690 research outputs found

    A Survey on Delay-Aware Resource Control for Wireless Systems --- Large Deviation Theory, Stochastic Lyapunov Drift and Distributed Stochastic Learning

    Full text link
    In this tutorial paper, a comprehensive survey is given on several major systematic approaches in dealing with delay-aware control problems, namely the equivalent rate constraint approach, the Lyapunov stability drift approach and the approximate Markov Decision Process (MDP) approach using stochastic learning. These approaches essentially embrace most of the existing literature regarding delay-aware resource control in wireless systems. They have their relative pros and cons in terms of performance, complexity and implementation issues. For each of the approaches, the problem setup, the general solution and the design methodology are discussed. Applications of these approaches to delay-aware resource allocation are illustrated with examples in single-hop wireless networks. Furthermore, recent results regarding delay-aware multi-hop routing designs in general multi-hop networks are elaborated. Finally, the delay performance of the various approaches are compared through simulations using an example of the uplink OFDMA systems.Comment: 58 pages, 8 figures; IEEE Transactions on Information Theory, 201

    Resource Allocation for Outdoor-to-Indoor Multicarrier Transmission with Shared UE-side Distributed Antenna Systems

    Full text link
    In this paper, we study the resource allocation algorithm design for downlink multicarrier transmission with a shared user equipment (UE)-side distributed antenna system (SUDAS) which utilizes both licensed and unlicensed frequency bands for improving the system throughput. The joint UE selection and transceiver processing matrix design is formulated as a non-convex optimization problem for the maximization of the end-to-end system throughput (bits/s). In order to obtain a tractable resource allocation algorithm, we first show that the optimal transmitter precoding and receiver post-processing matrices jointly diagonalize the end-to-end communication channel. Subsequently, the optimization problem is converted to a scalar optimization problem for multiple parallel channels, which is solved by using an asymptotically optimal iterative algorithm. Simulation results illustrate that the proposed resource allocation algorithm for the SUDAS achieves an excellent system performance and provides a spatial multiplexing gain for single-antenna UEs.Comment: accepted for publication at the IEEE Vehicular Technology Conference (VTC) Spring, Glasgow, Scotland, UK, May 201
    corecore