124,959 research outputs found

    A Uniqueness Theorem for Constraint Quantization

    Get PDF
    This work addresses certain ambiguities in the Dirac approach to constrained systems. Specifically, we investigate the space of so-called ``rigging maps'' associated with Refined Algebraic Quantization, a particular realization of the Dirac scheme. Our main result is to provide a condition under which the rigging map is unique, in which case we also show that it is given by group averaging techniques. Our results comprise all cases where the gauge group is a finite-dimensional Lie group.Comment: 23 pages, RevTeX, further comments and references added (May 26. '99

    Uniqueness of canonical tensor model with local time

    Get PDF
    Canonical formalism of the rank-three tensor model has recently been proposed, in which "local" time is consistently incorporated by a set of first class constraints. By brute-force analysis, this paper shows that there exist only two forms of a Hamiltonian constraint which satisfies the following assumptions: (i) A Hamiltonian constraint has one index. (ii) The kinematical symmetry is given by an orthogonal group. (iii) A consistent first class constraint algebra is formed by a Hamiltonian constraint and the generators of the kinematical symmetry. (iv) A Hamiltonian constraint is invariant under time reversal transformation. (v) A Hamiltonian constraint is an at most cubic polynomial function of canonical variables. (vi) There are no disconnected terms in a constraint algebra. The two forms are the same except for a slight difference in index contractions. The Hamiltonian constraint which was obtained in the previous paper and behaved oddly under time reversal symmetry can actually be transformed to one of them by a canonical change of variables. The two-fold uniqueness is shown up to the potential ambiguity of adding terms which vanish in the limit of pure gravitational physics.Comment: 21 pages, 12 figures. The final result unchanged. Section 5 rewritten for clearer discussions. The range of uniqueness commented in the final section. Some other minor correction

    Impermeability effects in three-dimensional vesicles

    Full text link
    We analyse the effects that the impermeability constraint induces on the equilibrium shapes of a three-dimensional vesicle hosting a rigid inclusion. A given alteration of the inclusion and/or vesicle parameters leads to shape modifications of different orders of magnitude, when applied to permeable or impermeable vesicles. Moreover, the enclosed-volume constraint wrecks the uniqueness of stationary equilibrium shapes, and gives rise to pear-shaped or stomatocyte-like vesicles.Comment: 16 pages, 7 figure

    Quasivariational solutions for first order quasilinear equations with gradient constraint

    Get PDF
    We prove the existence of solutions for an evolution quasi-variational inequality with a first order quasilinear operator and a variable convex set, which is characterized by a constraint on the absolute value of the gradient that depends on the solution itself. The only required assumption on the nonlinearity of this constraint is its continuity and positivity. The method relies on an appropriate parabolic regularization and suitable {\em a priori} estimates. We obtain also the existence of stationary solutions, by studying the asymptotic behaviour in time. In the variational case, corresponding to a constraint independent of the solution, we also give uniqueness results

    On determinism and well-posedness in multiple time dimensions

    Full text link
    We study the initial value problem for the wave equation and the ultrahyperbolic equation for data posed on initial surface of mixed signature (both spacelike and timelike). Under a nonlocal constraint, we show that the Cauchy problem on codimension-one hypersurfaces has global unique solutions in the Sobolev spaces HmH^{m}, thus it is well-posed. In contrast, we show that the initial value problem on higher codimension hypersurfaces is ill-posed, at least when specifying a finite number of derivatives of the data, due to the failure of uniqueness. This is in contrast to a uniqueness result which Courant and Hilbert deduce from Asgeirsson's mean value theorem, for which we give an independent derivation. The proofs use Fourier synthesis and the Holmgren-John uniqueness theorem

    Well-Posed Initial-Boundary Value Problem for a Constrained Evolution System and Radiation-Controlling Constraint-Preserving Boundary Conditions

    Get PDF
    A well-posed initial-boundary value problem is formulated for the model problem of the vector wave equation subject to the divergence-free constraint. Existence, uniqueness and stability of the solution is proved by reduction to a system evolving the constraint quantity statically, i.e., the second time derivative of the constraint quantity is zero. A new set of radiation-controlling constraint-preserving boundary conditions is constructed for the free evolution problem. Comparison between the new conditions and the standard constraint-preserving boundary conditions is made using the Fourier-Laplace analysis and the power series decomposition in time. The new boundary conditions satisfy the Kreiss condition and are free from the ill-posed modes growing polynomially in time.Comment: To appear in the Journal of Hyperbolic Differential Equations. In response to the reviewers request, a theorem on well-posedness of the free evolution problem has been added, definitions clarified in Sections 4 and 5, as well as a typo was removed from Section
    corecore