
HAL Id: hal-00980591
https://hal.inria.fr/hal-00980591

Submitted on 18 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nearly Optimal Computations with Structured Matrices
Victor Y. Pan, Elias Tsigaridas

To cite this version:
Victor Y. Pan, Elias Tsigaridas. Nearly Optimal Computations with Structured Matrices. SNC
’14 - Symposium on Symbolic-Numeric Computation, Jul 2014, Shanghai, China. pp.21-30,
�10.1145/2631948.2631954�. �hal-00980591�

https://hal.inria.fr/hal-00980591
https://hal.archives-ouvertes.fr

Nearly Optimal Computations with Structured Matrices

Victor Y. Pan
Depts. of Mathematics and Computer Science

Lehman College and Graduate Center
of the City University of New York

Bronx, NY 10468 USA
victor.pan@lehman.cuny.edu
http://comet.lehman.cuny.edu/vpan/

Elias P. Tsigaridas
PolSys Project

INRIA, Paris-Rocquencourt Center
UPMC, Univ Paris 06, LIP6

CNRS, UMR 7606, LIP6
Paris, France

elias.tsigaridas@inria.fr

ABSTRACT

We estimate the Boolean complexity of multiplication of
structured matrices by a vector and the solution of nonsingu-
lar linear systems of equations with these matrices. We study
four basic most popular classes, that is, Toeplitz, Hankel,
Cauchy and Vandermonde matrices, for which the cited com-
putational problems are equivalent to the task of polynomial
multiplication and division and polynomial and rational mul-
tipoint evaluation and interpolation. The Boolean cost esti-
mates for the latter problems have been obtained by Kirrin-
nis in [11], except for rational interpolation, which we supply
now. All known Boolean cost estimates for these problems
rely on using Kronecker product. This implies the d-fold pre-
cision increase for the d-th degree output, but we avoid such
an increase by relying on distinct techniques based on em-
ploying FFT. Furthermore we simplify the analysis and make
it more transparent by combining the representation of our
tasks and algorithms in terms of both structured matrices
and polynomials and rational functions. This also enables
further extensions of our estimates to cover Trummer’s im-
portant problem and computations with the popular classes
of structured matrices that generalize the four cited basic
matrix classes.

1. INTRODUCTION

Table 1 displays four classes of most popular structured
matrices, which are omnipresent in modern computations
for Sciences, Engineering, and Signal and Image Processing.
These basic classes have been naturally extended to the four
larger classes of matrices, T , H, V, and C, that have struc-
tures of Toeplitz, Hankel, Vandermonde and Cauchy types,
respectively. They include many other important classes of
structured matrices such as the products and inverses of the
matrices of these four basic classes, as well as the companion,
Sylvester, subresultant, Loewner, and Pick matrices. All
these matrices can be readily expressed via their displace-
ments of small ranks [16, Chapter 4], which implies their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

further attractive properties:

• Compressed representation of matrices as well as their
products and inverses through a small number of parame-
ters.

• Multiplication by a vector in nearly linear arithmetic time.

• Solution of nonsingular linear systems of equations with
these matrices in quadratic or nearly linear arithmetic
time.

These properties enable efficient computations, closely linked
and frequently equivalent to fundamental computations with
polynomials and rational polynomial functions, in particu-
lar to the multiplication, division, multipoint evaluation and
interpolation [17]. Low arithmetic cost is surely attractive,
but substantial growth of the computational precision quite
frequently affects the known algorithms having low arith-
metic cost (see, e.g., [5]). So the estimation of the complex-
ity under the Boolean model is more informative, although
technically more demanding.
To the best of our knowledge, the first Boolean complexity

bounds for multipoint evaluation are due to Ritzmann [19].
We also wish to cite the papers [25] and [13], although their
results have been superceded in the advanced work of 1998
by Kirrinnis, [11], apparently still not sufficiently well known.
Namely in the process of studying approximate partial frac-
tion decomposition he has estimated the Boolean complexity
of the multipoint evaluation, interpolation, and the summa-
tion of rational functions. He required the input polynomi-
als to be normalized, but actually this was not restrictive at
all. We generalize his estimates. For simplicity we assume
the evaluation at the points of small magnitude, but our
estimates can be rather easily extended to the case of gen-
eral input. Kirrinnis’ study as well as all previous estimates
of the Boolean complexity of these computational problems
rely on multiplying polynomials as integers, by using Kro-
necker’s product, aka binary segmentation, as proposed in
[8]. This implies the d-fold increase of the computational
precision for the d-th degree output. The results that we
present rely on FFT algorithms for multiplying univariate
polynomials and avoid this precision growth.
We represent our FFT-based estimates and algorithms in

terms of operations with both structured matrices and poly-
nomial and rational functions. In both representations the
computational tasks and the solution algorithms are equiva-
lent, and so the results of [11] for partial fraction decomposi-
tion can be extended to most although not all of these tasks.
By using both representations, however, we make our analy-
sis more transparent. Furthermore in Section 7 we extend

http://comet.lehman.cuny.edu/vpan/

Table 1. Four classes of structured matrices

.

Toeplitz matrices T = (ti−j)
n−1
i,j=0 Hankel matrices H = (hi+j)

n−1
i,j=0



t0 t−1 · · · t1−n

t1 t0
...

...
...

...
... t−1

tn−1 · · · t1 t0







h0 h1 · · · hn−1

h1 h2 ..
.

hn

... ..
.

..
. ...

hn−1 hn · · · h2n−2




Vandermonde matrices V = Vs =
(
sji
)n−1

i,j=0
Cauchy matrices C = Cs,t =

(
1

si−tj

)n−1

i,j=0


1 s1 · · · sn−1
1

1 s2 · · · sn−1
2

...
...

...

1 sn · · · sn−1
n







1
s1−t1

· · · 1
s1−tn

1
s2−t1

· · · 1
s2−tn

...
...

1
sn−t1

· · · 1
sn−tn




Kirrinnis’ results to the solution of a Cauchy linear system
of equations (which unlike [11] covers rational interpolation)
and in Section 7.2 to the solution of Trummer’s celebrated
problem [9], [10], [6], having important applications to me-
chanics (e.g., to particle simulation) and representing the
secular equation, which is the basis for the MPSolve, the
most efficient package of subroutines for polynomial root-
finding [3].

Our estimates cover multiplication of the matrices of the
four basic classes of Table 1 by a vector and solving Van-
dermonde and Cauchy linear systems of equations. (These
tasks are equivalent to the listed tasks of the multiplication,
division, multipoint evaluation and interpolation of polyno-
mials and rational functions.) Expressing the solution of
these problems in terms of matrices has a major advantage:
it can be extended to matrices from the four larger matrix
classes T , H, V, and C. Actually the algorithms for mul-
tiplication by vector can be extended quite readily, as we
explain in Section 7. There we also briefly discuss the solu-
tion of linear systems of equations with the matrices of the
cited classes, which can be a natural subject of our further
study.

Notation. In what follows OB , resp. O, means bit, resp.

arithmetic, complexity and ÕB , resp. Õ, means that we
are ignoring logarithmic factors. “Ops” stands for “arith-
metic operations”. For a polynomial A =

∑d
i=0 ai x

i ∈ ZZ[x],
deg(A) = d denotes its degree and L (A) = τ the maximum
bitsize of its coefficients, including a bit for the sign. For
a ∈ (Q, L (a) ≥ 1 is the maximum bitsize of the numerator
and the denominator. µ(λ) denotes the bit complexity of

multiplying two integers of size λ; we have µ(λ) = ÕB(λ).
2Γ is an upper bound on the magnitude of the roots of A.
We write ∆α(A) or just ∆α to denote the minimum distance
between a root α of a polynomial A and any other root. We
call this quantity local separation bound. We also write ∆i

instead of ∆αi
. ∆(A) = minα ∆α(A) or just ∆ denotes the

separation bound, that is the minimum distance between all
the roots of A. The Mahler bound (or measure) of A is
M (A) = ad

∏
|α|≥1 |α|, where α runs through the complex

roots of A, e.g. [14, 26]. If A ∈ ZZ[x] and L (A) = τ , then
M (A) ≤ ‖A‖2 ≤

√
d+ 1‖A‖∞ = 2τ

√
d+ 1. If we evaluate

a function F (e.g. F = A) at a number c using interval arith-

metic, then we denote the resulting interval by [F (c)], pro-
vided that we fix the evaluation algorithm and the precision

of computing. We write D(c, r) = {x : |x−c| ≤ r}. f̃ ∈ (C[x]
denotes a λ-approximation to a polynomial f ∈ (C[x], such

that ‖f − f̃‖∞ ≤ 2−λ. In particular ã ∈ (C denotes a λ-
approximation to a constant a ∈ (C such that |a− ã| ≤ 2−λ.
lg stands for log.

2. PRELIMINARIES

2.1 Univariate Separation Bounds
The following proposition provides upper and aggregate

bounds for the roots of a univariate polynomial. There are
various version of these bounds. We use the one presented in
[23], to which we also refer the reader for further details and
a discussion of the literature. For multivariate separation
bounds we refer the reader to [7].

Proposition 1. Let f =
∑d

i=0 aix
i ∈ (C[x] be a square-free

univariate polynomial of a degree d such that ada0 6= 0. Let
Ω be any set of k pairs of indices (i, j) such that 1 ≤ i < j ≤
d, let the complex roots of A be 0 < |γ1| ≤ |γ2| ≤ · · · ≤ |γd|,
and let disc(f) be the discriminant of f . Then

|a0|
‖f‖2

≤ |γi| ≤ ‖f‖2
|ad|

, (1)

∏

(i,j)∈Ω

|γi − γj | ≥ 2k−d−
d(d−1)

2 |a0|k M(f)1−d−k
√

|disc(f)|

≥ 2k−d−
d(d−1)

2 |a0|k ‖f‖1−d−k
2

√
|disc(f)|.

(2)
If f ∈ ZZ[x] and the maximum coefficient bitsize is τ then

2−τ−1 ≤ |γ| ≤ 2τ+1 , (3)

− lg
∏

(i,j)∈Ω

|γi − γj | ≤ 3d2 + 3dτ + 4d lg d. (4)

The following lemma from [24] provides a lower bound on
the evaluation of a polynomial that depends on the closest
root and on aggregate separation bounds.

Lemma 2. Suppose L ∈ (C, f is a square-free polynomial,
and its root γ1 is closest to L. Then

|f(L)| ≥ |ad|7 |L− γ1|6 M (f)−6 2lg
∏

i ∆i−6 .

2.2 Complex Interval arithmetic
We also need the following bounds for the width of com-

plex intervals when we perform computations with interval
arithmetic. We will use them to bound the error when we
perform basic computation with complex (floating point)
numbers. We refer the reader to [20] for further details.

Proposition 3 (Complex intervals). Given complex in-
tervals I and J , where |I |, resp. |J |, denotes the modu-
lus of any complex number in the complex interval I , resp.
J . If 2−ν ≤ |I | ≤ 2τ and |J | ≤ 2σ, then wid(I + J) ≤
2 wid(I) + 2 wid(J), wid(I J) ≤ 2τ+1 wid(J) + 2σ+1 wid(I),
and wid(1/I) ≤ 24ν+2τ+3 wid(I).

