is strictly smaller than
log,(G(SL)2me). It follows that, at least for this range of dimensions, thverall description rate loss,
as given by (59), is less than the space-filling loss of théc&in question. This is in contrast to, for
example, the MD scheme presented in [16] where the desuripdite loss is larger than the space-filling

loss of the lattices being used. At high dimensions, the Iegs vanishes for both schemes.
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0.5

— log,(G(SL)2me)
0.4} - logy (92 3)

0.3f

0.2f

0.1f

Fig. 2. The termdog,(G(Sz)2me) andlog,(®73) as a function of the dimensioh. Both terms converge t0 in the limit

as L — oo. Notice thatlog,(G(SL)2me) > log,(®7 2) in the range shown.

V. CONCLUSION

We proposed a simple method for constructing 1A basechannel asymmetric MD-LVQ schemes.
The design was shown to be asymptotical optimal for any nurabdescriptions. For two descriptions,
the rate loss was smaller than that of existing IA based desighereas for three descriptions, the rate
loss was smaller than that of source splitting. It was finalipwn that the rate-distortion performance

achieves points on the inner bound proposed by Pradhan et al.

APPENDIX A

PROOF OFTHEOREM 1

To prove Theorem 1 we need the following results.

Lemma 4:For1 < x <n and anyi € {0,...,n — 1} we have

i
L

FLS) = k(L) = 5 (L"),

7 [

Proof: Since|£§"”’”)| = (}) the sumy_"—] 7(£§"’“)) containsn (1) terms. However, the number

of distinct terms ig|£(™*)| = () and each term is then usedtimes, since
(1) _
(%)

Subtracting the terms fof = ¢ proves the lemma. [ |
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Lemma 5:For1 < x <n and anyi,j € {0,...,n — 1} we have

|
—

n

L) = (™).

<.
Il
o

Proof: It is true thatﬁgﬂ’“) = 5(”’“) and since|£§”’“)| = (?~]) and |£(”“ | = ("73) the sum

> f?(ﬁ(" ")) contains(n — 1)("~2) + ("~!) terms. However, the number of distince £\ terms
is ]EZ("”“)] = ("~}) and each term is then usedtimes, since
(- 1) + ()

(= " .

Lemma 6:For1 < k < n we have
n—1
doow <AC,ZAZ-> = <Ac,2m<£§"’“)>>-
e L) il i=0
Proof: Follows immediately sincesgn”{) denotes the set of aftterms that contains the indeéx m

Lemma 7:For1 < k < n we have

n—2 n—1 n—1
Do D0 ALY = NP = oA (AL = () ) [l
=0 j=i+1 =0
n—2 n—1
=237 37 AL L) (A, A)
1=0 j=i+1
Proof: We have that
n—2 n—1 n—2 n—1
SN AT LN = A2 = 303 AL L) AN + I]17)
=0 j=i+1 =0 j=i+1
n—2 n—1
=23 3 ALy ).
=0 j=i+1
Furthermore, it follows that
n—2 n—1
SN A L) N2 + 1211%)
1=0 j=i+1
n—2 n—1 — j—1
=373 INIE Y L) + Z 12> 5 ()
i=0 j=i+1 j=1 i=0
n—1 n—1 n—1
=3NS AL + A1 Zv £
i=0 j=i+1 §=0
%,_/
0 for i=n—1 0 for j=0
n—1 i—1 n—1
=AM ALy + 3T e
i=0 §j=0 j=i+1
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n—1
z:O
J#Z
—Zv POINIP (s (200) =3
where the last equality follows by use of Lemma 4. |
Lemma 8:For1 < k < n we have
n—2 n—1 n—1 n—2 n—1
YA NA: =A% = (k—1)) AL IIA\I2—2ZZ NNy Aj)-
=0 j=i+1 =0 1=0 j=i+41
Proof: We have that
n—2 n—1 n—2 n—1 n—2 n—1
SN AT A = A2 =30 3T AN+ 1IN =230 ST AL v ).
=0 j=i+1 =0 j=i+1 =0 j=i+1
Furthermore, it follows that
n—2 n—1 n—2 n—1 n—2 n—1
SN AN AN+ IR =30 ST AL N+ ST AL A2
=0 j=i+1 1=0 j=i+1 = 0] i+1
n—2 n—1 -
=S Il D A ZZ’Y ) 012
i=0 j=i+1 j=1
n—1 n—1
=S l? ST ALl !A 12 de"“
i=0 j=i+1
_,_/
0 for i=n—1 0 for 5=0

i—1 n—1
UCHOEEDS v(d?}’“’))

