132,825 research outputs found

    Design and Implementation of a Measurement-Based Policy-Driven Resource Management Framework For Converged Networks

    Full text link
    This paper presents the design and implementation of a measurement-based QoS and resource management framework, CNQF (Converged Networks QoS Management Framework). CNQF is designed to provide unified, scalable QoS control and resource management through the use of a policy-based network management paradigm. It achieves this via distributed functional entities that are deployed to co-ordinate the resources of the transport network through centralized policy-driven decisions supported by measurement-based control architecture. We present the CNQF architecture, implementation of the prototype and validation of various inbuilt QoS control mechanisms using real traffic flows on a Linux-based experimental test bed.Comment: in Ictact Journal On Communication Technology: Special Issue On Next Generation Wireless Networks And Applications, June 2011, Volume 2, Issue 2, Issn: 2229-6948(Online

    A Centralized SDN Architecture for the 5G Cellular Network

    Full text link
    In order to meet the increasing demands of high data rate and low latency cellular broadband applications, plans are underway to roll out the Fifth Generation (5G) cellular wireless system by the year 2020. This paper proposes a novel method for adapting the Third Generation Partnership Project (3GPP)'s 5G architecture to the principles of Software Defined Networking (SDN). We propose to have centralized network functions in the 5G network core to control the network, end-to-end. This is achieved by relocating the control functionality present in the 5G Radio Access Network (RAN) to the network core, resulting in the conversion of the base station known as the gNB into a pure data plane node. This brings about a significant reduction in signaling costs between the RAN and the core network. It also results in improved system performance. The merits of our proposal have been illustrated by evaluating the Key Performance Indicators (KPIs) of the 5G network, such as network attach (registration) time and handover time. We have also demonstrated improvements in attach time and system throughput due to the use of centralized algorithms for mobility management with the help of ns-3 simulations

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    Integrating personal media and digital TV with QoS guarantees using virtualized set-top boxes: architecture and performance measurements

    Get PDF
    Nowadays, users consume a lot of functionality in their home coming from a service provider located in the Internet. While the home network is typically shielded off as much as possible from the `outside world', the supplied services could be greatly extended if it was possible to use local information. In this article, an extended service is presented that integrates the user's multimedia content, scattered over multiple devices in the home network, into the Electronic Program Guide (EPG) of the Digital TV. We propose to virtualize the set-top box, by migrating all functionality except user interfacing to the service provider infrastructure. The media in the home network is discovered through standard Universal Plug and Play (UPnP), of which the QoS functionality is exploited to ensure high quality playback over the home network, that basically is out of the control of the service provider. The performance of the subsystems are analysed
    • …
    corecore