2.3 Approximate multiplication of two poly-
nomials

We need the following two lemmas from [17] on the eval-
uation of a polynomial at the powers of a root of unity and
on polynomial multiplication. A result similar to the first
lemma appeared in [21, Section 3] where Bluestein’s tech-
nique from [4] is applied (see also [12, Chapter 4.3.3, Ex-
ercise 16]). We use that lemma to provide a bound on the
Boolean complexity of multiplying two univariate polynomi-
als when their coefficients are known up to a fixed precision.
An algorithm for this problem appeared in [21, Theorem 2.2]
based on employing Kronecker’s product, but instead we rely
on FFT and the estimates of Corollary 4.1 from [2, Chapter
3].

Lemma 4. Suppose A ∈ (C[x] of a degree at most d such
that ‖A‖∞ ≤ 2τ . Let K = 2k ≥ d for a positive integer k.
Assume that we know the coefficients of A up to the preci-
sion −ℓ − τ − lgK − 3; that is the input is assumed to be

a polynomial Ã such that ‖A − Ã‖∞ ≤ 2−ℓ−τ−lgK−3 ≥
10. Let ω = exp(2π

K

√
−1) denote a K-th root of unity.

Then we can evaluate the polynomial A at 1, ω, . . . , ωK−1 in

ÕB(K lgK µ(ℓ+ τ + lgK)) such that max0≤i≤K−1|A(ωi)−
Ã(ωi)| ≤ 2−ℓ. Moreover, |A(ωi)| ≤ K ‖A‖∞ ≤ 2τ+lgK , for
all 0 ≤ i ≤ K − 1.

Lemma 5. Let A,B ∈ (C[x] of degree at most d, such that
‖A‖∞ ≤ 2τ1 and ‖B‖∞ ≤ 2τ2 . Let C denote the product
AB and let K = 2k ≥ 2d + 1 for a positive integer k. Write
λ = ℓ + 2τ1 + 2τ2 + 5.1 lgK + 4. Assume that we know
the coefficients of A and B up to the precision λ, that is

that the input includes two polynomials Ã and B̃ such that

‖A − Ã‖∞ ≤ 2−λ and ‖B − B̃‖∞ ≤ 2−λ. Then we can

compute in OB(d lg d µ(ℓ + τ1 + τ2 + lg d)) a polynomial C̃

such that ‖C−C̃‖∞ ≤ 2−ℓ. Moreover, ‖C‖∞ ≤ 2τ1+τ2+2 lgK

for all i.

Remark 6. In the sequel, for simplicity we occasionally re-
place the value λ = ℓ+ 2τ1 + 2τ2 + 5.1 lg(2d+ 1) + 4 by its
simple upper bound ℓ+ 2τ1 + 2τ2 + 6 lg d+ 15 .

3. APPROXIMATE FFT-BASED POLYNOMIAL

DIVISION
In this section we present an efficient algorithm and its

complexity analysis for dividing univariate polynomials ap-
proximately. This result is the main ingredient of the fast
algorithms for multipoint evaluation and interpolation. The

evaluation is involved into our record fast real root-refinement,
but all these results are also interesting on their own right
because, unlike the previous papers such as [21], [22] and
[11], we keep the Boolean cost bounds of these computa-
tions at the record level by employing FFT rather than the
Kronecker product and thus decreasing the precision of com-
puting dramatically.
Assume two polynomials s(x) =

∑m
i=0 six

i and t(x) =∑n
i=0 tix

i such that smtn 6= 0, m ≥ n, and seek the quotient

q(x) =
∑m−n

i=0 qix
i and the remainder r(x) =

∑n−1
i=0 rix

i of
their division such that s(x) = t(x) q(x)+r(x) and deg(r) <
deg(t). Further assume that tn = 1. This is no loss of gener-
ality because we can divide the polynomial t by its nonzero
leading coefficient. We narrow our task to computing the
quotient q(x) because as soon as the quotient is available,
we can compute the remainder r(x) = s(x)− t(x) q(x) at the
dominated cost by multiplying t(x) by q(x) and subtracting
the result from s(x).
The complexity analysis that we present relies on root

bounds of t(x), contrary to [17] where it relies on bounds
on the infinity norm of t(x). To keep the presentation self-
contained we copy from [17] the matrix representation of
the algorithm, which occupies the next two pages, up to to
Lemma 9.
We begin with an algorithm for the exact evaluation of the

quotient. Represent division with a remainder by the vector
equation



1
tn−1 1

.

.

.
.
.
.

t1
t0 t1 · · · 1

t0 t1

.

.

.
t1
t0







qm−n

qm−n−1

.

.

.
q1
q0



+




rn−1

rn−2

.

.

.
r0




=




sm
sm−1

.

.

.
sn
sn−1

.

.

.

s0




.

The first m − n + 1 equations form the following vector
equation,




1
tn−1 1

.

.

.
.
.
.

t1
t0 t1 · · · 1







qm−n

qm−n−1

.

.

.
q1
q0




=




sm
sm−1

.

.

.
sn+1

sn
.
.
.
sm−n−1




⇔ T q = s,

(5)

where q = (qi)
m−n
i=0 , s = (si)

m
i=m−n+1, and T is the non-

singular lower triangular Toeplitz matrix, defined by its first
column vector t = (ti)

n
i=0), tn = 1. Write T = Z(t) and

Z = Z(e2) where e2 = (0, 1, 0 . . . , 0)T is the second coor-
dinate vector, and express the matrix T as a polynomial in
a generator matrix Z = Zn+1 of size (n + 1) × (n + 1) as
follows,

Z =




0 . . . 0

1
. . .

.

.

.
. . .

. . .
.
.
.

. . . 0
0 . . . 1 0




, T = Z(t) = t(Z) =
n∑

i=0

tiZ
i, Zn+1 = O.

The matrix T is nonsingular because tn 6= 0, and the lat-
ter equations imply that the inverse matrix T−1 = t(Z)−1

mod Zn+1 is again a polynomial in Z, that is again a lower
triangular Toeplitz matrix defined by its first column. We

compute this column by applying a divide and conquer al-
gorithm. Assume that n + 1 = γ = 2k is a power of two,
for a positive integer k. If this is not the case, embed the
matrix T into a lower triangular Toeplitz γ×γ matrix t̄(Zγ)
for γ = 2k and k = ⌈lg(n + 1)⌉ with the leading (that is
northwestern) block T = t(Zγ), such that t(Zγ) = t̄(Zγ)
mod Zn+1

γ , compute the inverse matrix and output its lead-
ing (n+ 1)× (n+ 1) block T−1.

Now represent T as the 2×2 block matrix, T =




T0 O

T1 T0





where T0 and T1 are γ
2
× γ

2
Toeplitz submatrices of the

Toeplitz matrix T , T0 is invertible, and observe that

T−1 =




T0 O

T1 T0




−1

=




T−1
0 O

−T−1
0 T1 T

−1
0 T−1

0



 . (6)

We only seek the first column of the matrix T−1. Its compu-
tation amounts to solving the same problem for the half-size
triangular Toeplitz matrix T0 and to multiplication of each
of the γ

2
× γ

2
Toeplitz matrices T1 and T−1

0 by a vector. Let
TTI(s) and TM(s) denote the arithmetic cost of s × s tri-
angular Toeplitz matrix inversion and multiplying an s × s
Toeplitz matrix by a vector, respectively. Then the above
analysis implies that TTI(γ) ≤ TTI(γ/2)+2TM(γ/2). Re-
cursively apply this bound to TTI(γ/2g) for g = 1, 2, . . . ,

and deduce that TTI(γ) ≤ ∑h
g=1 TM(γ/2g). The follow-

ing simple lemma (cf. [16, equations (2.4.3) and (2.4.4)])
reduce Toeplitz-by-vector multiplication to polynomial mul-
tiplication and the extraction of a subvector of the coefficient
vector of the product, thus implying that TM(s) ≤ cs lg s
for a constant c and consequently TTI(γ) < 2cγ lg γ.

Lemma 7. The vector equation




u0 O

.

.

.
. . .

.

.

.
. .
. u0

um

. . .
.
.
.

. . .
.
.
.

O um







v0
.
.
.

vn


 =




p0

.

.

.

.

.

.

pm

.

.

.

pm+n




(7)

is equivalent to the polynomial equation

(
m∑

i=0

uix
i

)(
n∑

i=0

vix
i

)
=

m+n∑

i=0

pix
i. (8)

We wish to estimate the Boolean (rather than arithmetic)
cost of inverting a triangular Toeplitz matrix T and then ex-
tend this to the Boolean cost bound of computing the vector
T−1s and of polynomial division. So next we assume that
the input polynomials are known up to some precision 2−λ

and employ the above reduction of the problem to recursive
(approximate) polynomial multiplications.

To study the Boolean complexity of this procedure, we
need the following corollary, which is a direct consequence
of Lemma 5 and the inequality lg(2d+ 1) ≤ 2 + lg d.

Corollary 8 (Bounds for the product P
2

0 P1). Let a poly-
nomial P0 ∈ (C[x] have a degree d, let its coefficients be
known up to a precision 2−ν , and let ‖P0‖∞ ≤ 2τ0 . Simi-
larly, let P1 ∈ (C[x] have the degree 2d, let its coefficients
be known up to a precision 2−ν , and let ‖P1‖∞ ≤ 2τ1 .

Then the polynomial P = P 2
0 P1 has degree 4d, its coeffi-

cients are known up to the precision 2−ν+8τ0+2τ1+15 lg d+40,
and ‖P 2

0P1‖∞ ≤ 22τ0+τ1+6 lg d+8.

The following lemma is a normalized version of Lemma 4.4
in [11].

Lemma 9. Let F,G ∈ (C[x] such that deg(F) = m ≥ n =
deg(G) ≥ 1, let 2ρ be an upper bound on the magnitude of
roots of G, and let F = GQ +R with deg(Q) = m − n and
deg(R) = n− 1. Then

‖Q‖∞ ≤ 2m+lgm+mρ‖F‖∞ and ‖R‖∞ ≤ 2m+n+lgm+mρ‖F‖∞ .

Proof: To bring the roots inside the unit circle, transform
the polynomials by scaling the variable x as follows, f(x) =
F (x 2ρ), g(x) = G(x 2ρ), q(x) = Q(x 2ρ), and r(x) = R(x 2ρ).
Now apply [11, Lemma 4.4] to the equation f = gq + r
to obtain ‖q‖∞ ≤ ‖q‖1 ≤ 2m−1‖f‖1 ≤ 2m+lgm‖f‖∞ and
‖r‖∞ ≤ ‖r‖1 ≤ 3

4
2m+n‖f‖1 ≤ 2m+n+lgm‖f‖∞.

Combine these inequalities with the equation ‖f‖∞ =
2mρ‖F‖∞ and the inequalities ‖Q‖∞ ≤ ‖q‖∞ and ‖R‖∞ ≤
‖r‖∞ to deduce the claimed bounds. �

We will estimate by induction the cost of inverting the
matrix T , by using Eq. (6) recursively. The proof of the
following lemma could be found in the Appendix.