I
M1
L
> .
. =
r—l
2l
11
3
=
|
2l
D
;
=
~

i=0
n—1
(5= 1) > [IlPH(Ld™),
=0
where (a) follows by use of Lemma 5. [ |
Lemma 9:For1 < k < n we have
2 n—1 n—2 n—1
STow Yo = a3 AN =D ST AL — A1
feLinr) i€l 1= 1=0 j=i+1
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Proof: The set of all elementsof £("*) that contains the indekis denoted by’

. Similar the
set of all elements that contains the indiéesnd j is denoted byC

. From this we see that

2 k—2 Kk—1
D2 = D e (Do INIP 2] Y uy)
LeLin:r) iel LeLin:r) iel i=0 j=i+1
n—1 n—2 n—1
=S ALHINE+230 S AL ) A
ZIO 1= 0‘7 Z+1
By use of Lemma 8 it follows that

n—1 n—2 n—1
Z | DY R S e (Vb | P e S W (Vb [ PYEP VI
=0 =0 j=i+1
- n—2 n—1
Z A2 =S 3 A

(LA = 1
=0 =0 j=i+1
We are now in a position to prove the following result

doow

eL(nr)

s

il

[ ]
Lemma 10:For 1 < xk < n we have
_ 2
g;)w A ——Z;A = LD A~ — s 2;1 i)
K 1€
) n—2 n—1 £(nn)(( ) (60)
,@Z > ( EM; v(ﬁ&’éf"’)) A = A2
=0 j=i+1

Proof: Expansion of the norm on the left-hand-side in (60) leads to

2 2
> ow /\c—%ZAi = > (/\c22</\c,i2/\i>+12 > )

LeLim:r) i€l LeLin.r) 1€l el

(a)

n—1
= AL Ae]® ~ 2 <A .

2
W(EEH’R))M>+% Doow| DN
1=0

teLnm it
1 n—1 2 _ 2 9
- n,Kk —pnE)yy (n,k)\ y Ve )
= (L) AC—WZV(Q JA; (n,{ Z (£; Ai +Z - ZAZ
(Llnr)) 4 E K2 ||4
=0 =0 peL(n.r) el
n—1
_ 1 _ n(n,K) e
= (L) | A = e Y AL ))\i + Z - Z )\z’
RY (L) i=0 ) ict
n—2 n—1
B (nr-c Z ”)‘ ”2—’_22 Z ﬁ(n’{ ﬁ(nn))<)‘iﬂ)‘j>
=0 j=i+1
) n—1 2
= (L") A - E(n 7y 2« Z DA
z:O =0
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n—2 n—1 -
3 ST AL = AP - Z ()
=0 j=i+1 =0
n—2 n—1 W(EEH’H))’?(EYL’H)) \ \ ) - ) £(n ) ) /\ )
+§ P T LR UM Zv )= AL I
=0 j=i+1 =0
1 n—1 2
= 7y E(n’ﬁ) c o' E n,ﬂ) /\Z
HED) X = ey 27"
n—2 n—1 _ (TL,H))_ (n,k)
/y ‘C ) nn
=0 j=1+1
where (a) follows by use of Lemma 6 anth) by use of Lemmas 7 and 9. [ |
APPENDIX B

