218,496 research outputs found

    Uniform interpolation and coherence

    Get PDF
    A variety V is said to be coherent if any finitely generated subalgebra of a finitely presented member of V is finitely presented. It is shown here that V is coherent if and only if it satisfies a restricted form of uniform deductive interpolation: that is, any compact congruence on a finitely generated free algebra of V restricted to a free algebra over a subset of the generators is again compact. A general criterion is obtained for establishing failures of coherence, and hence also of uniform deductive interpolation. This criterion is then used in conjunction with properties of canonical extensions to prove that coherence and uniform deductive interpolation fail for certain varieties of Boolean algebras with operators (in particular, algebras of modal logic K and its standard non-transitive extensions), double-Heyting algebras, residuated lattices, and lattices

    Coherence in Modal Logic

    Get PDF
    A variety is said to be coherent if the finitely generated subalgebras of its finitely presented members are also finitely presented. In a recent paper by the authors it was shown that coherence forms a key ingredient of the uniform deductive interpolation property for equational consequence in a variety, and a general criterion was given for the failure of coherence (and hence uniform deductive interpolation) in varieties of algebras with a term-definable semilattice reduct. In this paper, a more general criterion is obtained and used to prove the failure of coherence and uniform deductive interpolation for a broad family of modal logics, including K, KT, K4, and S4

    Uniform Interpolation for Coalgebraic Fixpoint Logic

    Get PDF
    We use the connection between automata and logic to prove that a wide class of coalgebraic fixpoint logics enjoys uniform interpolation. To this aim, first we generalize one of the central results in coalgebraic automata theory, namely closure under projection, which is known to hold for weak-pullback preserving functors, to a more general class of functors, i.e.; functors with quasi-functorial lax extensions. Then we will show that closure under projection implies definability of the bisimulation quantifier in the language of coalgebraic fixpoint logic, and finally we prove the uniform interpolation theorem

    Approximate Approximations from scattered data

    Full text link
    The aim of this paper is to extend the approximate quasi-interpolation on a uniform grid by dilated shifts of a smooth and rapidly decaying function on a uniform grid to scattered data quasi-interpolation. It is shown that high order approximation of smooth functions up to some prescribed accuracy is possible, if the basis functions, which are centered at the scattered nodes, are multiplied by suitable polynomials such that their sum is an approximate partition of unity. For Gaussian functions we propose a method to construct the approximate partition of unity and describe the application of the new quasi-interpolation approach to the cubature of multi-dimensional integral operators.Comment: 29 pages, 17 figure

    Bivariate Lagrange interpolation at the node points of Lissajous curves - the degenerate case

    Full text link
    In this article, we study bivariate polynomial interpolation on the node points of degenerate Lissajous figures. These node points form Chebyshev lattices of rank 11 and are generalizations of the well-known Padua points. We show that these node points allow unique interpolation in appropriately defined spaces of polynomials and give explicit formulas for the Lagrange basis polynomials. Further, we prove mean and uniform convergence of the interpolating schemes. For the uniform convergence the growth of the Lebesgue constant has to be taken into consideration. It turns out that this growth is of logarithmic nature.Comment: 26 pages, 6 figures, 1 tabl

    Uniform interpolation via nested sequents

    Get PDF
    A modular proof-theoretic framework was recently developed to prove Craig interpolation for normal modal logics based on generalizations of sequent calculi (e.g., nested sequents, hypersequents, and labelled sequents). In this paper, we turn to uniform interpolation, which is stronger than Craig interpolation. We develop a constructive method for proving uniform interpolation via nested sequents and apply it to reprove the uniform interpolation property for normal modal logics K, D, and T. While our method is proof-theoretic, the definition of uniform interpolation for nested sequents also uses semantic notions, including bisimulation modulo an atomic proposition
    corecore