Lemma 10. Let n+ 1 = 2k for a positive integer k and let
T be a lower triangular Toeplitz (n+1)× (n+1) matrix of.
Eq. (5), having ones on the diagonal. Let its subdiagonal
entries be complex numbers of magnitude at most 2τ known
up to a precision 2−λ. Let 2ρ be an upper bounds on the
magnitude of the roots of the univariate polynomial t(x)
associated with T . Write T−1 = (T−1

i,j)
n
i,j=0. Then

max
i,j

|T−1
i,j | ≤ 2(ρ+1)n+lg(n)+1 .

Furthermore, to compute the entries of T−1 up to the pre-

cision of ℓ bits, that is to compute a matrix T̃−1 = (T̃−1
i,j)

n
i,j=0

such that maxi,j |T−1
i,j − T̃−1

i,j | ≤ 2−ℓ, it is sufficient to know
the entries of T up to the precision of
ℓ+ 10τ lgn+ 70 lg2 n+ 8(ρ+ 1)n lgn

or O(ℓ+ (τ + lg n+ nρ) lg n) = Õ(ℓ+ τ + nρ) bits.

The computation of T̃−1 costs OB(n lg2(n)µ(ℓ+(τ+lgn+

nρ) lg n)) or ÕB(nℓ+ nτ + n2ρ).

As usual in estimating the complexity of approximate divi-
sion we assume that m = 2n to simplify our presentation.
Recall that s(x) = t(x) q(x) + r(x).

Theorem 11. Assume s, t ∈ (C[x] of degree at most 2n and
n, such that ‖s‖∞ ≤ 2τ1 , ‖t‖∞ ≤ 2τ2 , and 2ρ is an upper
bound on the magnitude of the coefficients of t(x). Assume
that we know the coefficients of s and t up to a precision
λ, that is that the input includes two polynomials s̃ and
t̃ such that ‖s − s̃‖∞ ≤ 2−λ and ‖t − t̃‖∞ ≤ 2−λ, where
λ = ℓ + τ1 + 12τ2 lg n + 80 lg2 n + 10(ρ + 1)n lg n + 30 or
λ = O(ℓ+ τ1 + τ2 lgn+ n ρ lgn). Let q denote the quotient
and let r denote remainder of the division of the polynomials
s by t, that is s = t · q + r where deg r < deg t.
Then we can compute in OB(n lg2(n)µ(ℓ + τ1 + (τ2 +

nρ) lg n)) or ÕB(nℓ + nτ1 + nτ2 + n2ρ) two polynomials q̃
and r̃ such that ‖q− q̃‖∞ ≤ 2−ℓ and ‖r− r̃‖∞ ≤ 2−ℓ, ‖q‖∞ ≤
2n+lgn+1+nρ+τ1 and ‖r‖∞ ≤ 23n+lg n+1+nρ+τ1 .

Proof: We compute the coefficients of q(x) using Eq. (5),
ie q = T−1 s. Each coefficient of the polynomial q comes as
the inner product of two vectors, ie qi =

∑n
j=0 T

−1
i,j sj .

From Lemma 10 we know that lg|T−1
i,j | ≤ n(ρ+1)+ lgn+

1 = N and lg |T−1
i,j − T̃−1

i,j | ≤ −λ + l2 for l2 = 10τ2 lg n +

70 lg2 n+ 8(ρ+ 1)n lg n.
For the coefficients of the polynomials s =

∑2n
j=0 sjx

j

and t =
∑n

j=0 tjx
j , we have assumed the following bounds,

lg|sj | ≤ τ1, lg |sj − s̃j | ≤ −λ, lg|tj | ≤ τ2, lg |tj − t̃j | ≤ −λ,

lg|T−1
i,j sj | ≤ τ1 +N , and lg|T−1

i,j sj − T̃−1
i,j s̃j | ≤ −λ + ℓ2 + τ1

for all i and j. Therefore

lg‖q − q̃‖∞ ≤ lg|
∑

j

T−1
i,j sj −

∑

j

T̃−1
i,j s̃j | ≤ −λ+ ℓ2 + τ1 + lg n

≤ −λ+ 10τ2 lg n+ 70 lg2 n+ 8(ρ+ 1)n lgn+ τ1 + lgn .

To compute the remainder we apply the formula r(x) =
s(x)−t(x)q(x). It involves an approximate polynomial multi-
plication and a subtraction. For the former we use Lemma 5
and obtain the inequality lg‖t q− t̃q̃‖∞ ≤ −λ+2τ2+6 lg n+
26 + ℓ2 + 2N .

Let us also cover the impact of the subtraction. After
some calculations and simplifications that make the bounds
less scary (albeit less accurate wrt the constant involved),
we obtain

lg‖r − r̃‖∞ ≤ −λ + τ1 + 2τ2 + 6 lgn + 26 + ℓ2 + 2N

≤ −λ + τ1 + 2τ2 + 6 lgn + 26 + 10τ2 lgn

+ 70 lg
2
n + 8(ρ + 1)n lgn + 2(n(ρ + 1) + lgn + 1)

≤ −λ + τ1 + 12τ2 lgn + 80 lg
2
n + 10(ρ + 1)n lgn + 30 .

By using Lemma 9 we bound the norms of the quotient
and the remainder as follows: lg‖r‖∞ ≤ 3n+ lgn+1+nρ+
τ1 and lg‖q‖∞ ≤ n+ lg n+ 1 + nρ+ τ1 .

The maximum number of bits that we need to compute
with is ℓ+ τ1 + 12τ2 lg n+ 80 lg2 n+ 10(ρ+ 1)n lg n+ 30 or
O(ℓ+ τ1 + τ2 lg n+ lg2 n+ nρ lg n).

The complexity of computing T̃−1
i,j is OB(n lg2(n)µ(ℓ +

τ1 + τ2 lg n+ lg2 n+ n ρ lgn)) or ÕB(nℓ+ nτ1 + nτ2 + n2ρ).
According to Lemma 5 the complexity of computing the

product t̃ q̃ is OB(n lg(n)µ(ℓ+ τ1+ τ2 lg n+lg2 n+nρ lgn))

or ÕB(nℓ+ nτ1 + nτ2 + n2ρ). �

Remark 12. We can eliminate the dependence of the bounds
of Theorem 11 on τ2 by applying Vieta’s formulae and the
following inequality, |tk| ≤

(
n
k

)
(2ρ)k ≤ 22n+nρ, where tk is

the k-th coefficient of t(x). In this way, after some further
simplifications, the required precision is ℓ + τ1 + 150(ρ +
1)n lg n and the complexity bound becomesOB(n lg2(n)µ(ℓ+

τ1 + ρ lgn)) or ÕB(nℓ+ nτ1 + n2ρ).

4. MULTIPOINT POLYNOMIAL EVALUA-

TION

Problem 1. Multipoint polynomial evaluation. Given
the coefficients of a polynomial p(x) =

∑n−1
i=0 pix

i and a set
of knots t0, . . . , tn−1, compute the values r0 = p(t0), . . . , rn−1 =
p(tn−1) or equivalently compute the vector r = V p where
r = (ri)

n−1
i=0 , p = (pi)

n−1
i=0 , and V = (xj

i)
n−1
i,j=0.

In the case where the knots ti = ωi are the n-th roots of 1
for all i, ω = exp(2π

√
−1)/n, and V = Ω = (ωij)n−1

i,j=0, Prob-
lem 1 turns into the problem of the DFT(v) computation.

Solution:. The Moenck–Borodin algorithm of [15] solves
Problem 1 in O(M(n) log n) ops for M(n) in (2.4.1), (2.4.2)
based on the two following simple observations.

Fact 13. p(a) = p(x) mod (x − a) for any polynomial p(x)
and any scalar a.

Fact 14. w(x) mod p(x) = (w(x) mod (u(x)p(x))) mod p(x)
for any triple of polynomials u(x), p(x), and w(x).

Algorithm 4: the Moenck–Borodin algorithm for
multipoint polynomial evaluation.

initialization:. Write k = ⌈log2 n⌉, m
(0)
j = x − xj , j =

0, 1, . . . , n − 1; m
(0)
j = 1 for j = n, . . . , 2k − 1 (that is, pad

the set of the moduli m
(0)
j = x−xj with ones, to make up a

total of 2k moduli). Write r
(k)
0 = p(x).

Computation:

1. Fan-in process (see Figure 1). Compute recursively the

“supermoduli”m
(h+1)
j = m

(h)
2j m

(h)
2j+1, j = 0, 1, . . . , 2k−h−

1; h = 0, 1, . . . , k − 2.

2. Fan-out process (see Figure 2). Compute recursively

the remainders r
(h)
j = r

(h+1)

⌊j/2⌋ mod m
(h)
j ,

j = 0, 1, . . . ,min{n, ⌈n/2h⌉−1}; h = k−1, k−2, . . . , 0.

Output:. p(xi) = r
(0)
i , i = 0, 1, . . . , n− 1.

Let us include a brief outline of the analysis of the algo-
rithm (cf. [15]). To prove its correctness, first apply Fact 14

recursively to obtain that r
(h)
j = v(x) mod m

(h)
j for all j and

h. Now, correctness of the output p(xi) = r
(0)
i follows from

Fact 13.
To estimate the computational cost of the algorithm, rep-

resent its two stages by the same binary tree (see Figures 3.1

and 3.2), whose nodes are the“supermoduli”m
(h)
j at the fan-

in stage 1, but turn into the remainders r
(h)
j at the fan-out

stage 2.
At each level h of the tree, the algorithm computes 2k−h

products of pairs of polynomials of degree 2h at stage 1 and
2k−h remainders of the division of polynomials of degree of
at most 2h+1 by“supermoduli” of degree 2h. Each time mul-
tiplication/division uses O(M(2h)) ops for M(n) in (2.4.1),
(2.4.2). So we use O(2k−hM(2h)) ops at the h-th level and

O(
∑k−1

h=0 2
k−hM(2h)) = O(M(2k)k) ops at all levels. Re-

call that n ≤ 2k < 2n and obtain the claimed bound of
O(M(n) log n) ops. �

Remark 15. The fan-in computation at stage 1 depends
only on the set {t0, . . . , tn−1} and can be viewed as (cost-
free) preprocessing if the knot set is fixed and only the poly-
nomial p(x) varies. Similar observations hold for the solution
of many other problems in this chapter.

Remark 16. Problem 1 and its solution algorithms are im-
mediately extended to the case where we have m points
t0, . . . , tm−1 for m > n or m < n. The solution requires
O(E(l)r/l) ops provided l = min{m, n}, r = max{m,n},
and E(l) ops are sufficient for the solution where n = l.
E(l) = O(M(l) log l) for a general set {ti} but decreases to

O(M(l)), where ti = at2i + bti + c for fixed scalars a, b, c,
and t and for all i. This also leads to a similar improvement
of the estimates for the Boolean complexity [1].

4.1 Boolean complexity estimates
In the following two lemmata we present the bit complex-

ity of the fan-in and the fan-out process. These results are
of independent interest. We do not estimate the accuracy
needed and the bit complexity bound of the algorithm for
multipoint evaluation because in Lemma 21 we cover a more
general algorithm. Multipoint evaluation is its special case.

Lemma 17 (Complexity of Fan-in process). Assume that
we are given n complex numbers xi known up to a pre-
cision λ = ℓ + (4n − 4)τ + 32n − (lgn + 5)2 − 7, that is
|xi − x̃i| ≤ 2−λ, and that |xi| ≤ 2τ for a positive integer τ .