PROOF OFTHEOREM 2

Without loss of generality, let; = 1, Vi. Furthermore, let

n—1ln—2 n—1

2
Z DI B D B (61)
A€V, (0) k=1 i=0 j=i+1
and
1 (s |
" ) 2 Z’v i (62)

Ac€Va(

We prove the theorem by constructlng a labeling functioncivhower boundsf independently of;. We
then show that with this choice ¢f we havef — co andg — oo butg/f — 0 asN; — oo, v; — 0, Vi.
Furthermore, we show that this holds for any admissible a@hoff g. Since 7™ = ¢y f + ¢1g for some
constants, c¢; € R it follows that in order to minimize7"™ an optimal labeling function must jointly
minimize f andg. However, a jointly optimal labeling function can never iroype upon the lower bound
on f which occur whenf is independently minimized. Furthermorg,can only be reduced if taking
into account during the optimization. Thus, for any optirtadeling function we must have/f — 0. It
follows that f is asymptotically dominating and therefore must be minadiin order to minimize7™.
Let 7 denote the set ofi-tuples assigned to central lattice pointslip(0) so that|7| = N, and let
7; be the set ofth elements (i.e. a set of sublattice points all frap). Moreover, let7 ()\;) be the set
of n-tuples containing a specifik; as theith element. Finally, leT;();) be the set of\; € A; sublattice
points which are thgth elements in the-tuples that has the speciflg as theith element. With this, for
any fixedAg € 7o, the sumy_, 7.\ [[Ao — A1|? runs over the set ok; points which are in the same

n-tuples as the given. Notice that this sum can be written as, c7.(,,) #x |0 — A1]|? where the
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superscript’ denotes the uniqu&; elements of7;(\¢) and#),, denotes the number of times the given
A1 is used. Clearly, this sum is minimized if the unigge points are as close as possible to the given
Xo- In other words, for any given “distribution{#), }, the sum is minimized if the\;’s are contained
within the smallest possible sphere arouxngd In fact, this holds for any\, € 7;. On the other hand,
keeping the set ok,’s fixed we can also seek the minimizing distributif#,, }. A good choice appears
to be that the)\; points that are closer to the giveyy should be used more frequently than those further
way.

We pause to make the following observation. Due to the ghifiriance property of the labeling
function, we can restrict attention to thetuples which are assigned to central lattice points within
A(0). Thus, we have a total aV, n-tuples. Recall that we guarantee the shift-invarianceeny by
restricting\o to be insidel;(0) (a restriction which we later relax by considering cosdtsirthermore,
to avoid possible bias towards any € V;(0), we require that eachy is used an equal amount of times.
Since there aréV, /N distinct Ay points inV;(0) it follows that each\y must be usedV, times.

Let us for the moment being consider the case ef 3, i.e. we need to construct a set &% triplets
7 = {(Mo, A1, A2)}. If we fix some)\,, we can construct a set of pairs of sublattice points by cewfe
a spherél/ at \o and forming the set of distinct pait$ = {(\g, \1) : A1 € V(\o) N A1 }. For each pair
(Ao, A}) € S we can form a triplet A, A}, A2) by combining the given pair with some. It is important
that \, is close to)\) as well as)\] in order to reduce the distancés) — \z||? and ||\] — Xo||%. This
can be done by guaranteeing that<c V(o) and Xy € V()\;). In other words\y € V(Xg) N V(Ay).
With this strategy, fix some\y € V,(0) and start by using some “small” in order to construct the
set of pairsS = {(Ao,\1) : A1 € V(Xg) N A;}. Then for each pais € S we construct the set of
triplets {(s, A2) : A2 € V(Xo) N V(A\1)}. Recall that we needV, triplets for each\,. However, since/
was chosen “small” we end up with too few triplets. The triskniow to increase the volume &f in
small steps until we end up with exactlyy triplets (keep in mind that for larg&, we work with large
volumes).

In the n-description case, we require that € V(A\) N V(A1) N--- NV (M\_1). If we let r be the
radius ofV, then with the above procedure it is guaranteed fat- \;||? < »2/L for all (i, ;) where
i,j=0,...,n—1.

Notice thatf, i.e. the expression to be minimized as given by (61), irmmeightsﬁi(g’“) (which
might not be equal) for every pair of sublattices. In othendgp we might use spheré%m- of different
sizes to guarantee théf,; — \;||? < rzj/L where the radius; ; now depends on the particular pair of

sublattices under consideration. This is illustrated ig. B wherer; ; denotes the radius of the sphere
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Yoz

Vo.1 N

Fig. 3. Different sizes of the spheres.

f/i,j. Here we centeif/o,l at some)y € V;(0) as illustrated in Fig. 3 by the solid circle. Then, for any
n-tuples having this\o point as first element, we only includg points which are insidé’o,l(Ao). This
guarantees that\o — A\1||? < ro.1/L. Let us now center a sphefQQ at some\; which is insideffo,l()\o).
This is illustrated by the dotted sphere of radiys in the figure. We then only includg&, points which
are in the intersection of; o(\) and Vp2(\o). This guarantees that\, — \;||> < r;;/L for all (i, ;)
pairs. Interestingly, from Fig. 3 we see that, cannot be greater thaf ; + r1 2. Thus, the radius; ;
must grow at the same rate for any péirj) so that, without loss of generalityy ; = asro2 = air 2
for some fixeda;, as € R.

