2,322 research outputs found

    Nearly Optimal Computations with Structured Matrices

    Get PDF
    We estimate the Boolean complexity of multiplication of structured matrices by a vector and the solution of nonsingular linear systems of equations with these matrices. We study four basic most popular classes, that is, Toeplitz, Hankel, Cauchy and Van-der-monde matrices, for which the cited computational problems are equivalent to the task of polynomial multiplication and division and polynomial and rational multipoint evaluation and interpolation. The Boolean cost estimates for the latter problems have been obtained by Kirrinnis in \cite{kirrinnis-joc-1998}, except for rational interpolation, which we supply now. All known Boolean cost estimates for these problems rely on using Kronecker product. This implies the dd-fold precision increase for the dd-th degree output, but we avoid such an increase by relying on distinct techniques based on employing FFT. Furthermore we simplify the analysis and make it more transparent by combining the representation of our tasks and algorithms in terms of both structured matrices and polynomials and rational functions. This also enables further extensions of our estimates to cover Trummer's important problem and computations with the popular classes of structured matrices that generalize the four cited basic matrix classes.Comment: (2014-04-10

    Reconstructing Rational Functions with FireFly\texttt{FireFly}

    Full text link
    We present the open-source C++\texttt{C++} library FireFly\texttt{FireFly} for the reconstruction of multivariate rational functions over finite fields. We discuss the involved algorithms and their implementation. As an application, we use FireFly\texttt{FireFly} in the context of integration-by-parts reductions and compare runtime and memory consumption to a fully algebraic approach with the program Kira\texttt{Kira}.Comment: 46 pages, 3 figures, 6 tables; v2: matches published versio

    Chebyshev model arithmetic for factorable functions

    Get PDF
    This article presents an arithmetic for the computation of Chebyshev models for factorable functions and an analysis of their convergence properties. Similar to Taylor models, Chebyshev models consist of a pair of a multivariate polynomial approximating the factorable function and an interval remainder term bounding the actual gap with this polynomial approximant. Propagation rules and local convergence bounds are established for the addition, multiplication and composition operations with Chebyshev models. The global convergence of this arithmetic as the polynomial expansion order increases is also discussed. A generic implementation of Chebyshev model arithmetic is available in the library MC++. It is shown through several numerical case studies that Chebyshev models provide tighter bounds than their Taylor model counterparts, but this comes at the price of extra computational burden

    High Performance Sparse Multivariate Polynomials: Fundamental Data Structures and Algorithms

    Get PDF
    Polynomials may be represented sparsely in an effort to conserve memory usage and provide a succinct and natural representation. Moreover, polynomials which are themselves sparse – have very few non-zero terms – will have wasted memory and computation time if represented, and operated on, densely. This waste is exacerbated as the number of variables increases. We provide practical implementations of sparse multivariate data structures focused on data locality and cache complexity. We look to develop high-performance algorithms and implementations of fundamental polynomial operations, using these sparse data structures, such as arithmetic (addition, subtraction, multiplication, and division) and interpolation. We revisit a sparse arithmetic scheme introduced by Johnson in 1974, adapting and optimizing these algorithms for modern computer architectures, with our implementations over the integers and rational numbers vastly outperforming the current wide-spread implementations. We develop a new algorithm for sparse pseudo-division based on the sparse polynomial division algorithm, with very encouraging results. Polynomial interpolation is explored through univariate, dense multivariate, and sparse multivariate methods. Arithmetic and interpolation together form a solid high-performance foundation from which many higher-level and more interesting algorithms can be built

    Extended Rate, more GFUN

    Get PDF
    We present a software package that guesses formulae for sequences of, for example, rational numbers or rational functions, given the first few terms. We implement an algorithm due to Bernhard Beckermann and George Labahn, together with some enhancements to render our package efficient. Thus we extend and complement Christian Krattenthaler's program Rate, the parts concerned with guessing of Bruno Salvy and Paul Zimmermann's GFUN, the univariate case of Manuel Kauers' Guess.m and Manuel Kauers' and Christoph Koutschan's qGeneratingFunctions.m.Comment: 26 page

    Multivariate sparse interpolation using randomized Kronecker substitutions

    Full text link
    We present new techniques for reducing a multivariate sparse polynomial to a univariate polynomial. The reduction works similarly to the classical and widely-used Kronecker substitution, except that we choose the degrees randomly based on the number of nonzero terms in the multivariate polynomial, that is, its sparsity. The resulting univariate polynomial often has a significantly lower degree than the Kronecker substitution polynomial, at the expense of a small number of term collisions. As an application, we give a new algorithm for multivariate interpolation which uses these new techniques along with any existing univariate interpolation algorithm.Comment: 21 pages, 2 tables, 1 procedure. Accepted to ISSAC 201
    • …
    corecore