44,000 research outputs found

    Efficient Two-Step Adversarial Defense for Deep Neural Networks

    Full text link
    In recent years, deep neural networks have demonstrated outstanding performance in many machine learning tasks. However, researchers have discovered that these state-of-the-art models are vulnerable to adversarial examples: legitimate examples added by small perturbations which are unnoticeable to human eyes. Adversarial training, which augments the training data with adversarial examples during the training process, is a well known defense to improve the robustness of the model against adversarial attacks. However, this robustness is only effective to the same attack method used for adversarial training. Madry et al.(2017) suggest that effectiveness of iterative multi-step adversarial attacks and particularly that projected gradient descent (PGD) may be considered the universal first order adversary and applying the adversarial training with PGD implies resistance against many other first order attacks. However, the computational cost of the adversarial training with PGD and other multi-step adversarial examples is much higher than that of the adversarial training with other simpler attack techniques. In this paper, we show how strong adversarial examples can be generated only at a cost similar to that of two runs of the fast gradient sign method (FGSM), allowing defense against adversarial attacks with a robustness level comparable to that of the adversarial training with multi-step adversarial examples. We empirically demonstrate the effectiveness of the proposed two-step defense approach against different attack methods and its improvements over existing defense strategies.Comment: 12 page

    Pareto Adversarial Robustness: Balancing Spatial Robustness and Sensitivity-based Robustness

    Full text link
    Adversarial robustness, which mainly contains sensitivity-based robustness and spatial robustness, plays an integral part in the robust generalization. In this paper, we endeavor to design strategies to achieve universal adversarial robustness. To hit this target, we firstly investigate the less-studied spatial robustness and then integrate existing spatial robustness methods by incorporating both local and global spatial vulnerability into one spatial attack and adversarial training. Based on this exploration, we further present a comprehensive relationship between natural accuracy, sensitivity-based and different spatial robustness, supported by the strong evidence from the perspective of robust representation. More importantly, in order to balance these mutual impacts of different robustness into one unified framework, we incorporate \textit{Pareto criterion} into the adversarial robustness analysis, yielding a novel strategy called \textit{Pareto Adversarial Training} towards universal robustness. The resulting Pareto front, the set of optimal solutions, provides the set of optimal balance among natural accuracy and different adversarial robustness, shedding light on solutions towards universal robustness in the future. To the best of our knowledge, we are the first to consider the universal adversarial robustness via multi-objective optimization

    Universal adversarial robustness of texture and shape-biased models

    Get PDF
    Increasing shape-bias in deep neural networks has been shown to improve robustness to common corruptions and noise. In this paper we analyze the adversarial robustness of texture and shape-biased models to Universal Adversarial Perturbations (UAPs). We use UAPs to evaluate the robustness of DNN models with varying degrees of shape-based training. We find that shape-biased models do not markedly improve adversarial robustness, and we show that ensembles of texture and shape-biased models can improve universal adversarial robustness while maintaining strong performance

    On the existence of solutions to adversarial training in multiclass classification

    Full text link
    We study three models of the problem of adversarial training in multiclass classification designed to construct robust classifiers against adversarial perturbations of data in the agnostic-classifier setting. We prove the existence of Borel measurable robust classifiers in each model and provide a unified perspective of the adversarial training problem, expanding the connections with optimal transport initiated by the authors in previous work and developing new connections between adversarial training in the multiclass setting and total variation regularization. As a corollary of our results, we prove the existence of Borel measurable solutions to the agnostic adversarial training problem in the binary classification setting, a result that improves results in the literature of adversarial training, where robust classifiers were only known to exist within the enlarged universal σ\sigma-algebra of the feature space
    • …
    corecore