At the cost ÕB(n lg2 nµ(ℓ + nτ + lg n)) the Fan-in process
of the Moenck–Borodin algorithm approximates the “super-

moduli” m̃
(i)
j within the bounds ‖m(i)

j − m̃
(i)
j ‖∞ ≤ 2−ℓ for

all i and j. Moreover, lg‖m(i)
j ‖∞ ≤ nτ + 8n− 2 lgn− 8 for

all i and j.

Proof: Assume that n = 2k. The proof is by induction on

k. Write m
(0)
i = x− xi and m̃

(0)
i = x− x̃i. Wlog we provide

the estimates just in the case where j = 0.
Consider the case where k = 1. Apply Lemma 5 for A =

m
(0)
0 and B = m

(0)
1 . Verify that lg‖m(1)

0 ‖∞ ≤ 2τ ≤ 2τ + 6

and lg‖m(1)
0 − m̃

(1)
0 ‖∞ ≤ −λ + 4τ + 14.2. This proves the

induction basis.
Now assume that the claimed bounds hold for k−1, that is

deg(m
(k−1)
i) = 2k−1, lg‖m(k−1)

i ‖∞ ≤ 2k−1τ +2k+2 − 2k− 6,

and lg‖m(k−1)
i −m̃

(k−1)
i ‖∞ ≤ −λ+(2k+1−4)τ +2k+4− (k+

4)2 − 7 for i ∈ {0, 1}.
Since m

(k)
0 = m

(k−1)
0 m

(k−1)
1 , it follows that deg(m

(k)
0) =

2k. By applying Lemma 5 we deduce that

lg‖m(k)
i ‖∞ = lg‖m(k−1)

0 m
(k−1)
1 ‖∞ ≤ 2kτ + 2k+3 − 2k − 8

and

lg‖m(k)
0 − m̃

(k)
0 ‖∞ = lg‖m(k−1)

0 m
(k−1)
1 − m̃

(k−1)
0 m̃

(k−1)
1 ‖∞

≤ −λ+ (2k+2 − 4)τ + 2k+5 − (k + 5)2 − 7

as claimed.
To estimate the overall complexity, note that at the hth

level of the tree we perform n/2h multiplications of polyno-
mials of degrees at most 2h−1 for h = 2, . . . , k − 1. We can
assume that we perform all the computation with precision
O(ℓ+ nτ + lgn), and so the overall cost of the algorithm is∑

k
n
2k

ÕB(2
k−1 lg 2k−1µ(ℓ + nτ + lg n)) = ÕB(n lg2 nµ(ℓ +

nτ + lgn)). �

Lemma 18 (Complexity of Fan-out process). Let v(x) ∈
(C[x] of degree n − 1 and ‖v‖∞ ≤ 2τ1 , and let ṽ be a λ-

approximation. Let m
(k)
j be the supermoduli of the fan-in

process and m̃
(k)
j their λ-approximations.

We can compute an ℓ-approximation of the fan-out process
in OB(n lg2 nµ(ℓ+ τ1 lg n+ ρ n lgn)) provided that λ = ℓ+
2τ1 lgn+ 300(ρ + 1)n lg n.

Proof: We keep assuming for simplicity that n = 2k and
proceed as in the proof of Lemma 17.

Recall that |xi| ≤ 2ρ for all the subscripts i, and so 2ρ

bounds the roots of all polynomials m
(k)
j . We can prove

by induction, by using the bounds of Theorem 11 and the
simplifications of Remark 12, that the precision of λ = ℓ +
2τ1 lg n+ 300(ρ + 1)n lgn bits is sufficient.
At the hth step of the algorithm, for each h, we perform 2h

approximate polynomial divisions of polynomials of degree
n
2h

using Theorem 11. We assume performing all the oper-
ations with the maximum precision, and bound the overall
complexity by

lgn∑

h=0

2h OB(
n

2k
(lg

n

2h
)2 µ(ℓ+ τ1 lgn+ ρ n lgn))

= OB(n lg2 nµ(ℓ+ τ1 lgn+ ρn lg n))

�

5. BOUNDS ON THE COMPLEXITY OF BA-

SIC ALGORITHMS

Lemma 19 (Multiplication of m polynomials). Let Pj ∈
(C[x] of degree n and ‖Pj‖∞ ≤ 2τ . Let P̃j be λ-approximation
of Pj with λ = ℓ + (4m − 4)τ + (4m + 2 lgm − 4) lg n +

32m, where 1 ≤ j ≤ m. We can compute
∏

j P̃j such that

‖∏j Pj −∏j P̃j‖∞ ≤ 2−ℓ in OB(mn lgm lg(mn)µ(λ)) or

ÕB(mn (ℓ + mτ)). Moreover, lg‖∏j Pj‖∞ ≤ mτ + (m −
1) lgn+ 4m − lgm− 4.

Proof: The algorithm is similar to the Fan-in process of

Moenck-Borodin algorithm. Let p
(0)
j = Pj and compute re-

cursively the polynomials p
(h+1)
j = p

(h)
2j p

(h)
2j+1, for 0 ≤ j ≤

2k−h, h = 0, . . . , k − 2. Let m = 2h. We prove the bounds
on the infinite norm and the approximation using induction
on h.
For h = 1, we compute the polynomials p

(1)
j = p

(0)
2j p

(0)
2j+1.

Wlog assume that j = 0. Then lg‖p(0)j ‖∞ ≤ τ and lg‖p(0)j −
p̃
(0)
j ‖∞ ≤ −λ. Apply Lemma 5 (and Remark 6) for K = n

and τ1 = τ2 = τ to deduce that

lg‖p(1)0 ‖∞ ≤ 2τ + lg n+ 3 ,

which agrees with our formula, and

lg‖p(1)j −p̃
(1)
j ‖∞ ≤ −λ+4τ+5.1 lg n+4 ≤ −λ+4τ+6 lgn+64 ,

where the right hand-side represents the claimed bound for
k = 1.
Assume the claimed bounds for h− 1, that is

lg‖p(h−1)
j ‖∞ ≤ 2h−1τ +(2h−1−1) lg n+4 ·2h−1− lg 2h−1−4

and lg‖p(h−1)
j − p̃

(h−1)
j ‖∞ ≤ −λ + (4 · 2h−1 − 4)τ + (4 ·

2h−1 + 2 lg 2h−1 − 4) lg n + 32 · 2h−1 for j = 0, 1. By ap-
plying Lemma 5 for 2lg(K) ≤ lg(n), deduce the following
bounds,

lg‖p(h)j ‖∞ ≤ 2hτ + (2h − 1) lgn+ 4 · 2h − lg 2h − 4,

which agrees with the claimed norm bound, and lg‖p(h)j −
p̃
(h)
j ‖∞ ≤ −λ+ (4 · 2h − 4)τ + (4 · 2h + 2 lg 2h − 4) lg n+ 24 ·

2h+2h−12 which is smaller than the claimed bound on the
precision.
To estimate the overall complexity note that at each level,

h, of the tree we have to perform m/2h multiplications of

polynomials of degrees at most 2h−1 n. We can assume
that we perform all the computations with the precision
λ+(4m− 4)τ +(4m+2 lgm− 4) lg n+32m, or O(ℓ+mτ +
m lg n), and so the overall Boolean cost of performing the al-
gorithm is

∑
h

m
2h

OB(2
h−1 n lg (2h−1 n)µ(ℓ+nτ+m lgn)) =

OB(mn lgm lg(mn)µ(ℓ + nτ + m lgn)) , which concludes
the proof. �

If the degrees of Pj vary as j varies, then we can apply a
more pedantic analysis based on Huffman trees, see [11].

The problem of computing (approximately) the sum of
rational functions reduces to the problem on multiplying
polynomials, which admits the same asymptotic complex-
ity bounds. To estimate the overhead constants, we should
also take into account the polynomial additions involved.

We have the following lemma.

Lemma 20 (Sum of rational functions). Suppose Pj ∈
(C[x] has degree n, Qj ∈ (C[x] has a smaller degree, ‖Pj‖∞ ≤
2τ2 , and ‖Qj‖∞ ≤ 2τ1 .

Assume λ-approximations of Pj by P̃j and of Qj by Q̃j

where λ = ℓ+ τ1 +(4m− 4)τ2 +(5m+2 lgm− 4) lg n+32m
and 1 ≤ j ≤ m.

Let Q
P

=
∑

j

Qj

Pj
. We can compute an ℓ-approximation of

Q/P , in OB(mn lgm lg(mn)µ(λ)) or ÕB(mn (ℓ + +τ1 +
mτ2)). Moreover, lg‖Q‖∞ ≤ τ2 + (m− 1)(τ2 + lgn) + 5m−
lgm− 4 and lg‖P‖∞ ≤ mτ2 + (m− 1) lgn+4m− lgm− 4.

Lemma 21 (Modular representation). Let F ∈ (C[x] of
degree 2mn and ‖F‖∞ ≤ 2τ1 . Let Pj ∈ (C[x] of degree
n, for 1 ≤ j ≤ m. Moreover, 2ρ be an upper bound on
the magnitude of the roots of all Pj , for all j. Assume λ-

approximations of F by F̃ and of Pj by P̃j such that ‖F −
F̃‖∞ ≤ 2−λ and ‖Pj − P̃j‖∞ ≤ 2−λ.

Furthermore assume that λ = ℓ + τ1 lgm + 60nm(ρ +
3) lg(mn)+60 lgm lg2(m+n) or λ = ℓ+O(τ1 lgm+mnρ).

Then we can compute an ℓ-approximation F̃j of Fj = F

mod Pj such that ‖Fj − F̃j‖∞ ≤ 2−ℓ in

OB(mn lg n lg2(m+ n)µ(ℓ+ τ1 lgm+mnρ))

or ÕB(mn (ℓ+ τ1 +mnρ)).
Moreover, lg‖Fj‖∞ ≤ τ1 + (ρ+ 1)mn+ n+ lg(mn).

Proof: First we perform the Fan-in process with polyno-
mials Pj using the algorithm of Lemma 19. Assume that
‖Pj‖∞ ≤ 2τ2 and that we are given λ1-approximations. Fol-

lowing Lemma 19 we compute all the supermoduli, P
(i)
j so

that

lg‖P (i)
j −P̃

(i)
j ‖∞ ≤ −λ1+(4m−4)τ2+(4m+2 lgm−4) lgn+32m .

Remark 12 implies that τ2 ≤ 2n + nρ, and so lg‖P (i)
j −

P̃
(i)
j ‖∞ ≤ −λ+(4m−4)(2n+lgn+nρ)+2 lgm lgn+32m =

−λ+O(mnρ) .
For computing ℓ-approximations of Fj = F mod Pj we

mimic the procedure of the Fan-out process. This means
that we apply repeatedly Theorem 11, which we can refine
by following Remark 12. The bounds accumulate at each
step, and so

lg‖Fj‖∞ ≤ τ1 +
∑

h 3n 2h + n+ h+ 2hnρ+ 1
≤ (mn− n)(ρ+ 3) +m(m+ n).