Recall that, the numbel; of lattice points of A; within a connected regio of RY may be
approximated byV; ~ i /v; wherer is the volume ofi’. Moreover, the number of, points withinV/,.(0)
is given by#,, ~ Vol(V(0)) /vy = v.N/vp. Since we need to construct a total 8§ n-tuples to label
the N, central lattice points, it follows that eachy is usedN,/#), = Ny times. Let us now center a
sphere/ of volumer at some), € Ay. The number of\; points inside this sphere is asymptotically given
by 7 /v;. Thus, the number of distinet-tuples we can construct by forming all combinations of attide

points fromA;,i = 1,...,n — 1 within V and using\, as first element is given bg/’”b‘l/(]_[?:_l1 v;).

n—1

Recall that we needV, n-tuples for each\,. Thus, we obtainV, = 7"~!/(T]\; v;) from which we

see that the volume of the sphéremust satisfy
n—1 e
v>v [[ N (63)
i=0

We previously argued that we need to makdarge enough so as to be able to create exadgly.-tuples
for each), which satisfy||\; — A;||? < r2?/L. Having equality in (63) guarantees thgty — \;||* < /L

for j = 1,...,n — 1 but then we must havé\; — \;||> > r%/L for somei # 0. However, since we
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are aiming at lower bounding we may indeed proceed by assuming that — \;||> < »2/L for all
i. Furthermore, the different radii ; are related through a multiplicative constant which wilt affect
the rate of growth of the volumes cffz-,j as N; — oo. Thus, we proceed by assuming; = r so that
Vij=V.

We are now in a position to evaluate the following sum

(@)
Yo =NIPE D NI (64)

NET (M) X ET;(0)
= Y #nINIE (65)
A €T(0)
The volume of the spher¥ is independent of which sublattice point it is centered atywe may take
Ai = 0 from which (a) follows. Notice that for a fixed\, and forn > 2, the setT;()\;) contains several
identical \; elements. We therefore use the notatibti();) to indicate the unique set of; elements.
Furthermore, we use the notatigh,, to indicate the number of times the givey) is used. Since
Yo err(o) 72, = No itfollows that . ) ming {7y, } < No S0 thatmin; {#x,} < No/ 35 cr(g)-
Moreover, |)\; € Tj(0)] = ©/v; which implies thatZAjeT;(o) = v/v; and we therefore have that
min;{#y,} < Nov;/. By similar reasoning it is easy to show thabx;{#,,} > Nov; /7.
We have previously shown that the intersection of any nurobéarge) spheres of equal radiiwhich
are distanced no further apart thanis positively bounded away from zero [13]. In fact, the ok of
the smallest intersection can be lower bounded by the volinaeregularL-simplex having side lengths

r [13]. Recall that the volume VO&) of a regularL-simplex & with side lengthr is given by [38]

rb JL+1
VOI(@) = F 2—L = CLT'L (66)

wherecy, is constant for fixedL. It follows that, in the three channel casg,, is lower bounded by
cprl /v, wherey,, is the volume of sublattice with the largest index value. &bwer, forn > 3 we have
that #,, is lower bounded byic.r” /)" 2.

Interestingly,#, is obviously upper bounded bl r’ /v )72, i.e. ratio of the volume of arL-
dimensional sphere of radiusand the volume of a Voronoi cell of;/, wherek’ denotes the sublattice
with the smallest index value. Notice that the lower boungnsportional to the upper bound and we

have the following sandwhich

L\ n—2 LN\ "2
<WL7° > > mﬁx{#kj} > Novj/D > mjin{#Aj} > <CL7° > (67)

145 Vi
where the left and right hand sides of (67) differ by a constanany »n which implies that there exists

a positive constant > 0 such thatmin;{#,} > cNov; /7.
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Using the above in (65) leads to

cN;v;
> = nlPy > SR Y Iy

A E€T;(Ai) A €T;4(0)

