1,977 research outputs found

    Adversarial Reprogramming of Text Classification Neural Networks

    Get PDF
    Adversarial Reprogramming has demonstrated success in utilizing pre-trained neural network classifiers for alternative classification tasks without modification to the original network. An adversary in such an attack scenario trains an additive contribution to the inputs to repurpose the neural network for the new classification task. While this reprogramming approach works for neural networks with a continuous input space such as that of images, it is not directly applicable to neural networks trained for tasks such as text classification, where the input space is discrete. Repurposing such classification networks would require the attacker to learn an adversarial program that maps inputs from one discrete space to the other. In this work, we introduce a context-based vocabulary remapping model to reprogram neural networks trained on a specific sequence classification task, for a new sequence classification task desired by the adversary. We propose training procedures for this adversarial program in both white-box and black-box settings. We demonstrate the application of our model by adversarially repurposing various text-classification models including LSTM, bi-directional LSTM and CNN for alternate classification tasks

    Defense against Universal Adversarial Perturbations

    Full text link
    Recent advances in Deep Learning show the existence of image-agnostic quasi-imperceptible perturbations that when applied to `any' image can fool a state-of-the-art network classifier to change its prediction about the image label. These `Universal Adversarial Perturbations' pose a serious threat to the success of Deep Learning in practice. We present the first dedicated framework to effectively defend the networks against such perturbations. Our approach learns a Perturbation Rectifying Network (PRN) as `pre-input' layers to a targeted model, such that the targeted model needs no modification. The PRN is learned from real and synthetic image-agnostic perturbations, where an efficient method to compute the latter is also proposed. A perturbation detector is separately trained on the Discrete Cosine Transform of the input-output difference of the PRN. A query image is first passed through the PRN and verified by the detector. If a perturbation is detected, the output of the PRN is used for label prediction instead of the actual image. A rigorous evaluation shows that our framework can defend the network classifiers against unseen adversarial perturbations in the real-world scenarios with up to 97.5% success rate. The PRN also generalizes well in the sense that training for one targeted network defends another network with a comparable success rate.Comment: Accepted in IEEE CVPR 201
    • …
    corecore