52,064 research outputs found

    Statistical Learning of Arbitrary Computable Classifiers

    Get PDF
    Statistical learning theory chiefly studies restricted hypothesis classes, particularly those with finite Vapnik-Chervonenkis (VC) dimension. The fundamental quantity of interest is the sample complexity: the number of samples required to learn to a specified level of accuracy. Here we consider learning over the set of all computable labeling functions. Since the VC-dimension is infinite and a priori (uniform) bounds on the number of samples are impossible, we let the learning algorithm decide when it has seen sufficient samples to have learned. We first show that learning in this setting is indeed possible, and develop a learning algorithm. We then show, however, that bounding sample complexity independently of the distribution is impossible. Notably, this impossibility is entirely due to the requirement that the learning algorithm be computable, and not due to the statistical nature of the problem.Comment: Expanded the section on prior work and added reference

    On sample complexity for computational pattern recognition

    Full text link
    In statistical setting of the pattern recognition problem the number of examples required to approximate an unknown labelling function is linear in the VC dimension of the target learning class. In this work we consider the question whether such bounds exist if we restrict our attention to computable pattern recognition methods, assuming that the unknown labelling function is also computable. We find that in this case the number of examples required for a computable method to approximate the labelling function not only is not linear, but grows faster (in the VC dimension of the class) than any computable function. No time or space constraints are put on the predictors or target functions; the only resource we consider is the training examples. The task of pattern recognition is considered in conjunction with another learning problem -- data compression. An impossibility result for the task of data compression allows us to estimate the sample complexity for pattern recognition

    Learning pseudo-Boolean k-DNF and Submodular Functions

    Full text link
    We prove that any submodular function f: {0,1}^n -> {0,1,...,k} can be represented as a pseudo-Boolean 2k-DNF formula. Pseudo-Boolean DNFs are a natural generalization of DNF representation for functions with integer range. Each term in such a formula has an associated integral constant. We show that an analog of Hastad's switching lemma holds for pseudo-Boolean k-DNFs if all constants associated with the terms of the formula are bounded. This allows us to generalize Mansour's PAC-learning algorithm for k-DNFs to pseudo-Boolean k-DNFs, and hence gives a PAC-learning algorithm with membership queries under the uniform distribution for submodular functions of the form f:{0,1}^n -> {0,1,...,k}. Our algorithm runs in time polynomial in n, k^{O(k \log k / \epsilon)}, 1/\epsilon and log(1/\delta) and works even in the agnostic setting. The line of previous work on learning submodular functions [Balcan, Harvey (STOC '11), Gupta, Hardt, Roth, Ullman (STOC '11), Cheraghchi, Klivans, Kothari, Lee (SODA '12)] implies only n^{O(k)} query complexity for learning submodular functions in this setting, for fixed epsilon and delta. Our learning algorithm implies a property tester for submodularity of functions f:{0,1}^n -> {0, ..., k} with query complexity polynomial in n for k=O((\log n/ \loglog n)^{1/2}) and constant proximity parameter \epsilon

    Minimum Description Length Induction, Bayesianism, and Kolmogorov Complexity

    Get PDF
    The relationship between the Bayesian approach and the minimum description length approach is established. We sharpen and clarify the general modeling principles MDL and MML, abstracted as the ideal MDL principle and defined from Bayes's rule by means of Kolmogorov complexity. The basic condition under which the ideal principle should be applied is encapsulated as the Fundamental Inequality, which in broad terms states that the principle is valid when the data are random, relative to every contemplated hypothesis and also these hypotheses are random relative to the (universal) prior. Basically, the ideal principle states that the prior probability associated with the hypothesis should be given by the algorithmic universal probability, and the sum of the log universal probability of the model plus the log of the probability of the data given the model should be minimized. If we restrict the model class to the finite sets then application of the ideal principle turns into Kolmogorov's minimal sufficient statistic. In general we show that data compression is almost always the best strategy, both in hypothesis identification and prediction.Comment: 35 pages, Latex. Submitted IEEE Trans. Inform. Theor
    corecore