S R
zeV

= %LG(SL)D:HZ/L

n—1 5
= N LG(SL v/ P T N
i=0
where G(S1) is the dimensionless normalized second moment of atimensional hypersphere and
(a) follows by replacing the sum by an integral (standard Riemapproximation). This approximations
becomes exact asymptotically 45 — oo andv; — 0.
We finally see that

2
=23 Y AP

MET N;eT;(N)

1 N,
“IN, Z 1A = X

DS

A€VR(0)

A — A

n—1 5
> cG(SL)Nv2/ P T NS OF
=0
so that

n—1 5
f=9Q (NWVS/L 11 Nﬁ> : (68)
i=0
We now upper boung. Notice thatg describes the sum of distances between the central laticésp

and the weighted average of their associatetliples. By construction, these weighted averages will
be distributed evenly through-olt; (0). Thus, the distance of a central lattice point and the weiht
average of its associatedtuple can be upper bounded by the covering radius of theattidal with the
largest index value, sai},. This is a conservative upper bound but will do for the prdofhe rate of

growth of the covering radius of theth sublattice is proportional to,i/L = (Npv)E. Thus

g=0 (NWVE/LN]?/ L) . (69)

1The worst case situation occur if the weighted centroidsdis&ibuted such that the minimal distance between any two
centroids is maximized. Notice that the weighted centréigs convex combinations of the sublattice points. Sineewleights
are less than one, the worst case situation occurs if themteglgcentroids are distributed on a lattice with an indexi@aqual
to the sublattice with the maximum index value (and theeefalso the maximum covering radius). Thus, the bound is ohdee

valid for an arbitrary set ofi-tuples and not tied to the specific constructionnefuples used so far in the proof.
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V,(0) %
77N
B _/

Fig. 4. Vz(0) is a Voronoi cell ofA-. A is a scaled and centered version1gf(0) and 5 is the “strip” surroundingA, i.e.,
B =V (0)\A.

It follows that
2/L 2

N 2
%;@ —k :@Qﬁ““v (70)
-1 m-1)L
[Tz N
where the last equality follows since the index values amevgrg at the same rate so that = Ny /b;

2
L(n—1)

for some constani; € R. The theorem is proved by noting thM;; — 0 as NV — oo. |

APPENDIXC

PROOF OFTHEOREM 5

We restrict attention to the case whérg(0) is the Voronoi cell of a product lattice generated by the
approach outlined in Section II-B. In this case, the shap&;¢f) can be either hyper cubic, or as the
dimension increases, the shape can become more and mor&aphe

Let us first assume that th&t (0) forms a hyper cube having side lengthas shown in Fig. 4. The
n-tuples are constructed by centering a spHéref volume 7 around each\, € V,(0) and taking all
combinations of lattice points within this region (keepikg as first coordinate). From Fig. 4 it may be
seen that any\, which is contained in the region denotetwill always be combined with sublattice
points that are also contained ¥} (0). On the other hand, any, which is contained in regio# will
occasionally be combined with points outsidg0). Therefore, we need to show that the voluiig of
A approaches the volume &£ (0) as N, — oo or similarly that the ratio of/3/V4 — 0 as Ny — oo,
where V3 denotes the volume of the regidh

Let A be the centered hyper cube having side lengths s — 27 where7 is the radius ofV, see
Fig. 4. Since the volume oF;(0) is v, = vN, it follows thats = v~/* = (vN,)/. Moreover, the

volumeV, of A is

Va=(s)"
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~(s- 2F>L
()"

L 1/(n—1)
= <(VNW)1/L -2 <—w"’LVNﬂ )

wr

1/L>L
1/L
( 1/L <7/’7LL,L> / 1/L(n—1)>L
=v|(N/" =2 —= N, ,
wr,

whererv = z/zf,nuNi/("_l) is the volume ofV and7 = (7/wr )%, wherewy, is the volume of an
L-dimensional unit sphere. Since the voluiig of B is given by Vi = v, — V4 we find the ratio

% N,
lim -2 = lim —1 (71)

N, oo V. N o0 L \1/L L
A <N71/L _9 ("_L) / N;/L(”—1)>

=0, (72)

where the second equality follows singe> 2.