We assume that we are given λ2-approximation of F and
all the supermoduli. For the required precision we have

lg‖Fj − F̃j‖∞ ≤ −λ2 +
∑

h

25(ρ + 2)(h + lgn)n2h + 80(h + lg n)2 + τ1 + 30

≤ −λ2 + τ1 lgm + 25nm(ρ + 2) lg(mn) + 40 lgm lg2(m + n).

To ensure an ℓ-approximation for Fj we require λ = ℓ +
τ1 lgm + 60nm(ρ + 3) lg(mn) + 60 lgm lg2(m + n) = ℓ +
O(τ1 lgm + mnρ) approximations of the input to ensure
the validity of both the Fan-in and Fan-out process.
We assume that we perform all the computations with

maximum accuracy. The complexity of computing the super-

moduli isOB(mn lgm lg(mn)µ(ℓ+τ1 lgm+mnρ)) or ÕB(mn (ℓ+
τ1 +mnρ)).
For the complexity of the Fan-out process we proceed as

follows. At each step, h, of the algorithm we perform 2h

approximate polynomial divisions of polynomials of degree
mn
2h

using Theorem 11. The overall complexity is∑lgm
h=0 2

h OB(mn
2h

(lg mn
2h

)2 µ(ℓ+ τ1 lgm+mnρ))

= OB(mn lgn lg2(m+n)µ(ℓ+τ1 lgm+mnρ)) or ÕB(mn (ℓ+
τ1 +mnρ)).

�

6. LAGRANGE INTERPOLATION

Problem 2. Lagrange polynomial interpolation. Given
the knot set (or vector) {xi}n−1

i=0 of n distinct points x0, . . . , xn−1

and the set (or vector) of values {yi}n−1
i=0 , compute a set (or

vector) {aj}n−1
j=0 such that

∑n−1
j=0 ajx

j
i = yi, i = 0, 1, . . . , n−

1, that is, recover the coefficients of a polynomial A(X) =∑n−1
j=0 ajX

j from its values at n distinct points x0, . . . , xn−1.

We follow the approach presented in [16, Section 3.3], to
which we also refer for a detailed presentation.

Lemma 22. Let |xi| ≤ 2τ1 , |yi| ≤ 2τ2 , and∆i(x) = minj |xi−
xj |, for all 0 ≤ i ≤ n−1. Assume λ-approximations of xi and
yi, where λ = ℓ+68n(τ1+3) lg n+4nτ2−6 lg

∏
i ∆i(x)+50n+

60 lg3 n+20 or λ = ℓ+O(nτ1 lg n+nτ2−lg
∏

i ∆i(x)+lg3 n).
Then we can compute an ℓ-approximation of the Lagrange

polynomial interpolation in OB(n lg2 nµ(λ)) or ÕB(n
2τ1 +

n2τ2 − n lg
∏

i ∆i(x))).

Proof: The input is given as λ-approximations, where λ is
to be specified in the sequel. We track the loss of accuracy
at each step of the algorithm.

1. Compute B(X) =
∏

i(X − xi) = Xn +
∑n−1

k=0 bkX
k.

For this task we apply Lemma 17. In this case the infinite
norm of B is bounded as follows, lg‖B‖∞ ≤ nτ1 + 8n −
2 lg n − 4, and the computed approximation, B̃, is such

that lg‖B − B̃‖∞ ≤ −λ0 + (4n − 4)τ1 + 16n + 20. As
by-product we can compute the “supermoduli”

∏
j(x−xj)

and then reuse them at stage L5.

2. Compute B′(X).

This operation increases the norm and the precision bounds
by a factor of n in the worst case. That is lg‖B′‖∞ ≤
nτ1 + 8n − lgn − 4 and lg ‖B′ − B̃′‖∞ ≤ −λ0 + (4n −
4)τ1 + 16n+ lgn+ 20 = −λ1.

3. Evaluate B′ at all points xi.

Perform this task using Lemma 21. This lemma implies
that lg|B′(xi)| ≤ (n − 1)(τ1 + 3) + n(n + 1). However,
in this special case we can decrease the bound as follows,
|B′(xi)| ≤

∑
j‖B′‖∞ |xi|n−1 ≤∑j 2

nτ1+8n−lg n−4 2(n−1)τ1 ≤
2(2n−1)τ1+8n−4 .

We achieve the accuracy lg|B′(xi)−B̃′(x̃i)| ≤ −λ1+(nτ1+
n− lgn− 1) lgn+ 60n(τ1 + 3) lgn+ 60 lg3 n = −λ2 .

4. Consider the rational functionsAi(X) =
Ai,0(X)

Ai,1(X)
= yi/B

′(xi)
(X−xi)

.

Deduce that lg ‖Ai,1‖∞ ≤ τ1, and so the approximation
bound matches that of xi.

To compute the relevant quantities of the numerator(s) we
need a lower bound for B′(xi), for all i. We notice that
B′(X) =

∑n
i=1

∏
j 6=i(X − xj). Thus B′(xi) =

∏
j 6=i(xi −

xj) and so |B′(xi)| ≥
∏

j 6=i ∆j(x), and lg‖Ai,0‖∞ ≤ τ2 −
lg
∏

j 6=i ∆j(x) ≤ τ2 − lg
∏

j ∆j(x).

For computing an approximation of the denominator we
rely on (complex) interval arithmetic. That is |Ai,0 −
Ãi,0| ≤ wid([Ai,0]) = wid([yi/B

′(xi)]).

We compute wid([yi/B
′(xi)]) based on Prop. 3, and so

lg wid([1/B′(xi)]) ≤ −λ2 − 4 lg
∏

j ∆j(x) + 2(2n − 1)τ2 +
2n− 8 + 3 = −λ3. Finally

wid([yi/B
′(xi)]) ≤ 2τ2 wid([1/B′(xi)]) + 2− lg

∏
j ∆j(x)

wid([yi])

≤ 2−λ3+τ2−lg
∏

j ∆j(x) ≤ 2−λ4

5. Compute the sum of the rational functions ie A0(X)
A1(X)

=
∑

i

Ai,0(X)

Ai,1(X)
.

Using Lemma 20 we get lg‖A0‖∞ ≤ τ2−lg
∏

j ∆j(x)+(n−
1)τ1 + 4n− lgn− 4 and lg‖A1‖∞ ≤ nτ1 + 4n− lgn− 4.

For the approximation we have that lg‖A0 − Ã0‖∞ ≤
−λ4+τ2− lg

∏
j ∆j(x)+(4n−4)τ1+32n. If we substitute

the various values for λi we have lg‖A0 − Ã0‖∞ ≤ −λ +
68n(τ1+3) lg n+4nτ2−6 lg

∏
j ∆j(x)+50n+60 lg3 n+20.

The numerator, A0, is the required polynomial A(X). To
achieve an ℓ-approximation of A(x) we assume that we per-
form all the computations using the maximum precision,
that is ℓ + 68n(τ1 + 3) lg n + 4nτ2 − 6 lg

∏
j ∆j(x) + 50n +

60 lg3 n+20 or λ = ℓ+O(nτ1 lgn+nτ2−lg
∏

j ∆j(x)+lg3 n).

The overall complexity is OB(n lg2 nµ(λ)) or ÕB(n2τ1 +
n2τ2 − n lg

∏
j ∆j(x))). �

Remark 23 (The hidden costs). In the previous lemma
we have assumed bounds on the minimum distance between
the xi’s, which we denote by ∆i(x). The complexity results
depend on this quantity, as it is very important in the com-
putation of the number of bits that we need to certify the
result to a desired accuracy. It is reasonable to assume that
such bounds are part of the input.

However, how do we handle the case where such bounds
are not known? As the precision required for the computa-
tions depends on these bounds we should be able to compute
them, given the points xi.

We consider the numbers xi ∈ (C as points on IR2 and we
compute their Voronoi diagram. This costs O(n lg n) oper-
ations, e.g. [18]. Then for each point xi we find its closest

in O(lgn) operations. Therefore, we can compute the quan-
tities ∆i(x) in O(n lg n) operations. But what about the
required precision? What are the required primitive opera-
tions for these computations? We only need to evaluate the
signs of 3 × 3 determinants. The precision of Lemma 22 is
sufficient for these operations.

7. SOLUTION OF A CAUCHY LINEAR SYS-

TEM OF EQUATIONS

7.1 Multiplication of a Cauchy matrix by a vec-
tor

We consider the problem of computing the matrix vector
product Cv, where C = C(s, t) = (1

si−tj
)n−1
i,j is a Cauchy

matrix and v = (vi)
n−1
i=0 .

We refer the reader to [16, Problem 3.6.1] for further de-
tails of the algorithm.
Let |si| ≤ 2τ1 , |ti| ≤ 2τ2 , |vi| ≤ 2τ3 , and ∆i(t) = minj |ti−

tj |, for all i.
The following quantities are also useful ∆j(s, t) = mini|sj−

ti| and ∆(s, t) = minj ∆j(s, t).

Lemma 24. If the input is given as a λ-approximation,
where λ = ℓ+90n(τ1+3) lgn+32(n−1)τ2 lgn+30τ3 lg n−
35 − 24 lg∆(s, t) − 4 lg

∏
k ∆k(t), then we can compute an

ℓ-approximation of the vector Cv in OB(n lg2 nµ(λ)) or

ÕB(n
2τ1 + n2τ2 + nτ3 − n lg ∆(s, t)− n lg

∏
k ∆k(t)).

Proof: The input is given as λ-approximations, where λ is
to be specified in the sequel. We track the loss of accuracy
at each step of the algorithm.

1. Consider the rational functions vk
x−tk

= Pk

Qk
.

For the numerators it holds deg(Pk) = 0, ‖Pk‖∞ ≤ 2τ3 ,

and lg‖Pk − P̃k‖∞ ≤ −λ. For the denominators it holds

deg(Qk) = 1, ‖Qk‖∞ ≤ 2τ2 , and lg‖Qk − P̃k‖∞ ≤ −λ.

2. Compute the sum P
Q

=
∑

k
Pk

Qk
. For this computation we

rely on Lemma 20.

For the numerator of the result we have deg(P) ≤ n − 1,

lg‖P‖∞ ≤ τ3+(n−1)τ2+5n− lg n−4, and lg‖P − P̃‖∞ ≤
−λ+ τ3 + (4n− 4)τ2 + 32n = −λ1.

For the denominator of the result we have deg(Q) ≤ n,

lg‖Q‖∞ ≤ nτ2 + 4n − lgn − 4, and lg‖Q − Q̃‖∞ ≤ −λ +
τ3 + (4n− 4)τ2 + 32n = −λ1.

3. Compute P (si) and Q(si) for all i.

For this multipoint evaluation we use Lemma 21 (with
m = n, n = 1, τ1 = lg‖P‖∞, ρ = τ1).

We have lg|P (si)| ≤ (τ1 + 1)n + (n − 1)τ2 + τ3 + 4n − 4

and lg|P (si)− P̃ (s̃i)| ≤ −λ1+(τ3+(n−1)τ2+4n− lg n−
4) lg n+ 60n(τ1 + 3) lg n+ 60 lg3 n = −λ2.

Similar bounds hold for Q(si).

4. Compute the fractions P (si)
Q(si)

. These are the elements of

the result of the matrix-vector multiplication Cv.

