148 research outputs found

    Reconstruction of generic anisotropic stiffness tensors from partial data around one polarization

    Full text link
    We study inverse problems in anisotropic elasticity using tools from algebraic geometry. The singularities of solutions to the elastic wave equation in dimension nn with an anisotropic stiffness tensor have propagation kinematics captured by so-called slowness surfaces, which are hypersurfaces in the cotangent bundle of Rn\mathbb{R}^n that turn out to be algebraic varieties. Leveraging the algebraic geometry of families of slowness surfaces we show that, for tensors in a dense open subset in the space of all stiffness tensors, a small amount of data around one polarization in an individual slowness surface uniquely determines the entire slowness surface and its stiffness tensor. Such partial data arises naturally from geophysical measurements or geometrized versions of seismic inverse problems. Additionally, we explain how the reconstruction of the stiffness tensor can be carried out effectively, using Gr\"obner bases. Our uniqueness results fail for very symmetric (e.g., fully isotropic) materials, evidencing the counterintuitive claim that inverse problems in elasticity can become more tractable with increasing asymmetry.Comment: 39 pages, 4 figures. Computer Code included in the ancillary files folde

    Ultrasonic imaging in highly heterogeneous backgrounds

    Get PDF
    This work formally investigates the differential evolution indicators as a tool for ultrasonic tracking of elastic transformation and fracturing in randomly heterogeneous solids. Within the framework of periodic sensing, it is assumed that the background contains (i) a multiply connected set of viscoelastic, anisotropic, and piecewise homogeneous inclusions, and (ii) a union of possibly disjoint fractures and pores. The support, material properties, and interfacial condition of scatterers in (i) and (ii) are unknown, while elastic constants of the matrix are provided. The domain undergoes progressive variations of arbitrary chemo-mechanical origins such that its geometric configuration and elastic properties at future times are distinct. At every sensing step t∘,t1,…,t_\circ, t_1, \ldots, multi-modal incidents are generated by a set of boundary excitations, and the resulting scattered fields are captured over the observation surface. The test data are then used to construct a sequence of wavefront densities by solving the spectral scattering equation. The incident fields affiliated with distinct pairs of obtained wavefronts are analyzed over the stationary and evolving scatterers for a suit of geometric and elastic evolution scenarios entailing both interfacial and volumetric transformations. The main theorem establishes the invariance of pertinent incident fields at the loci of static fractures and inclusions between a given pair of time steps, while certifying variation of the same fields over the modified regions. These results furnish a basis for theoretical justification of differential evolution indicators for imaging in complex composites which, in turn, enable the exclusive tomography of evolution in a background endowed with many unknown features

    Ultrasonic imaging in highly heterogeneous backgrounds

    Get PDF
    This work formally investigates the differential evolution indicators as a tool for ultrasonic tracking of elastic transformation and fracturing in randomly heterogeneous solids. Within the framework of periodic sensing, it is assumed that the background at time tâ—¦ contains (i) a multiply connected set ofviscoelastic, anisotropic, and piece-wise homogeneous inclusions, and (ii) a union of possibly disjoint fractures and pores. The support, material properties, and interfacial condition of scatterers in (i) and (ii) are unknown, while elastic constants of the matrix are provided. The domain undergoes progressive variations of arbitrary chemo-mechanical origins such that its geometric configuration and elastic properties at future times are distinct. At every sensing step tâ—¦, t1, . . ., multi-modal incidents are generated by a set of boundary excitations, and the resulting scattered fields are captured over the observation surface. The test data are then used to construct a sequence of wavefront densities by solving the spectral scatteringequation. The incident fields affiliated with distinct pairs of obtained wavefronts are analyzed over the stationary and evolving scatterers for a suit ofgeometric and elastic evolution scenarios entailing both interfacial and volumetric transformations. The main theorem establishes the invariance of pertinent incident fields at the loci of static fractures and inclusions between a given pair of time steps, while certifying variation of the same fields over the modified regions. These results furnish a basis for theoretical justification of differential evolution indicators for imaging in complex composites which, in turn, enable the exclusive tomography of evolution in a background endowed with many unknown features

    Mathematics and Algorithms in Tomography

    Get PDF
    This is the eighth Oberwolfach conference on the mathematics of tomography. Modalities represented at the workshop included X-ray tomography, sonar, radar, seismic imaging, ultrasound, electron microscopy, impedance imaging, photoacoustic tomography, elastography, vector tomography, and texture analysis

    Computational Multiscale Methods

    Get PDF
    Many physical processes in material sciences or geophysics are characterized by inherently complex interactions across a large range of non-separable scales in space and time. The resolution of all features on all scales in a computer simulation easily exceeds today's computing resources by multiple orders of magnitude. The observation and prediction of physical phenomena from multiscale models, hence, requires insightful numerical multiscale techniques to adaptively select relevant scales and effectively represent unresolved scales. This workshop enhanced the development of such methods and the mathematics behind them so that the reliable and efficient numerical simulation of some challenging multiscale problems eventually becomes feasible in high performance computing environments
    • …
    corecore