At this point, we note that the hyper cubic region as used alimactually the worst shape to consider.
Specifically, it is the one that yields the minimuWy and thus the maximuniz, sincev, is constant.
To see this, note that we can always pick the regibto be a centered scaled version1gf(0). Thus,
since the boundary of the inscribed regidrwill be farthest away from the boundary &f.(0) at corner

points it follows that the more spherict} (0), the largerV4 compared ta,. This proves the claima

APPENDIXD

PROOF OFTHEOREM 6

We only prove it forAy and A;. Then by symmetry it must hold for any pair. Define the Sgf as
the set ofn-tuples constructed by centerifig at some), € Vz(0) N Ag. Hence,s € S, has )y as
first coordinate and the distance between any two elemenidsofess than-, the radius ofi/. We will

assumé that Sy, # 0, ¥ \o.

12This is always the case if > max; r(A;) wherer(A;) is the covering radius of théth sublattice. The covering radius

depends on the lattice and is maximized\if is geometrically similar taZ”, in which case we have [19]
T(AL) = %\/iyl/LNil/L.
sincer = ¢, L/ ENF Y Ju 1/ it follows that in order to make sure thak,, # () the index values must satisfy

Ni < (V2¢n,0) we N/ 7D =0, n— 1. *)
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Similarly, define the seSy, # 0 by centeringl’ at some\; € V,(0) N A;. Recall from Theorem 5
that, asymptotically asv; — oo, Vi, all elements of thex-tuples are inV;(0). Then it must hold that
for any s € S\, we haves € U, cy, (0)na, Sro- But it is also true that for any’ € S,, we have
s" € Uy ev.(0)na, Sx,- Hence, since the-tuples inlJ, <y o)na, S», are distinct and ther-tuples in
U ev, 0)na, Sa, are also distinct, it follows that the two selt$, <y, )nn, Sro @A U, ev. (0)na, Sh

must be equivalent. [ |

APPENDIX E

PROOF OFTHEOREM 8

We notice from Lemma 1 and (14) thal, = E|| X — X,||? can be written as
2
_ 1 1 2
Di=g Y et )| + Z/ )X = Ao|]? da (73)
A€V (0) el

where from (38) we know that the last termG§A.)v. 'L In the following we therefore focus on finding

a closed-form solution to the first term in (73). This we do bking the following three steps (which
are valid in the usual asymptotical sense):

1) We first show, by Proposition 1, that
2

2
n—1
1 v _ p(n,K)
O ET S I0Y LD N D SRS cwﬂKE:”ﬁ e
A€V (0) jer A€V (0) ]ez
2) Then, by Lemma 14, we show that

s

2

> EYh - ZW = S Y -5l @5
A€V (0) Jeé A€VL(0) k i=0 =0
for somec, € R andn;, < n.
3) Finally, we show by Proposition 2 that for the casenof 3, we have
2
> 1= NIP = e T vl (76)

A€V (0) m=0
for somec € R.

In order to establish step 1, we need the following results.

Lemma 11:For anyl < k < n and/ € £™F) we have

— n—1
5 [in -t o] <o s, T sen).

A€V (0) jeé m=0
Through-out this work we therefore require (and implicidlgsume) that (*) is satisfied.
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Proof: Recall that the sublattice points and )\, satisfy |\; — ;|| < /'L, wherer = (i7/w)'/X

is the radius ofi’. Without loss of generality, we leX; =~ and\; = 0, which leads to

_ n—1
< rN
3 A - s S| < =0 (v TT e )
A€V (0) gee E( i=0 \/E m=0
where0 < ¢ € R and o = ¢, v T4 N/ 7V, ]

Proposition 1: For1 < k < n, £ € L") N; — 0 andy; — 0 we have

2
1 -
> EThoa = X
A€V (0) jeL

A€V, (0)

2

N Z

jEZ =

where); = pja;()\e).
Proof: Let \ = W P (L)X and N = D )\,. After some manipulations similar

to [14, Egs. (67) — (72)] we obtain the following inequaktie

,_ \ \ —_—
Z ”)\/ N 5\”2 1— 22)\06\/#(0) H/\ /\HH{‘ /\CH < Z H)\c _ )\/H2 (77)
Donevio) IV = Al B
( ) c ™

A€V (0 A€V (0)
5 A=A N = AA = e
<[5 woap] (1e 2o AE L B XA A g
eV, (0) > nevi) [N = All Yoaevi(o) X = Al