For this task we need to perform n (complex) divisions.
We use complex interval arithmetic to compute the loss of
precision, as we did for deriving the bounds for Lagrange

interpolation. To compute a lower bound for |Q(si)| we
use Lemma 2, and so

|Q(si)| ≥ (∆i(s, t))
6 2−6 lg ‖Q‖∞−6 lg n 2lg

∏
k ∆k(t)−6

≥ (∆i(s, t))
6 2lg

∏
k ∆k(t) 2−6nτ2−24n+20

≥ 2−ν

Let |Q(si)| ≤ 2T , where T = nτ1 + nτ + 2 + 4n − 4.
Using Prop. 3, wid[1/Q(si)] ≤ 24ν+2T+3 2−λ2 ≤ 2−λ3 and
wid[P (si)/Q(si)] ≤ 2 |P (si)| 2−λ3+2 |1/Q(si)| 2−λ2 ≤ 2−λ3+T+2

which is also the accuracy of the result.

Putting together the various values of λi, ν, and T , we
achieve an ℓ approximation by choosing λ = ℓ + 90n(τ1 +
3) lg n + 32(n − 1)τ2 lg n + 30τ3 lg n − 35 − 24 lg∆(s, t) −
4 lg

∏
k ∆k(t).

We perform all the computations with maximum required
accuracy, and so the overall complexity is OB(n lg2 nµ(λ))

or ÕB(n2τ1 + n2τ2 + nτ3 − n lg∆(s, t)− n lg
∏

k ∆k(t)). �

7.2 Trummer’s problem
This is the important special case where s = t and the

diagonal entries of the Cauchy matrix are set to zero. In
this case we compute the matrix vector product by using
the following formula,

(C v)n−1
i=0 =

(
2P ′(si)− vi Q

′′

(si)

2Q′(si)

)n−1

i=0

=

(
A0,i

A1,i

)n−1

i=0

(9)

We refer the reader to [16, Problem 3.6.3] for further details.

Corollary 25. Using the notation of Lemma 24, we can
solve Trummer’s problem in OB(n lg2 nµ(λ)), where λ =
ℓ+ 70(τ1 + 3)n lgn+ 4τ3 lg n− 4 lg

∏
j ∆(s).

Proof: First we compute bounds for the numerator of Eq. (9).
Following the proof of Lemma 24 we have lg|P ′(si)| ≤ (τ1 +

1)n+ (n− 1)τ2 + τ3 + 4n− 4 + lg n and lg|P (si)− P̃ (s̃i)| ≤
−λ2+log n. Similarly for lg|Q′′(si)| ≤ (τ1+1)n+(n−1)τ2+

τ3 +4n− 4+ 2 lg n and lg|Q′′(si)− Q̃′′(s̃i)| ≤ −λ2 + 2 log n.
For the first derivative we add to the logarithm of the norm a
term lg n and for the second a term 2 lg n. Moreover, τ1 = τ2,
as s = t.

Taking into account that |vi| ≤ 2τ3 we deduce that

lg|A0,i| ≤ (τ1 + 1)n+ (n− 1)τ2 + 2τ3 + 4n− 4 + 2 lgn

and lg|A0,i − Ã0,i| ≤ −λ2 + τ3 + 2 log n+ 2 .
Regarding the denominator we have that lg|Q′(si)| ≤ (τ1+

1)n+(n−1)τ2+τ3+4n−4+lg n = T . In addition |Q′(si)| =∏
j 6=i|si − sj | ≥

∏
j 6=i ∆j(s) and so |1/A1,i| = |1/2Q′(si)| ≤∏

j 6=i(∆j(s))
−1. Prop. 3 leads to lg wid([1/A1,i]) = lg wid[1/Q′(si)] ≤

−λ2 + lg n− 4 lg
∏

j 6=i ∆j(s)+ 2T +3 where λ2 is defined at

the (C3) step of the proof of Lemma 24.
Putting all the pieces together, we have

wid([
A0,i

A1,i
]) ≤ 2 |A0,i| 2−λ2+lgn−4

∏
j 6=i ∆j(s)+2T+3

+2 |1/A1,i| 2−λ2+τ3+2 log n+2

and after many simplifications and overestimations

lg
∣∣∣A0,i

A1,i
− Ã0,i

Ã1,i

∣∣∣ ≤ wid([
A0,i

A1,i
])

≤ −λ+ 70(τ1 + 3)n lgn+ 4τ3 lg n− 4 lg
∏

j ∆(s).

To achieve an ℓ-approximation we need the input to be a
λ-approximation, where λ = ℓ+70(τ1 +3)n lg n+4τ3 lg n−
4 lg

∏
j ∆(s), and we perform all the computations with this

number of bits. The overall complexity isOB(n lg2 nµ(λ)). �

7.3 Solving a (Cauchy) linear system
We consider the following problem.

Problem 3 (Cauchy linear system of equations). Solve
a non-singular Cauchy linear system of n equations, C(s, t)v =
r for an unknown vector v and 3 given vectors r, s, and t.

Theorem 26. Let |si| ≤ 2τ1 , |ti| ≤ 2τ2 , |ri| ≤ 2τ3 , and
∆i(s) = minj |si − sj |, ∆i(t) = minj |ti − tj |, for all i. Let
also ∆(s, t) = mini,j |si − tj |.
If the input is given λ-approximations, where λ = ℓ +

630(τ1+τ2)n lg n+32τ3 lgn−35−35 lgn lg
∏

∆j(s)−5 lg
∏

∆j(t)−
25 lg∆(s, t), then an ℓ-approximation solution to Problem 3

could be obtained in OB(n lg2 nµ(λ)), or ÕB(nℓ+ n2(τ1 +
τ2) + nτ3 − n lg

∏
∆j(s)− n lg

∏
∆j(t)− n lg ∆(s, t)).

Proof: Following [16, Eq. 3.6.10] then inverse of C(s, t)
could be obtained as follows

C−1(s, t) = diag(ps(ti)/p
′
t(ti))

n−1
i=0 C(t, s) diag(pt(si)/p

′
s(si))

n−1
i=0

= D1 · C(t, s) ·D2
,

(10)
where pt(X) =

∏
i(X − ti) and ps(X) =

∏
i(X − si).

Using this formula we can solve the linear system as

v = C−1(s, t) r = D1 · C(t, s) ·D2 r

We apply Lemma 17 to analyze the computation of the
polynomials ps(x) and pt(x). Then we compute the two di-
agonal matricesD1 andD2 by applying the Moenck–Borodin
algorithm for multipoint evaluation (see Section 4). At first
we perform n ops to compute the vector r1 = D2 r. Then we
use Lemma 24 to obtain the vector r2 = C(t, s)r1. Finally
we multiply the matrix D1 by r2 to obtain the vector v. We
track the loss of precision at each of these three steps.

1. Computation of the matrices D1 and D2.

For this task we need to compute ps(ti), p
′
s(si), pt(si), and

p′t(ti).

It holds lg‖ps‖∞ ≤ nτ1+4n− lg n−4 and lg‖ps− p̃s‖∞ ≤
−λ + (4n − 4)τ1 + 32n, using Lemma 19. By applying
Lemma 21 we get lg‖ps(ti)‖∞ ≤ nτ1 + nτ2 + 5n− 3. and
lg‖ps(ti)−p̃s(t̃i)‖∞ ≤ −λ+(n lgn+4n−4)τ1+60nτ2 lgn−
4 lg n+ 184n lg n+ 32n− (lgn)2.

However, to simplify the calculations we consider the in-
ferior bounds lg‖ps(ti)‖∞ ≤ 7n(τ1 + τ2). and lg‖ps(ti) −
p̃s(t̃i)‖∞ ≤ −λ + 300(τ1 + τ2)n lgn for all the involved
quantities.

We also need lower bounds for |p′t(ti)| and |p′s(si)|.
It holds |p′t(ti)| ≥

∏
j 6=i|ti − tj | ≥

∏
j 6=i ∆j(t). Similarly

|p′s(si)| ≥
∏

j 6=i|si − sj | ≥
∏

j 6=i ∆j(s).

This leads to the bounds:
∣∣∣ ps(ti)p′

t
(ti)

∣∣∣ ≤ 27n(τ1+τ2)−lg
∏

j 6=i ∆j(t)

and
∣∣∣ pt(si)p′

s
(si)

∣∣∣ ≤ 27n(τ1+τ2)−lg
∏

j 6=i ∆j(s).

By combining the previous bounds with the complex in-
terval arithmetic of Prop. 1 we obtain the following esti-
mation for the approximation:

lg

∣∣∣∣∣∣
pt(si)

p′
s
(si)

−
p̃t(si)

p′
s
(si)

∣∣∣∣∣∣
≤ −λ + 315(τ1 + τ2)n lgn − 4 lg

∏

j 6=i

∆j(s)

lg

∣∣∣∣∣∣
ps(ti)

p′
t
(ti)

−
p̃s(ti)

p′
t
(ti)

∣∣∣∣∣∣
≤ −λ + 315(τ1 + τ2)n lgn − 4 lg

∏

j 6=i

∆j(t)

2. r1 = D2 r .

This computation increases the bounds by a factor of τ3.
To be more specific, for the elements of r1, r1,i we have

|r1,i| ≤ 27n(τ1+τ2)+τ3−lg
∏

j 6=i ∆j(s) and

lg|r1,i − r̃i,1| ≤ −λ+316(τ1 + τ2)n lgn+ τ3− 4 lg
∏

j 6=i

∆j(s)

3. r2 = C(t, s) r1.
For this computation we need to apply Lemma 24. We
obtain

lg|r2,i| ≤ 7n(τ1 + τ2) + τ3 − lg
∏

∆j(s) − lg∆(s, t),

lg|r2,i − r̃2,i| ≤ − λ + 616(τ1 + τ2)n lgn + 31τ3 lgn − 35

− 34 lg n lg
∏

∆j(s) − 4 lg
∏

∆j(t) − 24 lg∆(s, t)

4. v = D1 r2.

This computations leads to the following bounds

lg|vi| ≤ 14n(τ1 + τ2) + τ3 − lg
∏

∆j(s)− lg
∏

∆j(t) − lg∆(s, t)

lg|vi − ṽi| ≤ − λ + 630(τ1 + τ2)n lg n + 32τ3 lg n − 35

− 35 lgn lg
∏

∆j(s) − 5 lg
∏

∆j(t) − 25 lg∆(s, t)

To achieve an ℓ-approximation of the output we should re-
quire a λ-approximation of the input, where λ = ℓ+630(τ1+
τ2)n lg n+32τ3 lg n−35−35 lg n lg

∏
∆j(s)−5 lg

∏
∆j(t)−

25 lg∆(s, t).
As in all the previous sections we perform all the computa-

tions using the maximum precision. The overall complexity

of the algorithm is OB(n lg2 nµ(λ)), or ÕB(nℓ + n2(τ1 +
τ2) + nτ3 − n lg

∏
∆j(s)− n lg

∏
∆j(t)− n lg ∆(s, t)). �

Acknowledgments. VP is supported by NSF Grant CCF–1116736

and PSC CUNY Awards 64512–0042 and 65792–0043. ET is partially

supported by GeoLMI (ANR 2011 BS03 011 06), HPAC (ANR ANR-

11-BS02-013) and an FP7 Marie Curie Career Integration Grant.