We now use the fact thath — )\ || = O(N,v.)/, i.e. we can upper this distance by the covering radius
of the sublattice with the largest index value, Sdy. By use of Lemma 11, it is possible to upper bound
the numerator of the fraction in (77) by

n—1
Yo N =AA = Al =0 ((Nkuc>1/Lvai/L I1 N%/“"‘”) : (79)

A€V (0) m=0

At this point we recall that the growth of the denominator77) is at least as great as (68), which leads
to the following lower bound
n—1
SN -AP =9 (uf/LNW 11 Nﬁ/””‘”) . (80)
A€V (0) m=0
By comparing (79) to (80), it follows that the fractions in7j7and (78) go to zero asymptotically as

N; — oo. It follows that

ST =XNIP= D0 IV =P (81)

A€V (0) A€VR(0)

which completes the proof. |

In order to establish step 2, we need the following results.
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Lemma 12:For1 < k < n and any/ € £ we have

~ 2 ~ Kk—2 k—1 ~ ~
SN =R NP =YD I = A
jel jel i=0 j=i+1
Proof: We expand the norm as follows
2
~ ~ k—2 k—1 ~ ~ ~ k—2 k—1 ~ ~
SN =D0INIPH2Y0 > T A =m ) INIE D0 D I = Al
jeL jer i=0 j=i+1 jer i=0 j=i+1 |

Lemma 13:For1 < x < n and any/ € £(™"%) we have

<ZA 27 i > LD I ||2+%Zvﬁ(”” 1512~ ZZM(’” A=Al

JEL jel jel i=0
Proof:
_ n—1 _ n—1 L
2 <Z 5, Za(zf"’“’>xi> =23 Y (L") A
jeel 1=0 jeLl =0
n—1 —
= S - A+ 3 S A ) ) (IR17 -+ 11%:12)
jel i=0 jel i=0
n—1 _ ~ ~ n—1 ~
= TN = Nl + w7 (L) ST + 5 > AL)IA 2
jee i=0 jet =0
where the last equality follows from Lemma 4. |

Lemma 14:For anyl < k < n and/ € L£™F) we have

- 1
Z)\ - ﬁ ’V(EEH’H))AZ = T( 22’7 £ A = Nl
Ay (L)) F(LmR))2 ==
k—2 k—1 n—2 n—1
- A =3P = X 3 AR - ).
=0 j=i+1 =0 j=i+1
Proof: We have that
1 1 i 1 - ’
bS] L (e [
a jet 7(5( ’ )) i=0 (E( 7 )) Jjet =
£ (k) <Z 5\ Z ))5%> >
el i=0
which by use of Lemmas 12 and 13 leads to
nn _ n,K) 2
H PORVE 2_: = SRR <’v (L0026 Il (82)
jel = jel
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K—2 Kk—1 n—1
FE™D2STST R = A 12+ ALk S A A2
=0 j=i+1 =0
n—2 n—1 n—1
=505 AL N = X2 = L2 0 3TN - )k S Al A2
1=0 j=i+1 N4 =0
n—1
ALY S 5200 15, w)
jet i=0
1 n—1 ( k—2 Kk—1
N (n,k) £7H€ )\_)\“2_— (n,k) 222”)\ _)\H2
([ ()2 2(7(5 ) A( i A( L, — Al
’Y(ﬁ( )) K jeL i=0 1=0 j=i+1
n—2 n—1
S Y AL - Ay H2>
i=0 j=i+1

[

In order to establish step 3, we extend the proof technigeiquisly used to find, 1, in [13]. Leta,,
denote the number of; points at distance: from some\, € V;(0). It follows that a fixed\g € V;(0) is
paired witha,, distinct \; points when forming théV,; n-tuples. Furthermore, lét,, denote the number
of A2 points which are paired with a fixedy, A1) tuple. The total number of-tuples (having\, as first
element) is given by’ _. a,b,, wherer is the radius of’. It was shown in [13] that this procedure

is asymptotically exact for large index values (and therizhge r).
i — Ajl12 whereT;(\;) was

For a given)y € V7(0), we seek to find an expression fdr, .,
previously defined in the proof of Theorem 2 to be the seApE A; which is inn-tuples having the
specific\; as theith element.