8. REFERENCES
[1] A. V. Aho, K. Steiglitz, and J. D. Ullman. Evaluating

polynomials at fixed sets of points. SIAM Journal on
Computing, 4(4):533–539, 1975.

[2] D. Bini and V. Pan. Polynomial and Matrix Computations,
volume 1: Fundamental Algorithms. Birkhäuser, Boston, 1994.

[3] D. A. Bini and L. Robol. Solving secular and polynomial
equations: A multiprecision algorithm. Journal of
Computational and Applied Mathematics, 2013. (to appear).

[4] L. Bluestein. A linear filtering approach to the computation of
discrete fourier transform. Audio and Electroacoustics, IEEE
Transactions on, 18(4):451–455, 1970.

[5] J. R. Bunch. Stability of methods for solving toeplitz systems of
equations. SIAM Journal on Scientific and Statistical
Computing, 6(2):349–364, 1985.

[6] J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive
multipole algorithm for particle simulations. SIAM Journal on
Scientific and Statistical Computing, 9(4):669–686, 1988.

[7] I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. The DMM
bound: Multivariate (aggregate) separation bounds. In S. Watt,
editor, ISSAC, pages 243–250, Munich, Germany, July 2010.
ACM.

[8] M. J. Fischer and M. S. Paterson. String-matching and other
products. In R. Karp, editor, Complexity of Computation,
volume 7, pages 113–125. SIAM-AMS Proc., 1974.

[9] A. Gerasoulis, M. D. Grigoriadis, and L. Sun. A fast algorithm
for trummer’s problem. SIAM journal on Scientific and
Statistical Computing, 8(1):s135–s138, 1987.

[10] L. Greengard and V. Rokhlin. A fast algorithm for particle
simulations. Journal of computational physics, 73(2):325–348,
1987.

[11] P. Kirrinnis. Partial fraction decomposition in C〈z〉 and
simultaneous Newton iteration for factorization in C[z].
Journal of Complexity, 14(3):378–444, 1998.

[12] D. E. Knuth. The art of computer programming, volume 2
(2nd ed.): seminumerical algorithms. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[13] A. Kobel and M. Sagraloff. Fast approximate polynomial
multipoint evaluation and applications. arXiv preprint
arXiv:1304.8069, 2013.

[14] M. Mignotte. Mathematics for Computer Algebra.
Springer-Verlag, New York, 1991.

[15] R. Moenck and A. Borodin. Fast modular transforms via
division. In Proc. of the 13th Annual Symposium on Switching
and Automata Theory (SWAT), pages 90–96, Washington, DC,
1972. IEEE Computer Society.

[16] V. Pan. Structured Matrices and Polynomials: Unified
Superfast Algorithms. Birkhäuser / Springer, Boston / New
York, 2001.

[17] V. Y. Pan and E. Tsigaridas. Nearly Optimal Refinement of
Real Roots of a Univariate Polynomial. 2014.

[18] F. P. Preparata and M. I. Shamos. Computational geometry.
texts and monographs in computer science, 1985.

[19] P. Ritzmann. A fast numerical algorithm for the composition of
power series with complex coefficients. TCS, 44:1–16, 1986.

[20] J. Rokne and P. Lancaster. Complex interval arithmetic.
Communications of the ACM, 14(2):111–112, 1971.

[21] A. Schönhage. Asymptotically fast algorithms for the numerical
multiplication and division of polynomials with complex
coeficients. In J. Calmet, editor, EUROCAM, volume 144 of
LNCS, pages 3–15, 1982.

[22] A. Schönhage. The fundamental theorem of algebra in terms of
computational complexity. Manuscript. Univ. of Tübingen,
Germany, 1982.
URL: http://www.iai.uni-bonn.de/˜schoe/fdthmrep.ps.gz.

[23] A. Strzeboński and E. P. Tsigaridas. Univariate real root
isolation in an extension field. In A. Leykin, editor, Proc. 36th
ACM Int’l Symp. on Symbolic & Algebraic Comp. (ISSAC),
pages 321–328, San Jose, CA, USA, June 2011. ACM.

[24] A. Strzeboński and E. P. Tsigaridas. Univariate real root
isolation in presence of logarithms. Arxiv, Jan 2014.

[25] J. van der Hoeven. Fast composition of numeric power series.
Technical Report 2008-09, Université Paris-Sud, Orsay, France,
2008.

[26] C. Yap. Fundamental Problems of Algorithmic Algebra.
Oxford University Press, New York, 2000.

Appendix

Lemma 10. Let n + 1 = 2k for a positive integer k and
let T be a lower triangular Toeplitz (n+ 1)× (n+ 1) matrix
of. Eq. (5), having ones on the diagonal. Let its subdiag-
onal entries be complex numbers of magnitude at most 2τ

known up to a precision 2−λ. Let 2ρ be an upper bounds on
the magnitude of the roots of the univariate polynomial t(x)
associated with T . Write T−1 = (T−1

i,j)
n
i,j=0. Then

max
i,j

|T−1
i,j | ≤ 2(ρ+1)n+lg(n)+1 .

Furthermore, to compute the entries of T−1 up to the pre-

cision of ℓ bits, that is to compute a matrix T̃−1 = (T̃−1
i,j)

n
i,j=0

such that maxi,j |T−1
i,j − T̃−1

i,j | ≤ 2−ℓ, it is sufficient to know
the entries of T up to the precision of

ℓ+10τ lg n+70 lg2 n+8(ρ+1)n lg n or O(ℓ+ (τ + lgn+

nρ) lgn) = Õ(ℓ+ τ + nρ) bits.

The computation of T̃−1 costs OB(n lg2(n)µ(ℓ+(τ+lgn+

nρ) lgn)) or ÕB(nℓ+ nτ + n2ρ).

Proof (of Lemma 10): We will prove the claimed esti-
mates by reducing the inversion to recursive multiplication
of polynomials defined by equation (6) and Lemma 7.

Consider the n+1
2

× n+1
2

Toeplitz matrices T−1
0 and T1 of

equation (6). The Toeplitz matrix T−1
0 is triangular, and

so its first column, p = (pi)
(n−1)/2
i=0 , with p0 = 1, defines

this matrix and the polynomial p(x) =
∑(n−1)/2

i=0 pix
i of de-

gree (n − 1)/2. Likewise the vector t = (tn−i)
n
i=1 (made

up of two overlapping vectors, that is, the reversed first
row, (tn−1, tn−2, . . . , t(n−1)/2) of the matrix T1 and its first

column, (t(n−1)/2, t(n−3)/2, . . . , t0)
T) defines this matrix and

the polynomial t̃(x) =
∑n

i=1 tn−ix
i−1 of degree n − 1. The

first column of the n+1
2

× n+1
2

Toeplitz matrix T1T
−1
0 is

a subvector, v, of dimension (n + 1)/2 of the coefficient
vector of the polynomial product t̃(x)p(x), having degree
3(n − 1)/2. Likewise the first column of the n+1

2
× n+1

2

matrix −T−1
0 T1T

−1
0 is the vector q = −T−1

0 v, which is a
subvector of dimension (n+ 1)/2 of the coefficient vector of
the polynomial product p(x)v(x) of degree n− 1, where the
polynomial v(x) of degree (n − 1)/2 is defined by its coeffi-
cient vector v. In sum the vector q is the coefficient vector
of a polynomial q̃(x) obtained by two successive multipli-
cations of polynomials, each followed by the truncation of
the coefficient vectors. Namely we first compute the poly-
nomial t̃(x)p(x), then truncate it to obtain the polynomial
v(x), then compute the polynomial −p(x)v(x), and finally
truncate it to obtain the polynomial q̃(x).

The truncation can only decrease the degree of a poly-
nomial and the maximum length of its coefficients, and so
we can bound the precision and the cost of computing the
matrix product −T−1

0 T1T
−1
0 by the bounds on the precision

and the cost of computing the polynomial product P 2
0 P1,

estimated in Corollary 8 for P0 = p(x), P1 = t̃(x), and
d = (n− 1)/2.

First we prove the upper bound on the elements of T−1.
Consider the division φi,k(x) = t(x)q(x) + r(x), where t(x)
is the univariate polynomial of degree n associated with
φi,k(x) = sign(T−1

i,1)x
n + sign(T−1

i,k)x
k, 2 ≤ k ≤ n and

1 ≤ i ≤ n. Then ‖φi,k‖∞ ≤ 1 and ‖φi,k‖2 ≤
√
2. By abusing

notation we also write φi,k and q to denote the coefficient
vectors of these polynomials. Using Eq. (5) we can compute

the elements of q from the equation q = T−1φi,k. In this
way |qi| = |sign(T−1

i,1)T
−1
i,1 + sign(T−1

i,k)T
−1
i,k | = |T−1

i,1 |+ |T−1
i,k |.

Using Lemma 9 we obtain the inequality |qi| ≤ ‖q‖∞ ≤
2n+lgn+nρ‖φi,k‖∞, which in turn implies

|T−1
i,k | ≤ |T−1

i,1 |+|T−1
i,k | = |qi| ≤ 2n+lg n+nρ ‖φν,k‖∞ ≤ 2n+lgn+nρ .

(11)
Let P0 and P1 denote the two polynomials defined earlier

in the proof such that maxi,j{|T−1
i,j |} ≤ ||P 2

0 P1||∞.
Then Eq. (11) implies the inequality

lg
∥∥P 2

0 P1

∥∥
∞

≤ n+ lg n+ nρ = N . (12)

Recall that n+1 = 2k by assumption and that the polyno-
mial P 2

0 P1 has degree 2n−2. Write h = ⌈lg(2n−2)⌉. Under
the assumption that the input elements are known up to the

precision of λ bits, we compute a polynomial P̃ 2
0 P1 such that

lg
∥∥∥P 2

0 P1 − P̃ 2
0 P1

∥∥∥
∞

≤

≤ −λ + (2 lgn + 8)τ + 2 lgn(4 lgn + 27) + 8(lg n − 1)N
≤ −λ + (2k + 8)τ + 2k(4k + 27) + 8(k − 1)N .

(13)

We proceed by induction. Let the base case be n+ 1 = 4;
then k = 2. We need to invert the following matrix

T =




1 0 0 0

t2 1 0 0

t1 t2 1 0

t0 t1 t2 1




=

[
T0 0
T1 T0

]
, where

T0 =

[
1 0

t2 1

]
, T−1

0 =

[
1 0

−t2 1

]
, T1 =

[
t1 t2

t0 t1

]
,

and |ti| ≤ 2τ . The associated polynomials are P0(x) =
1−t2x, for T

−1
0 , and P1(x) = t2+t1x+t0x

2, for T1. Therefore
P1P0 = (1− t2x)(t2 + t1x + t0x

2) = t2 + (t1 − t22)x + (t0 −
t1t2)x

2 − t0t2x
3. The subvector v = (t1 − t22, t0 − t1t2)

T of
the coefficient vector of the polynomial product P1P0 is the
first column of the matrix product T1T

−1
0 . Furthermore the

vector −T−1
0 v = (t22−t1, 2t1t2−t32−t0)

T is a subvector of the
coefficient vector of the polynomial product −P0v = −(1−
t2x)(t1 − t22 + (t0 − t1t2)x) where v denotes the polynomial
t1 − t22 + (t0 − t1t2)x with the coefficient vector v. As we
proved earlier, the subvector is the first column of the matrix

−T−1
0 T1 T

−1
0 =

[
t2

2 − t1 −t2

−t2
3 + 2 t1t2 − t0 t2

2 − t1

]
.