Proposition 2: Forn = 3, any1 < L € N, and asymptotically a®V; — oo, v; — 0,Vi, we have

> I-nlP= “ 265003 2 NN (83)
A€V, (0) N, €T, (\) Pu
where/;, is given by (36),3;, by (25) andys 1, by (24).
Proof: Without loss of generality, we ety = 0 so that

o= = DD NI

A €T3 (M) A €7;(0)

1 T
= — A bmm?
Py

where we used the fact that? = ||)\;||?/L.
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The first part of the proof follows now by results of [13]. Sieally, from (65) in [13] (see also [34,
(H.43)]) it follows that

1 S WLWL-1 1 -~ 5
mz:lam m =2 e L—l—lﬁLT (84)

where it is easy to show that we can replagg,, by a,,b,,m? and obtain

1 — 1
LS it = 22t L ars

L = vy L+1
- 2%%ﬂng/%2wiﬁ2m
Y L PNy gi
“ %G(S ) 2/LNO§§
_L+2,

2/L 1/ ﬁL

where(a) follows by use of (23), i.ev = wpr’ = q,z)ﬁ,LyC\/Nw and (b) follows by use of (24). Finally,
(c) follows sincew; */* = (L + 2)G(Sy).

The proof now follows by using the fact that (84) is indepamtds )\, so that, since there af§,/Ny
distinct \g’s in V:(0), we get

§ § Ambrm? = L+2 wmmlfﬂNﬂHwﬁE
A L BL
OEV

We are now in a position to prove the theorem.

Proof of Theorem 8:Let \; = ,u,-a,-()\c), then asymptotically a®; — oo, v; — 0,Vi, we have that

2
1 a —
SAD D (HEED WY ZNZ R Z
A€V, (0) il A€V ( jeé =0
b 1 1 nd (n,K)
= Z = (F(cmm) (LA — N2
e () AL, -
Nx A€V, (0) (L) jeb i=0
k—2 k—1 n—2 n—1 ~ ~
(no)? R0 = A I - AL - K1)
=0 j=i+1 =0 j=i+1
n—1
(c) 1 _ _ s p(n,K) ~ 2(F
2 E(n,n) L\ _ E(n,n)
e DR
J
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n—2 n—1
TLKi — n,Kk L 2
S S Al >)>;G( Dl 20N/ DL

=0 j=i+1 ﬁL

_ 1 25( r(nE)\2 _ =/ p(n,k) = r(nK) —pmrn2(F
— e (A =) ) 2

jel
S, (nn (n,k) L+2 2L 1 BL
=D AL ))—G(s )3 L /N/LB
1=0 j=1+1 L

where (a) follows by Proposition 1(b) follows by Lemma 14, andc) follows by Proposition 2. The
proof now follows by observing that the second term of (73hégligible compared to the first term
of (73). [ |

APPENDIXF

PROOF OFLEMMA 3

We consider a zero-mean and unit-variance Gaussian soliremd define three random variables
Y; £ X + Q;,i = 0,1,2 where theQ;’s are identically distributed jointly Gaussian randomiahles

(independent ofX) with varianceo—g and covariance matrig) given by

L pop
Q=05lp 1 p
p p 1
where the correlation coefficient satisfie% <p< % It is easy to show that the MMSE when estimating

X from any set ofm Y;’s is given by [6], [7]

o2(1+ (m — 1)p)
MMSE,, = m+o2(1+(m—1)p)

In the high-resolution case whe@ < 1 it follows that we have
MMSE; = o2
L o
MMSE; = iaq(l +p)
and

1
MMSE; = 50;(1 +2p).

It was shown in [7] that, the description raigis given by
1 1+ 02 1—p\*
=—1 4
=g loe: (02(1 ~ p)) (1 + 2p>
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o) = ((1 — p)2%R <%>§ ) 1) _

~ (1= p) 5 (1+2p) 527"

so that

[\

where the approximation becomes exact at high resolutien {or R > 1). We can now form the

high-resolution distortion product

0.6
DT = 1+ p)(1+2p)
1 o
= s(L+p)(1 = p)7227%
1
— _2—6R
27

where the last inequality follows by insertipg— —% which corresponds to having a high side-to-central
distortion ratio, i.e. it resembles the asymptotical ctindiof letting V; — oo in the IA based approach.

This proves the lemma. [ |
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