(This is not a subvector of the coefficient vector of the
polynomial

P 2
0P1 = (1− t2x)

2(t2 + t1x+ t0x
2)

= t2 + (t1 − 2t22)x+ (t0 − 2t1t2 + t32)x
2 + (t22t1 − 2t2t0)x

3 + t22t0x
4

because multiplication of polynomials and the truncation of
their coefficient vectors are not commutative operations, but
as we observed, we still can reduce our study of the product
T−1
0 T1T

−1
0 to the study of p20p1.)

We perform the multiplications by using the algorithm of
Lemma 5 and the bounds from Cor. 8, to obtain a polynomial

P̃ 2
0 P1 such that

lg‖P 2
0 P1−P̃ 2

0 P1‖∞ ≤ −λ+10τ+15 lg 1+40 ≤ −λ+12τ+140+8N ,

where the last inequality is obtained by substituting k = 2
in Eq. (13).

It remains to prove the induction. Assume that the claimed
bounds are true for n+ 1 = 2k and extend them to n+ 1 =
2k+1. In our case P0 is a polynomial of degree 2k−1 − 1. By
induction hypothesis we know the coefficient of P0 within
2−ℓ for ℓ defined by (13), and we can apply Eq. (12) to ob-
tain ‖P0‖∞ ≤ 2N .

The polynomial P1 has degree 2k − 2, ‖P1‖∞ ≤ 2τ . Its
coefficients are the entries of the matrix T and we know them
within 2−λ.

We apply Cor. 8 for d = 2k−1 − 1, τ0 = N , τ1 = τ , and
−ν = −λ+(2(k−1)+8)τ+2(k−1)(4(k−1)+27)+8(k−2)N ,
substitute k ≥ 3, and obtain the following approximation
bound,

lg
∥∥∥P 2

0P1 − P̃ 2
0 P1

∥∥∥
∞

≤ −ν + 8τ0 + 2τ1 + 14k + 42

≤ −λ+ (2k + 8)τ + 8k2 − 2k + 104 + 8(k − 1)N .

These inequalities imply that all our computations require
a precision bound of at most λ′ = ℓ + (2k + 8)τ + 2k(4k +
27) + 8(k − 1)N . To simplify the formula, we substitute
k = lg(n) rather than k = lg(n + 1) and then rewrite λ′

as follows, ℓ + (2 lgn + 8)τ + 2 lg n(4 lg n + 27) + 8(lg n −
1)(n+ lgn+nρ+1) bits, which we simplify to the bound of
ℓ+10τ lgn+70 lg2 n+8(ρ+1)n lgn orO(ℓ+(τ+lgn+nρ) lgn)
bits.

To estimate the overall complexity of approximating the
first column of the inverse matrix T−1, we notice that we
perform k steps overall, for k = lg(n+ 1), but we will keep
writing k = lg(n) to simplify the notation.

At each step we perform two multiplications of polyno-
mials of degrees at most 2k with the coefficients having ab-
solute values less than 2O(nτ), and we use the precision of
ℓ+10τ lgn+70 lg2 n+8(ρ+1)n lgn = O(ℓ+(τ+lgn+nρ) lgn)
bits. All these bounds together imply that

∑lg (n+1)
k=1 k · 2 · OB(2

k · lg 2k · µ(ℓ+ (τ + lg n+ nρ) lgn)) =
= OB(n lg2(n)µ(ℓ+ (τ + lg n+ nρ) lg n)) ,

which concludes the proof. �

9. A NORMALIZATION OF KIRRINNIS’ RE-

SULTS
The following results express the bounds of Kirrinnis [11]

for polynomials of arbitrary norms; for this an appropri-
ate scaling is applied. The complexity bounds depends on
polynomial multiplication algorithms that rely on Kronecker
substitution and not on FFT as our results that we presented
earlier. The bounds are asymptotically the same as ours, up
to logarithmic factors.

The following is from [11, Theorem 3.7 and Algorithm 5.1].

Lemma 27 (Multiplication of polynomials). Let Pj ∈
(C[x] of degree nj and ‖Pj‖∞ ≤ 2τ and P̃j be an approxima-

tion of Pj such that ‖Pj − P̃j‖∞ ≤ 2−λ, with λ = ℓn(τ +
2)+n lg n., where 1 ≤ j ≤ m, n1 ≤ · · · ≤ nm, and

∑
nj

= n.

We can compute
∏

j P̃j such that ‖∏j Pj −
∏

j P̃j‖∞ ≤ 2−ℓ

in OB(µ(n · lg n · (ℓ+ nτ +
∑

j lgnj))) or ÕB(n(ℓ+ nτ)).

Proof: Let pj = 2−τ−lg nj+nj Pj . Then

‖Pj‖∞ ≤ 2τ ⇒ ‖Pj‖1 ≤ 2τ+lgnj

⇒ 2−τ−lg nj+nj‖Pj‖1 ≤ 2nj ⇒ ‖pj‖1 ≤ 2nj .

Moreover,

‖Pj − P̃j‖∞ ≤ 2−λ ⇒ ‖Pj − P̃j‖1 ≤ 2−λ+lgnj

⇒ ‖pj − p̃j‖1 ≤ 2−τ−lgnj+nj 2−λ+lgnj = 2−λ−τ+nj .

The algorithm of Kirrinnis [11, Theorem 3.7 and Algo-
rithm 5.1] computes and approximation of

∏
j pj such that∥∥∥

∏
j pj −

∏
j p̃j

∥∥∥
1
≤ 2−s+τ+3n, which implies

∥∥∥∥∥
∏

j

2−τ−lgnj+njPj −
∏

j

2−τ−lg nj+nj P̃j

∥∥∥∥∥
1

≤ 2−λ+τ+3n

⇒ 2−nτ−
∑

j lgnj+n

∥∥∥∥∥
∏

j

Pj −
∏

j

P̃j

∥∥∥∥∥
1

≤ 2−λ+τ+3n ,

and so ∥∥∥∥∥
∏

j

Pj −
∏

j

P̃j

∥∥∥∥∥
1

≤ 2−λ+n(τ+2)+n lg n .

If we want the error to be less than 2−ℓ, then we need to
choose initial precision λ ≥ ℓn(τ +2)+n lg n. The total cost

is OB(µ(n · lg n · (ℓ+ nτ +
∑

j lg nj))) or ÕB(n(ℓ+ nτ)).
�

The algorithm for computing the sum of rational functions
[11, Theorem 3.8 and Algorithm 5.2] relies on Lemma 27 and
the bounds are similar, so we do not elaborate further.
The following lemma relies on [11, Theorem 3.9 and Algo-

rithm 5.3].

Lemma 28 (Modular representation). Let F ∈ (C[x] of
degree m and ‖F‖∞ ≤ 2τ1 . Let Pj ∈ (C[x] of degree nj , for
1 ≤ j ≤ ν, such that

∑
j nj = n and m ≥ n. Moreover, 2ρ

be an upper bound on the magnitude of the roots of all Pj .

Let F̃ , resp. P̃j , be an approximation of F , resp. Pj , such

that ‖F − F̃‖∞ ≤ 2−λ, resp. ‖Pj − P̃j‖∞ ≤ 2−λ.
If λ = ℓ+τ1+2(n+m)ρ then we compute approximations

F̃j of Fj = F mod Pj , such that ‖Fj − F̃j‖∞ ≤ 2−ℓ in
OB(µ((m+ n lgn)(ℓ+ τ1 + (m+ n)ρ))).

Proof: The polynomials Pj(2
ρ x) have all their roots inside

the unit disc. We make them monic and then denote them
pj . It holds:

‖Pj−P̃j‖∞ ≤ 2−λ ⇒ ‖Pj(2
ρ x)−P̃j(2

ρ x)‖1 ≤ 2−λ+njρ+lgnj

⇒ ‖pj − p̃j‖1 ≤ 2−λ+njρ+lgnj+1 .

We apply the same transformation to F .
Let f = 2−τ1−mρ−lgm F (2ρ x), then

‖F‖∞ ≤ 2τ1 ⇒ ‖F‖1 ≤ 2τ1+lgm ⇒ ‖F (2ρ x)‖1 ≤ 2τ1+mρ+lgm

⇒ 2−τ1−mρ+lgm‖F (2ρ x)‖1 ≤ 1 ⇒ ‖f‖1 ≤ 1 .

Now we can use [11, Theorem 3.9] choosing λ = ℓ + τ1 +

2(n+m)ρ to guarantee ‖f mod pj−f̃j‖1 = ‖fj−f̃j‖1 ≤ 2−ℓ.
The complexity of the procedure is OB(µ((m + n lg n)(ℓ +
τ1 + (m+ n)ρ))). �

Remark 29. In the case where m = n the latter bound
becomes ÕB(n(ℓ+ τ1 + nρ)).

Figure 1. Fan-in process, m
(h+1)
j = m

(h)
2j m

(h)
2j+1

✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍
�

�
�

�

❅
❅
❅
❅

�
�

�
�

❅
❅
❅
❅

✁
✁

✁
✁

❆
❆
❆
❆

✁
✁

✁
✁

❆
❆
❆
❆

✁
✁

✁
✁

❆
❆
❆
❆

✁
✁

✁
✁

❆
❆
❆
❆

m
(3)
0

m
(2)
0 m

(2)
1

m
(1)
0 m

(1)
1 m

(1)
2 m

(1)
3

m
(0)
0 m

(0)
1 m

(0)
2 m

(0)
3 m

(0)
4 m

(0)
5 m

(0)
6 m

(0)
7

Figure 2. Fan-out process, r
(h)
j = r

(h+1)
⌊j/2⌋ mod m

(h)
j =

v(x) mod m
(h)
j

✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍
�

�
�

�

❅
❅
❅
❅

�
�

�
�

❅
❅
❅
❅

✁
✁

✁
✁

❆
❆
❆
❆

✁
✁

✁
✁

❆
❆
❆
❆

✁
✁

✁
✁

❆
❆
❆
❆

✁
✁

✁
✁

❆
❆
❆
❆

r
(3)
0

r
(2)
0 r

(2)
1

r
(1)
0 r

(1)
1 r

(1)
2 r

(1)
3

r
(0)
0 r

(0)
1 r

(0)
2 r

(0)
3 r

(0)
4 r

(0)
5 r

(0)
6 r

(0)
7

	Introduction
	Preliminaries
	Univariate Separation Bounds
	Complex Interval arithmetic
	Approximate multiplication of two polynomials

	Approximate FFT-based polynomial division
	Multipoint polynomial evaluation
	Boolean complexity estimates

	Bounds on the complexity of basic algorithms
	Lagrange Interpolation
	Solution of a Cauchy linear system of equations
	Multiplication of a Cauchy matrix by a vector
	Trummer's problem
	Solving a (Cauchy) linear system

	References
	A normalization of Kirrinnis' results

